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Abstract

This paper addresses the problem of finding useful associations between audio and visual
input signals. The proposed approach is based on the mazimization of mutual information
of audio-visual clusters. This approach results in segmentation of continuous speech signals,
and finds visual categories which correspond to segmented spoken words. Such audio-visual
associations may be used for modeling infant language acquisition and to dynamically per-
sonalize speech-based human-computer interfaces for various applications including catalog
browsing and wearable computing. This paper describes an implemented system for learning
shape names from camera and microphone input. We present results in an evaluation of
the system for the domain of modeling language learning.

1 Introduction

We are developing multimodal systems which learn from audio-visual data. We are
interested in situations which provide input of the form illustrated in Figure 1. Input
consists of mutliword naturally spoken utterances paired with visual representations of
objects. In this paper we present a system which can automatically learn shape categories
and their corresponding spoken names. The output of the system is a set of sound-shape
associations which encode words (or phrases) and their visually grounded meanings. The
approach we describe in this paper may be generalized to other types of inputs to expand
the range of semantics beyond object shape.

1.1 Motivations

This work is motivated by various domains we have been investigating in which speech
and visual input is available. The common denominator across each domain is that we
expect linguistically meaningful correlations between the audio and visual streams. The
audio stream contains words, and the visual stream carries potential meanings of these
words. In each case the goal is to discover sound units which correspond to words, and
visual categories which correspond to the meaning of the sound units. Situations we are
considering include:

Modeling language acquisition Infants learn words based on noisy perceptual input.
We are interested in modeling the process of early word learning based on audio-
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Figure 1. Input consists of multiword spoken utterances paired with images of ob-
jects. Audio-visual clustering extracts visual shape categories and corresponding
spoken names.

visual input. The system presented in this paper has been used to process raw infant-
directed speech paired with camera images of objects. The system has successfully
learned words from this input. Sample results from this domain are presented in this
paper. For more details see [22].

Wearable computing Wearable computers provide a unique opportunity to record and
index the audio-visual environment of a user from a “first-person” perspective. Cam-
eras and microphones may be added to a wearable computer enabling a system to
watch everything a user sees, and record everything the user says. Over time, an
audio-visual learning system can learn correspondences between the user’s speech
and visual input, assuming that at least some of the user’s speech refers to the imme-
diate visual context. To date, we have implemented wearable systems which record
audio-visual data, and which cluster and analyze the visual environment [26, 27].

Catalog browsing In the future we plan to create a multimodal catalog browsing system
in which users may use both speech and mouse clicks to browse and search images of
clothing and other items. To train the system, the user may click on images and speak
descriptions of them (eg. click on a shirt and say “this is a funky blue summer shirt”).
Such interaction leads to a corpus of images associated with spoken utterances. By
learning speech-visual correspondences, the system is able to learn specific words and
phrases which the user chooses and their intended visual semantics. For the domain
of clothing catalogs, the visual representations might naturally include shape, color
and texture. Once trained, speech may be used to retrieve items which are not in
view.

All of the above domains share the property that the speech may refer to aspects of
co-occurring visual input. In each case, any word or phrase within an utterance may refer
to any co-occurring visual feature.

1.2 Problems

In this paper we specifically deal with the problem of finding sound-shape associations
as a special case of extracting audio-visual associations. In order to achieve this goal, the
system must address three problems:

‘Word Discovery We assume that spoken utterances contain multiple connected words.



There are no equivalents of spaces between printed words when we speak naturally;
There are no pauses or other acoustic cues which separate the continuous flow of word-
s. To acquire appropriate audio-visual clusters, the system must segment connected
speech in order to discover word boundaries.

Shape Categorization Shape categories must be established from noisy camera input.
The number of categories is unknown and must be learned from the data. In the
experiments described in this paper the segmentation of objects is facilitated by using
a uniform background. In [27] we describe a system which uses color, texture and
motion in order to extract object hypotheses from a continous video signal.

Speech-to-Visual Association Inference The third problem is to establish associations
between speech sounds and corresponding shape categories.

In our formulation, all three problems are considered as different facets of one underlying
problem of audio-visual association inference.

1.3 Approach

We have developed a model of audio-visual processing which learns audio-visual associa-
tions from a set of images paired with spoken utterances. Processing in the system consists
of two stages. In the first stage, utterances are segmented into possible sounds units of
the language. Each segment serves as a hypothesis of the name of the co-occurring object
shape. Thus each utterance-shape input pair results in a set of sound-shape hypotheses.
This initial set is reduced using one or more attentional filters which retain hypotheses
which are visually or acoustically salient.

In the second stage, the hypothesis sets generated from a corpus of object-utterance pairs
are clustered using a mutual information metric. Clusters which score highest using this
metric are used to generate sound-shape represenations as final output of the system. In
the following sections, we first describe how representations of objects and utterances are
extracted from sensory input. Similarity metrics used to compare representations within
each input modality are presented. Mutual information based clustering across modalities
is then described.

An important aspect of this work is the combination of information from different modal-
ities. In our approach, we assume that similarity metrics are avaliable for comparing repre-
sentations within each modality. Mutual information is used to combine similarity metrics
without the need for ad hoc heuristics for combining similarity metrics. This approach has
several advantages over using some fixed combination of similarity metrics, as discussed
later in this paper.

2 Background

Several models of word learning have been proposed to explain how words are learned
from linguistic and contextual input including [30, 10, 7, 23, 11]. The work of Gorin and
his colleagues on models of language learning from raw speech is particulary relevant to our
work. Gorin has developed an language acquisition system which learns from raw acoustic
speech and semantic annotations [11]. Input consisted of connected word spoken utterances
paired with one of 20 semantic class identification tags. The system is able to learn which



words are useful for a classification task using a measure of semantic relevance based on
mutual information. In Gorin’s framework, the salience, or semantic importance of a word
is estimated using the weighted mutual information between the occurrence of the word,
and the the occurrence of classification tags. Gorin’s system does not attempt to learn
semantic classes, and also does not address the problem of speech segmentation (a large
vocabulary speech recognizer is assumed to exist). In contrast, our work address both of
these problems.

The use of multiple sensor modalities is meaningful in many different contexts. The
related research areas are therefore highly diverse and interdisplinary. In the robotics
literature sensor fusion is an active research area [16, 8, 9, 6]. The typical approach in
robotics is to use a common representation such as a 3D-model of the environment or a
certainty grid in order to integrate the information coming from different sensor modalities.
The uncertainty of each sensor modality is modeled explicitly and used e.g. in a Kalman
filter based framework.

Mulimodal processing has been addressed for the problem of audio-visual lip reading
[32, 3]. The speech signal and co-occurring visual lip signal are combined to increase
accuracy of speech recognition. This approach has been effective in situations with high
acoustic noise levels.

The most straightforward way to combine information coming from multiple sensors is to
use a single feature vector compromising information coming from different sensors (eg. [4]).
However, such an approach assumes that the sensor information is synchronized. Another
way of combining information is to use Bayesian networks [34] where the uncertainity is
propagated from the individual sensors all the way to the semantic interpretation level.

In most of the above approaches the input signals from different sensors are assumed to
be synchronized and simultaneous. Also, the method of combining different input channels
is coded explicitly and often manually. In this paper we propose to combine audio and
visual signals by maximizing mutual information of clustered instances. This allows the
system to deal with features which are not synchronized in time, and also enables the
combination of arbitrary distance metrics.

3 Representing and Comparing Object Shapes

Three-dimensional objects are represented using a view-based approach [33, 17, 19, 25].
In this approach, no explicit three dimensional model is recovered. Instead, multiple two-
dimensional images of an object captured from multiple viewpoints collectively form a
model of the object. Figure 2 shows the stages of visual processing which are used to
extract representations of object shapes and colors. The shape representation is invariant
to similarity transformations i.e. to changes in position, scale and in-plane rotation. In
this paper we limit our presentation to shape categories only. The ultimate goal however is
to use additional feature representations of the visual information simultaneously such as
color, motion and texture.

The video signal from the CCD camera is sampled at a resolution of 160x120 pixels at
a rate of 10Hz. The CCD camera has been mounted on a four DOF robotic armature
enabling active positioning of the camera. The mechanical platform is shown schematically
on the left side of Figure 3. The robot lets us move the camera and view objects from
multiple perspectives. A photograph of the robot is shown on the right. Controllable facial
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Figure 2. Extraction of object shape and color channels from a CCD camera.

features were added to create a life-like character based on the robot for live interaction
with the system (see [22]). Control of the robot is achieved by a tight feedback loop with
the vision sensor which ensures that the object is kept in the center of view as the robot
changes vantage points.

In the current version of the system figure-ground segmentation is simplified by assuming
a uniform background. A simple Gaussian model of the normalized background color is
estimated and used to classify background/foreground pixels. Connected regions in the
image are candidate objects and referred to as object masks in the following. The middle
column of figure 4 shows the largest object masks of the images in the first column.

Schiele and Crowley [25, 28] have proposed a general framework where objects are rep-
resented by joint statistics of local properties such as Gaussian derivatives. This provides a
robust means to represent objects and allows the reliable recognition of over 100 objects in-
dependent of viewing position. Building on their results we propose to represent 2D-shapes
of objects based on the joint statistics of two-point features. More specifically, we propose
to use 2D-shape histograms which are invariant to similarity transformations (translation,
scale and in-plane rotation). In order to obtain a description of the 3D-shape of an object
we use sets of 2D-shape histograms.

In this paper we use pairs of points on the border of the object mask in order to calculate
the shape histograms. The first feature is the distance between the two points normalized
by the average distance of all border point pairs of the object mask. The second feature
is the angle between the tangents at the two points. These two features correspond to the
two axes of the shape histograms. Both features are invariant to in-plane rotation, scale
changes and translation. Since the size of the mask varies with scale the number of entries
in the shape histograms have to be normalized to a fixed number of entries. The resulting
2D-shape histograms are invariant to similarity transformations of the object mask.

The third column of figure 4 shows such 2D-shape histograms which have been calculated
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Figure 3. The robot has four degrees of freedom: two at the base and two at the
neck. A turntable provides a optional fifth degree of freedom for viewing objects
from various perspectives. Servo controlled facial features were added to the robot
for life-like real time interaction.

for the object masks of the second column. In particular, the histogram of the basketball
(first row) can be interpreted easily: the object mask is a circle and therefore the angle be-
tween the tangents increases with increasing distance between the points. More specifically
the circular object mask produces a sine curve in the histogram. The sinusoidal curve also
appears in the histogram of the shoe since the lower right part of the shoe corresponds to a
half-circle. The last histogram we can see that many entries correspond to approximately
the same distance but with varying angle which correspond to the body and other parts of
the dog.

Using multidimensional histograms to represent object shapes allows the use of informa-
tion theoretical or statistical divergence functions [1] directly for the comparison of object
models. Among these are e.g. the KL-divergence and the x?-divergence. We have exper-
imentally compared such divergences to several histogram matching functions [24]. From
experiments we found the following calculation of the x?-divergence provides the best re-
sults in most cases:

dy(x.Y) = x(x,y) = Y o ul W
=~ Tit Ui

where X = Ujz; and Y = Ujy; are two histograms indexed by i and z; and y; are the
values of a histogram cell. Using the x2-divergence the third and forth histogram in figure
4 are more similar than any other pair of histograms in that figure.

The representation of 3D shapes are based on a collection of 2D shape histograms, each
corresponding to a particular view of the object. Each 3D object is therefore represented
by N shape histograms which form a view-set. In order to compare two such view-sets
we calculate the M best out of N matches between individual histograms and sum their
divergences'. By choosing only a subset of views for comparing view-sets, the system does
not require all views of one view-set to correspond to a matching view in the other set. In
this paper we use N = 15 and M = 4.

!Each individual histogram is only allowed to match another histogram once
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Figure 4. Sample images of objects, their object masks, and shape histograms.

4 Representing and Comparing Spoken Utterances

4.1 Representing Spoken Utterances

Spoken utterances are represented as arrays of phoneme probabilities (Figure 5). We
use the Relative Spectra Perceptual Linear Predictive (RASTA-PLP) analysis to extract
a spectral representation of the acoustic signal which is robust to background noise which
contains temporal dynamics significantly different from speech [13]. A recurrent neural
network takes RASTA-PLP coeffients as input and estimates phoneme and speech/silence
probabilities. The RNN is similar to the system developed by Robinson [20]. We trained the
RNN using the TIMIT database which contains phonetically transcribed speech samples of
630 native English speakers 2 [29]. For each incoming set of RASTA-PLP coefficients, the
RNN estimates the probability of 40 English phonemes (including silence).

In our implementation, 12 RASTA-PLP coefficients are computed on a 20ms (320 sample)
windows of input. A window step size of 10ms (160 samples) is used, resulting in a set
of 12 RASTA-PLP coefficients estimated every 10ms. The RNN re-estimates phoneme
probabilities at a rate of 100Hz. An utterance is thus represented as an array of phoneme
probabilities. Utterance end points are found by detecting contiguous segments of speech
in which the probability of silence estimated by the RNN is low. Figure 6 depicts the RNN
output for an utterance produced by a mother directed to her 10-month old infant while
playing with a ball. Symbols for each RNN output are printed along the left and right edges
of the plot. The strength of each RNN output determines the brightness of the associated
trace as a function of time.

2The RNN recognizes phonemes with 69.4% accuracy using the standard TIMIT training and test dataset-
s
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Figure 5. Extracting the linguistic channel from microphone input.
4.2 Speech Segmentation

Spoken utterances are segmented in time along phoneme boundaries, providing hypothe-
ses of word boundaries. To locate phoneme boundaries, the RNN outputs are treated as
state emission probabilities in a Hidden Markov Model (HMM) framework [2]. The Viterbi
dynamic programming search is used to obtain the most likely phoneme sequence for a
given phoneme probability array. A context-independent HMM has been trained for each
of 40 phonemes using the TIMIT training data set. After Viterbi decoding of an utterance,
the system obtains:

e A phoneme sequence. This is the most likely sequence of phonemes which were
concatenated to form the utterance.

e The location of each phoneme boundary for the sequence (this information is recovered
from the Viterbi search).

Each phoneme boundary may serve as a speech segment start or end point. Any subse-
quence of an utterance terminated at phoneme boundaries may form a word hypothesis.

4.3 Comparing Speech Segments

We now define a distance metric, d4(), which measures the similarity between two speech
segments. One possibility is to treat the phoneme sequence of each speech segment as a
string and use string comparison techniques [15]. This method has been applied to the
problem of finding recurrent speech segments in continuous speech [35]. A limitation of
this method is that it relies on only the single most likely phoneme sequence. A sequence
of RNN output is equivalent to an unpruned phoneme lattice from which multiple phoneme



Figure 6. RNN output for the utterance “Bye, ball!”.

sequences may be derived. To make use of this additional information, we have devised a
new method for comparing speech segments.

Let Q = {q1,92,--.,qn} be a sequence of N phonemes observed in a speech segment.
This sequence may be used to generate a HMM model A by assigning an HMM state for each
phoneme in () and connecting each state in a strict left-to-right configuration. In Figure
7 the RNN output for the word ball leads to the phoneme sequence /bal/. This sequence
is used to generate a 3-state left-to-right HMM. State transition probabilities are inherited
from a context-independent set of phoneme models trained from the TIMIT training set.

Consider two speech segments, «; and o; with phoneme sequences (); and @);. From
these sequences, we can generate HMMs A; and A;. We wish to test the hypothesis that A;
generated «; (and vice versa).

The Forward algorithm [18, page 335] can be used to compute P(Q;|\;) and P(Q;|X;), the
likelihood that the HMM derived from speech segment «; generated speech segment «; and
vice versa. However, these likelihoods are not an effective measure for our purposes since
they represent the joint probability of a phoneme sequence and a given speech segment. An
improvement is to use a likelihood ratio test to generate a confidence metric [21, page 318].
In this method, each likelihood estimate is scaled by the likelihood of a default alternate
hypothesis, A\4:

P(Q[A)

H@AND = pigha)
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Figure 7. The Viterbi algorithm finds the most likely phoneme sequence for a se-
quence of RNN output. A left-to-right HMM is constructed by assigning a state for
each phoneme in the sequence.

In our metric, the alternative hypothesis is the HMM derived from the speech sequence
itself, i.e. )\24 = \j and /\3-4 = )\;. The distance between two speech segments is defined in
terms of logarithms of these scaled likelihoods:

oy = L [P@QilN)T L P(QslA)
da(os, o) = 2{1g{P(QM)]JF[P(Qj'/\j)H (2)

This metric is symmetric, i.e. da(o;, ;) = da(a;, ;). Logarithms are used to avoid
floating point mathematical underflow problems in the implementation. The negative sign
converts the likelihood score (which is a measure of similarity) into a score of dissimilarity,
i.e. a distance.

5 Combining Audio and Visual Input

5.1 Filtering Hypotheses

In the previous sections, we have described methods for extracting representations of ob-
ject shapes and spoken utterances from camera and microphone input. As shown in Figure
1, input consists of spoken utterance paired with images of objects. For each utterance, a
set of word hypotheses are generated by extracting speech segments at phoneme boundaries
and linking them with the co-occurring object.

For a set of object-utterance pairs, the hypothesis set will be huge since each spoken
utterance may lead to hundreds or even thousands of word hypotheses. To reduce the
number of hypotheses, one or more attentional filters may be used. Some cognitively
inspired filters are mentioned below:

Prosodic highlight filter Select speech segments which are prosodically emphasized. Pro-
sodic emphasis may be due to sudden changes in fundamental frequency, increased
energy, or lengthened syllables.

Recurrency filter Select speech segments and object shapes which recur often over time.

10



Visual salience filter Built-in biases may be used to select “interesting” aspect of a visual
scene. Visual salience can be based on features such as motion and color.

Object persistence filter Using a head-mounted camera (perhaps in a wearable com-
puter setup), the duration an object stays in the visual field of view may be a good
indicator for the importance of object to the user.

Object tracking filter Also in a wearable computing environment, by extracting and
tracking objects in the visual field of the user, we can hypothesize objects which the
user is following with his or her gaze. Objects which are tracked are likely to be
important and more likely to be correlated with concurrent speech signals.

These are a sampling of potential attentional filters. Depending on the problem domain,
these and other filters might be used in isolation and in combination. For example, a
word-object hypothesis may be selected when the word is prosodically highlighted and the
corresponding object is visually salient using color and brightness features.

5.2 [Evaluation of Sound-Shape Hypotheses

Output from attentional filters consist of a reduced set of speech segments and their hy-
pothesized visual referents. In the final stage of processing, these hypotheses are clustered,
and the most reliable clusters are used to generate output of the system.

Let us assume that there are N sound-shape hypotheses. The clustering process proceeds
by considering each hypothesis as a reference point, in turn. Let us assume one of these
hypotheses, X, has been chosen randomly as a reference point. Each remaining N — 1
hypotheses may be compared to X using dy () and d4(). Let us further assume that two
thresholds, ¢y and ¢4 are defined (we show how their values are determined below). Two
indicator variables are defined with respect to X:

_ 0 Zf dA(X, h/z) >ta

4 = {1 if da(X,h;) <ta (3)
_ [0 if dy(X,hy) >ty

Vo= {1 if dy(X,h;) <ty (4)

where h; is the i** hypothesis, for i = 1... N — 1. For a given setting of thresholds, the
A and V variables indicate whether each hypothesis matches the reference X acoustically
and visually, respectively. The mutual information between A and V' is defined as [5]:

I(4V) =3 3 P(A=iV = j)log PI(DzElA:i)iI”YV::j)j) .

The probabilities required to calculate I(A; V') can be estimated from smoothed frequency
counts (similar to [12]). Note that I(A4;V) is a function of the thresholds ¢4 and ¢y. To
determine ty and £ 4, the system searches for the settings of these thresholds which maximize
the mutual information between A and V. Smoothing of frequencies avoids the collapse of
thresholds to zero.

Each hypothesis is taken as a reference point and its point of maximum mutual infor-
mation (MMI) is found. The hypotheses which result in the highest MMI are selected as

11



output of the system. For each selected hypothesis, all other hypotheses which match both
visually and acoustically are removed from further processing. In effect, this strategy leads
to a greedy algorithm in which the hypotheses with best MMI scores are extracted first.

For each output sound-shape pair, the system generates optimized ty and t4 values.
Each selected audio-visual hypothesis serves as a prototype of an associated speech sound
and visual category. The thresholds define the radii of the sound and visual categories.

The process we have described effectively combines acoustic and visual similarity metrics
via the MMI search procedure. The mutual information metric is used to determine the
goodness of a hypothesis. If knowledge of the presence of one cluster (acoustic or visual)
greatly reduces uncertainty about the presence of the other cluster (visual or acoustic),
then the hypothesis is given a high goodness rating and is more likely to be selected as
output by the system.

An interesting aspect of using MMI to combine similarity metrics is the invariance to scale
factors of each similarity metric. Each similarity metric organizes sound-shape hypotheses
independently of the other. The MMI search finds structural correlations between the
modalities without directly combining similarity scores. As a result, the clusters which are
identified by this method can locally and dynamically adjust allowable variances in each
modality. Locally adjusted variances cannot be achieved using a fixed scheme of combining
similarity metrics.

A final step is to threshold the MMI score of each hypothesis and select those which
exceed the threshold. Determiniation of this threshold is beyond the scope of our current
system. It might be set manually, or by higher level reinforcement feedback.

6 Preliminary Results

This section presents sample results of using the audio-visual learning system to process
infant-directed speech and camera images. In doing so, we are able to evaluate the hypoth-
esis that infants might use a clustering algorithm to help learn early words from perceptual
input [22].

6.1 Evaluation Study

A study involving six caregivers and their prelinguistic infants was conducted to gather
a corpus of infant-directed speech. The participants were asked to engage in play centered
around seven types of objects commonly named in early infant speech. The speech was then
coupled with sets of images of these objects (taken by the robot) and used as input for the
system. In this section, sample results from this task for one of the subjects is presented.
Complete findings of the study are currently being prepared and will be presented in [22].

We present the results of a female participant with an 11-month-old infant. She was
asked to interact naturally with her infants while playing with a set of age-appropriate
objects. Huttenlocher and Smiley [14] identified a list of object classes commonly named
in early infant speech. We chose seven classes from the top of their list: balls, toy dogs,
shoes, keys, toy horses, toy cars, and toy trucks. A total of 42 objects, six objects for each
class, were obtained and are shown in Figure 8. The objects of each class vary in color,
size, texture, and shape.

12



Figure 8. Objects used in the infant-directed speech experiments. Six examples of
seven different objects: trucks, keys, dogs, shoes, cars, horses and balls.

6.2 Attention Filtering for Language Acquisition

For this evaluation, we employed a cognitively inspired recurrency filter. This filter looks
for sound-shape hypotheses which recur in close temporal proximity, assuming the input
pairs are provided as an ordered sequence. This filter relies on the assumption that infant-
directed speech is highly redundant such that repeated instances of salient words will be
found in close proximity [31]. To accomplish this, we have implemented a search procedure
which operates on the n most recent input pairs, where n is 7£2. For the experiment
reported below, we used n = 5.

To decide whether two speech segments or shapes match, thresholds must be set for
each distance metric. These thresholds are set relatively low so that many candidates
are generated at the expense of increased false hypotheses. Later stages of processing are
designed to remove erroneous candidates.

The search looks for pairs of speech segments and shape view-sets which occur at least

13



twice in the n most recent input pairs. When multiple hypotheses containing matching
segments and matching shapes are found, a representative word-shape pair is extracted.
The representative is a copy of the “central” member of a set. In the case of only two
matching items in a set, one of them is chosen at random. Recurrent shape-name hypotheses
generated by the recurrence filter provide input to the MMI clustering process.

6.3 The Data

Over the course of two days, the caregiver played with each of 42 objects for varying
periods of time. This resulted in 1655 spoken utterances.

The robot shown in figure 3 was used to create a database of images for the 42 objects.
The motivation was to generate a set of images of each object from a first-person perspective.
A set of 209 images were captured of each object from varying perspectives resulting in
a database of 8,778 images. From each pool of 209 images, we created view-sets of each
object by randomly selecting sets of 15 images. View-sets were compared using a match
size of 4 views (see Section 3)3.

6.4 Results

To process data using the system, each spoken utterance was paired with a view-set of the
object in play for that utterance. A total of 1655 utterance-view-set pairs were processed
by the system. The top 15 lexical items generated by the clustering process are shown in
table 1. The first column shows phonetic transcriptions (manually generated) of the original
speech segment which lead to the corresponding cluster. Onomatopoetic sounds were not
transcribed and are marked “(ono.)”. The next column shows text transcripts for each
speech segment. For the text transcripts, asterisks were placed at the start and/or end of
each entry to indicate the presence of a segmentation error. For example “dog*” indicates
that either the /g/ was cutoff, or additional phonemes from the next word were erroneously
concatenated with the target word. For each lexical item we also list the associated object
based on the visual information. The letters A-F are used to distinguish between the six
different objects of each object class. The final two columns indicate the acoustic and visual
radius which were computed during the mutual information maximization step.

6.5 Discussion

The results presented in the previous section are promising. Of the top 15 sound-shape
pairs, 13 correspond to English words which are linked to appropriate visual semantics.
From the table we can also see that only 5 segmentation errors are made; 25 of the end
speech segment endpoints correspond precisely to word boundaries in English. Examina-
tion of the visual thresholds reveal that system learned to expect small variances (1000 and
4000 units) for balls, but large visual variances in shoes (15000) and dogs (16000). The
acoustic thresholds vary indicating different ranges of acoustic variation in pronunciation-
s. For example the word “key” has relatively little acoustic variation between instances,
whereas “ball” had much greater variations. These differences in variance are determined
automatically by the MMI search.

3The sampling was designed to minimize re-use of images in different view-sets. No two images were
used more than twice across multiple view-sets. When view-sets were compared, we used the sum of the
best 4 views so the effects of one shared image between view-sets is not significant.
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Table 1. Output of the audio-visual clustering.

Phonetic Text Shape Acoustic Visual
Rank Transcript Transcript Category Threshold Threshold

1 Ju shoe shoe E -0.206597 15000
2 fair o fire* truck D -0.130583 5000
3 rok *truck truck C -0.123627 6000
4 dag dog dog D -0.038675 6000
5 mo/ in the* shoe A -0.023423 7000
6 ki key key C 0.194981 2000
7 ki key key E 0.001978 8000
8 daggi doggie dog C -0.049451 16000
9 bal ball ball C -0.404322 1000
10 bal ball ball A -0.503436 4000
11 kia key* key C -0.121211 8000
12 Afu a shoe shoe B -0.175509 14000
13 ondIslz *and this is shoe B -0.092787 6000
14 (ono.) (engine) truck A 0.261401 30000
15 (ono.) (barking)  dog A 0.150821 7000

7 Conclusions and Future Directions

Systems which process multiple input modalities typically rely on the fact that correlated
features of the input streams are synchronized in time. However, in many application areas
this cannot be assumed. In this paper we proposed an approach based on the maximization
of mutual information of audio-visual clusters. This approach results in the simultaneous
segmentation of the acoustic stream and creation of corresponding visual categories. The
maximization of mutual information effectively combines arbitrary distance metrics in the
audio domain and the visual domain. The resulting approach is invariant to scaling of
the distance metrics. In this paper we described the application of the approach to model
language acqusition of infants.

We will apply the same framework to dynamically personalized human-computer inter-
faces for various application domains such as catalog browsing. In the context of wearable
computers we are currently investigating the use of a head-mounted camera combined
with a wearable microphone in order to extract meaningful associations of the audio-visual
environment. The output of the current system may be analyzed to learn higher level
structures which encode relations between low level audio-visual associations. These higher
level structures may encode abstract knowledge which is not directly tied to sensory input.
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