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Abstract 

Graphs are often used in artificial intelligence as means for symbolic knowledge representation. A graph 

is nothing more than a collection of symbols connected to each other in some fashion. For example, in 

computer vision a graph with five nodes and some edges can represent a table – where nodes correspond 

to particular shape descriptors for legs and a top, and edges to particular spatial relations. As a framework 

for representation, graphs invite us to simplify and view the world as objects of pure structure whose 

properties are fixed in time, while the phenomena they are supposed to model are actually often changing. 

A node alone cannot represent a table leg, for example, because a table leg is not one structure (it can 

have many different shapes, colors, or it can be seen in many different settings, lighting conditions, etc.) 

Theories of knowledge representation have in general concentrated on the stability of symbols – on the 

fact that people often use properties that remain unchanged across different contexts to represent an object 

(in vision, these properties are called invariants). However, on closer inspection, objects are variable as 

well as stable. How are we to understand such problems? How is that assembling a large collection of 

changing components into a system results in something that is an altogether stable collection of parts? 

The work here presents one approach that we came to encompass by the phrase “graph dynamics”. 

Roughly speaking, dynamical systems are systems with states that evolve over time according to some 

lawful “motion”. In graph dynamics, states are graphical structures, corresponding to different hypothesis 

for representation, and motion is the correction or repair of an antecedent structure. The adapted structure 

is an end product on a path of test and repair. In this way, a graph is not an exact record of the 

environment but a malleable construct that is gradually tightened to fit the form it is to reproduce.  
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In particular, we explore the concept of attractors for the graph dynamical system. In dynamical systems 

theory, attractor states are states into which the system settles with the passage of time, and in graph 

dynamics they correspond to graphical states with many repairs (states that can cope with many different 

contingencies). In parallel with introducing the basic mathematical framework for graph dynamics, we 

define a game for its control, its attractor states and a method to find the attractors. From these insights, 

we work out two new algorithms, one for Bayesian network discovery and one for active learning, which 

in combination we use to undertake the object recognition problem in computer vision. To conclude, we 

report competitive results in standard and custom-made object recognition datasets.  
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1. Introduction 

1.1 Adaptation and Networks 

A self-regulatory network is a network that can recover automatically after the occurrence of momentary 

errors. The underlying notion is that of a system that can be started in any given state and still converge to 

a desired state. Embedded in a complex environment, it is hard for a system to specify in advance all the 

conditions it should operate under. The self-regulatory property handles such a complicated situation by 

learning to cope with arbitrary risky initial states, from which the system becomes apt to recover and 

return to a desired state. For example, it is important that the control system of an airplane to self-

regulate. The plane may experience a fault and will have to recover autonomously. If the plane 

experiences a fault because of a temporary electrical power problem, it may fault for a short time, but as 

long as it self-regulates, it will return to an adequate overall state. 

 

Studies of networks are useful at several different disciplines. For example, they have been used to 

describe the structure of biochemichal networks in biology, neural networks in neurosciences, food webs 

in ecology, networks of social interaction in sociology, computer networks in engineering. A graph is a 

useful representation of a network, where the graph’s nodes represent the components of the network 

(species, neurons, agents, etc.), and its links their mutual interactions.  

 

Usually one studies the relationship between the structure of the system and its behavior (e.g., how the 

structure of the internet influences the dissemination of information). At this scope the network and its 

components are typically taken to be static; the prime concern is the dynamics of other variables on a 

network in respect to the fixed structure.  

 

However, one should also be interested in how networks themselves change with time. Biochemical, 

neural, ecological, social networks are not static. They evolve and change constantly, strategically 

responding to their unsteady surroundings. Understanding the processes and mechanisms involved in the 

development of complex networks is a big challenge. Unlike the simple network models that have now 

become fashionable in physics [1], to study such networks we must take learning or adaptation processes 

into account. 
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In order to address such questions in a mathematical model, one is naturally led to dynamical systems in 

which the graph that captures the network is also a variable. Here we present a model with such structure. 

The analysis is facilitated by the development of some new tools in graph, learning and game theory. 

Together, the model and these tools address possible mechanisms by which networks change, adapt and 

organize.  

1.2 Graphs, Dynamical Systems and Games  

1.2.1 Graphs 

Self-regulatory networks have a common underlying structure. First, nodes are different states of the 

phenomena they model, interact with or represent. Second, some nodes - called attractors - are preferred. 

To make sense of this structure, it is convenient to think of an agent embedded in a particular node that 

actively tries to stay in those preferred states. We think of attractors as ideal states for this agent and other 

nodes as states representing errors, faults or contingencies; meanwhile we can think of edges as actions, 

tests or repairs. The agent can make observations regarding the behavior of its current location and infer 

likely faults; it can repair the system with actions, observe its new behavior and infer again the likelihood 

of faults, until the system has reached a desired state. Typically, attractor states have many cycles 

returning to them, meaning that they can cope with many different errors.  

 

Figure 1 depicts a visual notation for self-regulatory networks. Graphs are sometimes used to encode 

information about the values of state variables of a system at a time t given information about the 

variables at time t-1. An edge between two nodes indicates that the variables are somehow correlated. 

More precisely, the agent associates various gains and losses with being in particular states, and we 

double-circle the states he desires to stay in. This agent is capable of observing local aspects of the system 

state and taking action (i.e., choosing an edge) based on its observations. Since the outgoing edges are the 

decision space for the agent, we can call them decision edges and, visually, we dot them. Meanwhile, the 

other edges depict causal relationships.  
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Figure 1: Self-regulatory network visual notation. 

 

Consider the example of the simplest self-regulatory system: the thermostat. Thermostats are used in 

many environments to keep their temperature in a desired level. The apparatus that is normally used to 

maintain such a system in equilibrium consists of a heating element connected to a thermostat. The 

thermostat consists of two parallel metallic plates: one is fixed and the other one can move. If the 

temperature falls below some threshold, the two plates make contact. This closes an electric contact, 

which activates the heating element, so that the temperature is raised again. If the temperature becomes 

high enough, the bi-metallic plate bends back again and the contact is broken. This stops the heating 

activity so that the temperature can decline again. This is a classic example of a feedback system [2]. And 

it can be represented with an self-regulatory network. We have indeed a system with two states: plates in 

contact, and plates not in contact. The first state of the thermostat corresponds to the world-state: “The 

temperature is too low”, the second one to the world-state: “The temperature is high enough”. In that 

sense the thermostat can be said to have an elementary knowledge of the world around itself, or, just the 

same, to represent it in some way. But it also knows about the system itself, namely what is the ideal 

temperature for the system to maintain in equilibrium. The position of the plate then is an embodiment of 

the knowledge about the present interaction between system and environment, which is arrived at through 

an elementary form of perception. So, the states of the thermostat represent the changes in the external 

environment (temperature fluctuations), as well as the ideal state of the system (its equilibrium 

temperature). 

 

Sometimes it is useful to distinguish two aspects of the thermostat operation. The first is perception: a 

change in the outside temperature causes a change in the bending of the plate. After which comes the 

second, an action phase: the thermostat heats the air. After a certain interval, the environment temperature 

increases above the threshold, and a new perception-action sequence is triggered. So, the process works in 

a circular fashion. This is called a feedback loop: the external consequences (temperature change) of the 
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system’s action is fed back into the system and re-evaluated so that a new, corrective action can be 

initiated. 

 

However, there is also a feedforward aspect in the process, a predictive aspect that in our notation 

correspond to decision edges. It means that the action is initiated not only by outside reactions which 

determine the direction in which the previous action should be changed, but also by the anticipation that a 

particular action will bring the system closer to its preferred state. In general, a self-regulatory system will 

use feedback as well as feedforward mechanisms in order to deal with changes in the outside 

environment. In the thermostat example the feedforward mechanism is very primitive: the only 

anticipation made is that if the temperature is below the threshold, then the activation of the heating 

element will bring the system closer to its desired behavior. This is because the representation used by the 

system has only two states (above and below some threshold) and its only internal knowledge is that a 

certain action will transform one state into the other one. Unlike in this example, there is typically 

indeterminacy among the different states the system might be in, and action and feedback can also inform 

in what state the system is.   

1.2.2 Dynamical Systems 

Graphs are, by definition, static structures. To study the dynamics of graphs - that is, how graphs change 

and how we can describe those changes - we must first position ourselves differently in relation to what 

graphs are. We must look at graphs not as static depictions of information but byproducts of a process, a 

process obtained by iteratively applying some given operators on simpler graphs. The graph in Figure 

2(a) can, for example, be thought both as a set of vertices V={v1,v2,v3} and edges E={e1,e2} and a 

dynamical system consisting of an initial graph X={x1} (in this case the singleton graph) and an operator 

T={t1} (translation to the right). A graph dynamical system (X, Γ) is a graph X together with mappings Γ: 

X→ X, recursively defined by Γ 1= Γ and Γ n= Γ (Γ n-1(X)) for n≥2. A given graph X is fixed, or invariant, 

under some given operator Γ if X and Γ (X) are isomorphic.  

 

A graph dynamical system has also its own graph representation, illustrated by the graph in Figure 2(b) 

and reminiscent of our notation for self-regulatory systems. A walk (or circuit) on this graph is some path 

of edges that brings you back to the node you started from, and corresponds to some sequence of 

mappings that leave the original graph invariant, i.e. an identity. So, for example, we can generate 

(construct) the graph in (a) by going two times around the only cycle in the graph (b), see (c).  
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Figure 2: Simple graph dynamics example. 

 

To carry this simple example further, consider the three graphs in Figure 3(a). They are examples of 

“line” graphs, with occasional noise or distortion. The dynamical representation appears on (b), while the 

transformations referred in the figure are illustrated in (c). We see that there are two levels. One is a 

“point” graph, consisting of three nodes. This graph is an identity element for the next level, which is a 

“line” graph. The decision and causal edges are test-repair pairs that can be used to adapt the network 

representation to the target environment. In this example, the line graph can test for another point graph 

directly to the right (by choosing transformation t1), while the point graph can test two different positions 

(by choosing transformation t2 or t3). The two individual graphs capture the kind of distortion that a graph 

can undergo at its spatial level. For example, for the graph on the top in Figure 3(a) the re-construction 

process goes on as follows: start with a node, test and verify identity point (at point level), test and verify 

transformation t1 (at line level), iterate. However, for the bottom graph the process must go differently, at 

t=4 the test for the identity (at point level) is not verified and transformation t2 is used as a repair action. 

We say then that the graph has adapted to its environment.  That the latter construction had to go further 

into the graph structure tell us that it has more distortion.  
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Figure 3: Hierarchy. 

 

More precisely, we have defined a graph as a set of mappings.  The concept of a mathematical group is 

intimately related to the concept of mapping, and groups can be thought of as a set of mappings1.  

Furthermore, groups naturally describe the suggested hierarchical structure. However, in this thesis we 

will not explore this somewhat obvious relationship. Here, we will focus on the computational side of the 

theory. The interested readers can look at [3]. 

1.2.3 Games on Graphs 

Unlike the simple examples on the last sections, we will typically have a large collection of graphs (each 

corresponding to a different agent) and it is unnecessary or it is impractical to construct all of them 

separately. Also, attractor states will typically not consist of single nodes but of more complex graphical 

structures. In a typical feedback fashion, each agent should instead choose discriminative graphical 

constructions, letting error inform which is the actual graph.  

 

This corresponds to the situation where separate regulatory systems are interdependent. In this 

arrangement, different agents have different gains and losses, and are responsive to the actions of the 

other agents. For an example, consider the case of two thermostats that are active simultaneously in many 

homes: a refrigerator and a furnace. The refrigerator keeps the temperature inside it at a desired level, 

through a feedback loop. The furnace does the same thing, but with respect to the temperature inside the 

house. Each of the agents has an impact on the other. The output function of the refrigerator cools the air 

inside the refrigerator by transferring heat from inside to outside. When the refrigerator’s compressor is 

running, it’s not just cooling the refrigerator but heating the room. In the same way, the furnace is 
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influencing the refrigerator. Thus the furnace’s action makes the refrigerator work harder to keep its 

temperature down.  

 

The processes illustrated in the last sections can be thought of as a game against nature: if nature chooses 

a node not in the attractor-set (or “occupies” that node), the player is prepared to counteract and bring the 

system back to its desired state. There is, however, the more complex case where the opponent is also 

rational, and can take (often conflicting) actions to his own benefit. There might be, for example, two 

agents (Player I and II) embedded in the graph, occupying different nodes. Each player chooses in turn a 

vertex adjacent to the current vertex (an edge). Let G be the graph of Figure 4, whose vertex set V is 

partitioned into sets V1 and V2 and the edges connect vertices belonging to different sets. We use white 

circles for the positions of Player I and black ones for those of Player II. Thus V1={1,3} and V2={2}. And 

we consider that Player I plays on vertices in V2 and Player II on vertices in V1 (the position they do not 

own). Decision edges are shown in relation to Player II. A play is a path in G. If we start the system in a 

vertex that is in V1, then Player II plays and otherwise Player I plays. In this example, Player I wins the 

game by always choosing node 3, because the resulting path will never pass by 1. For a vertex set V, the 

attractor of V for Player I is the set of vertices from which Player I can induce a visit in V. The 

complement is a set that is a trap for Player I.  

 

 

 
 

Figure 4: Simple game on a graph. 

 

The game defines the different levels of the self-regulatory network, also called the local and global 

levels. The local level defines controllable actions, actions allowing the player to influence the possible 

outcomes of the overall game. This distinction is another fingerprint of a self-regulatory network, since 

they are necessarily spatially distributed. So, for example, in biochemical network of cells, although 

individual cells directly influence only their closest neighbors, they are globally functional. In a neural 

network, individuals can emit activation tokens only to close neighbors, etc. 

 

                                                                                                                                                                           
1 A group binary operation can be viewed as a mapping, since every ordered pair of elements w1 and w2 of a group 
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1.3 Application 

The contribution of this thesis is three-fold. At the artificial intelligence level, we explore one approach to 

knowledge representation in terms of self-regulatory networks. In the more specific level of machine 

learning, we explore the use of game theory in classification. And in conclusion, we show how we can 

represent shapes in computer vision with the first and learn the corresponding representations with the 

second.       

 

The learning problem is: given different sets of examplar graphs (each set corresponding to a different 

representational hypotheses), how to learn the corresponding self-regulatory network and how to use it to 

verify the different hypotheses? This is the problem that will occupy most of this thesis.  

 

In some straightforward sense, there is a (often unnamed) relationship between dynamical systems theory 

and subfields of machine learning, especially time series analysis. The connection is in the common goal 

of understanding systems that change over time. The difference is in that the first focuses on describing 

systems’ patterns of behavior while the second in identifying them. Beyond the mathematical analysis of 

algorithms (proving convergence results and such), more intricate concepts from dynamical systems 

theory - such as the concept of attractors - haven’t been fully studied in relation to learning yet. The main 

difficulty lies in formulating these concepts computationally, in special formulating versions that can cope 

with noise and be used in real-world applications. In that direction, we have found useful to look at the 

problem of model inference and experimental design as a game played on a graph.  

 

The traditional problem of ensembling classifiers can be seen as decision making when one faces an 

intelligent counterpart, a counterpart that is influenced not only by the static properties of the world (or 

the data) but also the decisions of other classifiers. In the view that we take here, the actions or tests of 

one classifier and the actions of another form a dynamical system, whose behavior we study using game 

theory. The main difference between the classical and game-theoretical approaches to optimization lies in 

the different concepts of what is a solution. Under the game theoretical view, a solution is a process of 

negotiating the probabilities and values of losses and gains until some stable, system-wide middle ground 

is found. We have assessed that many researchers today agree that the game theoretical view is a very 

attractive one, although it is still not clear how to put its concepts to good, practical use.    

 

                                                                                                                                                                           

there corresponds a unique element w3 of the group such that (Γ1, Γ2) → Γ3. 
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Game theory is currently used in machine learning in its normal, one-round or static form. For example, 

when we must design classifiers to perform over a set of prior probability densities and we use a minimax 

criteria so that the worst overall risk is minimized [5]. Within the machine learning scope, the main 

contribution of this thesis is to, conversely, attempt to formulate and study a “game of classification” in 

its sequential or dynamic form – where players make choices over time.   

 

As validation, we will show that the view developed here can be directly used to address the object 

recognition problem in computer vision and that it leads to an alternative to current state-of-the-art 

systems. Namely, the problem we will engage is: given a familiar object (or class of objects), we humans 

have little difficulty in recognizing it irrespective of its particular instance, position, size, surroundings, 

illumination, etc. How do we achieve this, and, how can we get a computer to do the same? We are 

unaware of any use of game theory in object recognition.  
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2. Background  

Our main interests are on machine learning and computer vision, and although we start this chapter with a 

few comments that situate our view on the larger context of the cognitive sciences, we quickly turn to 

summarizing recent related work on object representation and recognition, and then to the problem of 

learning, by reviewing some fundamental work in machine learning. 

2.1 Cognitive Sciences 

The use of networks as a framework for knowledge representation is widespread [4], we have argued for 

an alternative view, of representations as self-regulatory (adaptative) networks. Many areas of cognitive 

science seem to have stepped into a common obstacle, a definite conflict between the “variability and 

stability” of representations, and serious problems that appear in current research can be seen as 

instantiations of this same fundamental problem: "objects cannot map directly into a set taxonomy 

because the objects of mental life are not themselves stable entities... Mental events are naturally adapted 

to context … thoughts about frogs in restaurants differ appropriately from thoughts about frogs in ponds 

because the perceived object and the remembered knowledge are made in and from the context of the 

moment” [6]. The issue has been raised in psychophysical approaches to perception [7], learning [10] and 

recognition [11]. It appears in semantics (the “semantic indeterminacy problem”) [9]. And reappear in the 

study of cognitive processes and memory [8]. This is also related to the shaping influence of short-term 

memory and task dependent information [12] (in reading, detection of scene changes, attentional blink, 

repetition blindness and “inatentional amnesia”). The central question raised is: how can categories be 

locally variant but globally invariant? In general, we will argue for the notion that representational units 

are not to be seen as canonical surrogates of an external world, but part of a process of conceptual 

accommodation to situations in which they become useful. In this view, representations are more like 

reenactments than re-presentations.  

2.2 Attributed Graphs 

The use of graphs in Computer Vision is as old as the field. Attributed Relational Graphs (ARGs) are 

perhaps the most popular structural descriptions of visual patterns [13][14]. The ARGs’ nodes correspond 

to unary features in the image (such as preprocessed line segments, regions, etc.), while the edges 

correspond to binary features (such as distance, angle, length ratios, etc. between unary features). This 

line of work has focused on matching algorithms, comparing the scene ARG to a stored graph of an 



 

  21 

object as means of recognition. Deterministic linear least squares [16], graph eigenspectra [15], 

probabilistic optimization models (including probabilistic relaxation labeling) and hopfield networks have 

been used [17][18]. Inexact graph matching and multi-subgraph matching have been studied by Bunke 

and coworkers [14]. Generally, this approach requires two pieces: a shape descriptor and a shape 

matching algorithm.  

 

A more recent and successful instance of this paradigm comes from the work of Belongie et al. [19]. The 

"shape context" is a new descriptor consisting of a point (edge element) log-polar histogram localized in 

different positions of a shape. Graph matching algorithms are then used to find correspondences between 

these features in an image and a model. 

2.3 Classification Trees 

A decision tree [20] is a classifier with a tree structure where each node is either a leaf node, indicating a 

class of instances, or a decision node that specifies some test to be carried out on a single feature value, 

with one branch for each possible outcome of the test. A decision tree can be used to classify an instance 

by starting at the root of the tree and moving through it until reaching a leaf node, which provides the 

classification of the instance.  

 

In short, tree-based methods partition the feature space into a set of rectangles, and then fit a simple 

model (like a threshold level or a regression) in each one. They are conceptually simple yet powerful. 

Typically to learn a classification three, one start with an exhaustive set of features in low-dimensional 

versions of the image set, and choose a subset and an ordering of these features capable of quickly 

decreasing uncertainty over the classification decision. In vision, classification trees have been used with 

many different features and node splitting and purity criteria [21]. 

 

A serious problem with this approach is that it looses sight of the concept of a shape. Objects are 

described by a bag of cues, which have no geometrical interpretation. Because of that, these models are 

more useful for object detection rather than recognition. They can be used to recognize instances of 

objects (an instance of a book, of a mug, etc.) but suggest no clear mechanism of abstraction across these 

instances, which is off course the crux of any notion of representation. Also, it is not clear how to extend 

this approach gracefully for classification over several classes, which is essential to object recognition 

(and move beyond the simpler foreground/background binary classification, as they are more commonly 

used today).  
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2.4 Graphical Models 

Dynamical systems are used to model physical phenomena that changes over time [23]. This section 

provides a brief characterization of dynamical systems in terms of graphical models. In special, we 

investigate discrete-time, finite-state, stochastic models.  

 

A dynamical system related to a specific physical phenomenon consists of a set of all ‘states’ of the 

system together with laws that determine the time evolution of states (also called its law of motion). A 

state is a picture of the phenomenon at a given moment. The state space of a dynamical system is the set 

of all potential states of the system, and changes in the system are transitions between these states. We 

begin by assuming that X is a variable representing the state of the dynamical system, and that the state 

space can be decomposed into a set of state variables { X1, X2,…, Xm }.   

 

A way of representing a finite-state dynamical system is with its state-transition diagram. Figure 5(a) 

illustrates the state-transition diagram for a dynamical system with three states named 1 through 3.  Nodes 

represent different states and edges represent possible transitions between them. In diagrams with 

stochastic transitions, the out-going edges are labeled with probabilities such that the sum of the labels on 

the out-going edges sum to one.  

 

 

 
 

Figure 5: Graphical models. 

 

 

A graphical model [22] is a directed acyclic graph, where nodes amount to variables and edges to 

functional dependencies. An edge from X1 to X2 designates that X2 is functionally dependent on X1. In a 

graphical model, X is a random function usually defined by a conditional probability distribution P(X | 

Incoming(X)) where Incoming(X) indicate the nodes with edges ending in X in the graph. The dependency 
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is defined by a density function. In this way, graphical models correspond to Bayesian networks. A 

Bayesian network describes efficiently an m-dimensional joint probability distribution P(X1,…,Xm), which 

can be factored as a product of lower-dimensional conditional and marginal distributions 

P (Xi

i = 1

M

% | Incoming (Xi)). If Xi has no incoming edges, its marginal distribution is P(Xi). Figure 5(b) 

represents the information in (a) in terms of a graphical model by collapsing the possible states at time t 

into a variable Xt. The variable Xt indicate the state of the system at time t that may depend on the state of 

earlier times. In many cases, the current state tells us all we need to know in order to compute the 

distribution governing the next state. In cases in which the current state provides a sufficient summary of 

the past for the purpose of predicting future, states are said to be Markovian. 

 

If the stochastic process governing transitions is the same at all times, a graphical model can easily 

represent a dynamical system. Such process is said to be stationary. We can represent a stationary process 

as a graphical model consisting of two nodes representing the state at time t-1 and t.  A special case of 

Bayesian network can represent a dynamical system, it consists of a grid of variables with size T x M. 

Columns are called levels. The variable in the tth level represent Xi,t for 1 ≤ i ≤ M. Edges between 

variables in the same level indicate that the variables are correlated. The first level represents the initial-

state distribution while the later stages represent the state-transition distribution.   

 

It is possible to catalog approaches to learning graphical models in respect to the assumptions they make. 

Generally, methods assume that the samples and parameters are independent, the complete set of 

variables and their respective values are known, the structure of the graph is known, and only a subset of 

the variables are observable. In this thesis, we will focus on the case where the variables and graph 

structure are unknown. The computational picture for the existing learning methods is diverse and often 

convoluted. There are however good, popular surveys [24][25]. 

2.5 Decision Processes 

It is useful to distinguish state variables in a dynamical system by the different roles they may play in the 

system, such as observations and actions. It is useful then to think of an agent that is capable of observing 

the system and take actions based on both its observations and the gains it associates with the different 

states. The graphical model in Figure 5(c) is an example of what is often referred to as an influence 

diagram [26]. While observations are drawn with the typical circles, the actions are represented by 

decision nodes and drawn with boxes. They are frequently deterministic functions of previous 

observations. Losses and gains are represented with value functions which are real-valued functions of 
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state variables. Value functions are distinguished graphically as diamonds. The value associated with a 

particular state at a particular time is the sum of the value functions applied to the values of the 

corresponding state variables. The graphical model in Figure 5(c) depicts a two-level stationary network 

representing an agent embedded in a dynamical system whose actions are dependent only on the current 

observation and whose value function depends only on Xt and D.  

 

Influence diagrams are used to specify decision problems in which the goal is to choose a plan for acting 

that maximizes a known value (or loss) function. For example, the influence diagram in Figure 5(c) 

identify the problem of mapping observables into actions (such mapping is called a policy) that 

maximizes the expected cumulative rewards over a finite number of stages. The corresponding decision 

problem is often called a partially observable Markov decision process, a generalization of a completely 

observable Markov decision process in which the decision making agent can directly observe the state of 

the system at each stage in the process.  

 

Although they have been typically studied separately (perhaps with the exception of [27]), the two 

problems - that of learning a model and a policy – are clearly related. In this thesis we address the two 

problems with a common framework, constructed with concepts from dynamical system theory. In 

particular, the concept of a graphical attractor will prove useful. Attractors are states the system often 

returns to, and finding such sets will help understanding the behavior of dynamical system.    

 



 

  25 

 

3. A Game on Graphs 

Decision theory studies the ways in which a decision maker may choose among a set of alternatives in 

light of their possible consequences. Decision theory can be seen as a theory of one-person games, or a 

game of a single player against nature. In the more complex cases where different decision makers 

interact (i.e., their preferences cannot be captured by one monolithic objective function), it corresponds to 

game theory. Both decision [4][28] and game theory [4][29] have stimulated a wide range of techniques 

in artificial intelligence. 

 

In this section, we systematically study a game on a graph. This is a game in which each player chooses 

sequentially the position he wants to play next. The result of the play is a sequence of edges e1e2e3…. This 

chapter contains the analytical motivation for the entire thesis, as well as the outline of the method. While 

it’s easy to imagine several different methods for learning and using a graph dynamical system, this 

chapter will tell us which ones will work and why. 

3.1 The Field 

Consider a fixed graph G=(V, E, X), consisting of a set of nodes V, and directed edges between the nodes 

E. Nodes are labeled, taking values in the set X. We also refer to labels as configurations, interchangeably. 

An edge is an ordered pair (u,v), where u,v ∈ V - indicating that is possible to transform u into v; the set of 

edges is thus the set of similarity mapping on the nodes. In the simplest case, a graph may have labels 

taken from the set X={1,0} indicating when a node is “activated”, while links with an identity 

transformation indicate when nodes are mutually activated. We write uEv to designate this relation. There 

is a path of length k between two nodes if uEkv. In addition to the graph, we have a time coordinate which 

proceeds in integer ticks: t∈N. We need also a way to refer to the combination of a position and a time; 

we will write it using a parameter pair X(v,t), respectively. When only one argument is used, we are 

referring to the position alone, X(v).      

 

At each node, we have a random variable X(v,t), taking values on X; this is the random field. We will 

write X(v,t) for both X(v,t) and X(v,t), letting context determine to which we refer. Accordingly, edges are 

operators on the simplex X×X. Let ℵ be the maximum area of influence of the node v. Now define the 

local neighborhood of the node v as the set of all nodes whose field could be influenced by the field at v 

(including v); likewise the global neighborhood is all the nodes whose fields could not be directly 
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influenced by the field at v.  We can think of the relationship between local neighborhoods at different 

nodes in the graph as yet another, further spatially extended, graph labeled by the local neighborhood 

configurations.  In this case, the label set is an “alphabet” of local graphs. The subscript k in Xk(v,t) will 

indicate which such level we are referring to. Thus, X3(v,t) is the global neighborhood of X2(v,t), which in 

turn is X1(v,t)’s. Figure 6(b) is a schematic illustration of the local and global (doted) neighborhood (ℵ1 = 

ℵ2 = 1).  

 

 

 
 

Figure 6: Field. 

 

More precisely, the local and global neighborhoods are defined recursively by 

 

X i + 1(v, t) = Xi(u, t + j) 0uE jv# -

0 < j < "

' , 

 

and X0={0,1}. Figure 6(c) shows a few local configurations for k=1 and ℵ = 1.    

3.2 The Game 

Imagine a dynamic system which moves through a sequence of states v0,v1,v2,… at times 0,1,2,…. We 

associate the states with different nodes in a graph. We suppose that the motion is controlled by a 

sequence of actions e0,e1,e2,…, which we associate with edges on the same graph.  
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We now formulate a game as a model for the control of dynamical systems, and its set of winning 

strategies which requires only a limited memory of the past. We shall begin with deterministic examples 

which do not involve any unknown parameters in the system’s law of motion (in our case, corresponding 

to a fixed edge set). There is a vast literature on the use of automata to control deterministic systems (for 

example, in motion control) [30][31][32][33][34][35][36][37]; most of the work however focuses on 

proving certain combinatorial results and conditions of the fixed system and do not involve any learning. 

Statistical problems are usually more difficult to formulate and solve, and the determinism in the law of 

motion is a usual assumption in the study of Markov Decision Processes, for example. Ignorance about 

parameters in the law of motion can however lead to serious complications in the formulation of decision 

problems, and we address stochastic motion in turn.  

 

A game starts at a position v∈V. Suppose that we are interested in the random variable X0(v, 0), and each 

player at that location have an hypothesis-set about its true label. A player wins locally if he predicts the 

label correctly. For convenience, let us start with labels X0={0,1} and assume that Players I and II have 

known guesses for position v, respectively xI=1 and xII=0. Let Π be an unobserved random variable 

denoting the winner and S0 a function S0 : X0 → { I, II }, where S(x0) = π. In general, this assignment can 

be noisy, yielding a random function S(x0). The function S0 partition the labels X0(v, 0) in two sets sI and 

sII. We say that Player I “owns” the labels in sI, and Player II the labels in sII. A node where S(x0) = I 

favor the hypothesis associated with Player I - the case where xI(v) is the observed label. If this is so, 

Player II (namely, the one that has lost) chooses the next vertex to play by picking an edge e. This 

represents an attempt by Player II to “repair” the situation.  

 

In this scenario, at time 0, Player I is the winner with a prior probability density S0(x0). In general 

decisions which control the behavior of the system at times 1,2,,… will lead to a succession of posterior 

densities S1(x0), S2(x0), S3(x0),…, allowing for any extra information about S0 to be gathered as time 

passes, leading to the posterior density function St(x0) which is the estimated state of the system at time t. 

We say that Player II makes a prediction for the second node u∈V given by its chosen edge e : xII(v,0) → 

xII(u,1). Hopefully, for Player II, the prediction is correct and the extra observations may point at him as 

the winner, and in this case the control goes back to Player I, and so on. 

 

Given an initial distribution and all edges/transformations, a function S0 makes the graph G bipartite, i.e. 

its vertex set V is partitioned into subsets V1 and V2, and the edges connect vertices belonging to different 

sets. Therefore, we consider that I plays on vertices in V2 and II on vertices in V1; and that a play is path in 

G. Thus, if the first node is in V2, then Player I plays first and until he looses locally; otherwise, Player II 
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plays first, which defines the notion of a winning strategy for each player as a function from the set of 

paths into the set V of vertices.  

 

To decide his next position (which edge to choose) a Player must take into account two factors: the 

possibility of winning there, and the paths (actions) the other player may take from there. Each of the 

sucessor’s labels is a different local observation, and each may motivate the Player at that location to take 

a different action - that is, to choose a different edge. A deterministic memoryless strategy for Player I is a 

strategy which depends only on the last node of the path. We will define one such wining strategy, which 

we name an attractor. For a vertex set F⊂V, we define the attractor of F for Player I, denoted A(F), as the 

set of vertices from which Player I can induce a visit in F. The complement W(F) of A(F) is a set which is 

a trap for Player I: Player II can force Player I to remain inside W(F).  

 

We now delineate how players may find their attractors. When studying the behavior of the nodes in a set 

F ⊂ V, it is useful to define a function that measures how long it takes for paths starting at a node q ∉ F to 

reach the set. We call this function the return time function. With discrete time, define the return time 

function σ : V/F→ N by 

 

v (q) =
min {t > 0: for some u ! F and q Y! F, qE tu}

3 , if qE tu Y! F for all t > 0
)  

 

This defines an equivalence class among the nodes in V: 

 

v + u * v (v) = v (u) 

 

where u, v ∈ V. This equivalence relation decomposes the nodes V/F into sets: 

 

Ai = σ : {t = i} 

 

The return of a vertex q∈V is the smallest integer t such that q∈ At where At is an increasing sequence of 

subsets of V defined by A0=F (some initial subset of nodes) and inductively,  

 

At+1=At ∪ {p∈ V2 | q∈At for some (p,q)∈E} 

∪ {p∉V2 | q∈At for every (p,q)∈E}. 
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The attractor of A is then ,
t $ 0

At . The strategy of Player I on this set consists in decreasing the return time 

function. The strategy of Player II consists in keeping off the positions of A1(F). Starting in the next 

section, we will examine stochastic versions of the concepts above, and in the next chapter, an algorithm 

to learn such strategies for our game on graphs.  

3.3 Stochastic Motion and Strategy 

A decomposition At partition the nodes in V into sets with distinct losses (utilities) to the Player – namely, 

different expected times necessary for the player to win the game. If the player chooses a node in A1 as 

successor, for example, he will expect to win the game in one round, and so forth.  This section considers 

a stochastic version of the game and its wining strategy; we start with pure strategies and on the 

subsequent section we move on to mixed strategies.    

 

The problem for a Player I located in a node v is to select the next node and predict its label. Consider 

then the Player chooses a node u in v’s neighborhood of size ℵ, and some particular label x(u) at that 

location. This choice corresponds to a decision edge and its inverse to a causal edge (with length 1). The 

causal edge asks the probability of Player I being the winner if this edge is selected.  

 

More precisely, let us assume that a player at v∈V has, at any moment, a probability function and a loss 

function for each node and label in its neighborhood. These are defined in first instance over a single local 

label x1 at v by a transition probability distribution P(X0(v)=x1 | x1(u)), which measures the agent’s degree 

of belief that x1(u) will cause x1 to be the actual label at that location. These scores fall on a scale from 

zero to one, and they sum to one. Also each label x1(u) has a loss L(x1), which measures how 

unsatisfactory to the player for x1 to be the actual label. These values fall on a linear scale with arbitrary 

zero and unit. The expected loss, or risk, of a node u ≠ v is a function of the form 

 

R0(u) = P (x0

X0

! | x1)L (x0 : x1) 

 

The key to this definition is the probability P(⋅ | x1 ), where in traditional decision theory figures an 

unconditional distribution. Its value reflects a judgment about the neighbor’s label potential to causally 

influence the local event. The quantity R(u) then gauges the extent to which the node can be expected to 

bring about desirable or undesirable local outcomes.  
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As we have seen, in our game a local outcome is desirable to a player if it belongs to him, and undesirable 

otherwise. To account for that, we may go on to define the risk also for sets of local labels of which 

exactly one belong to a player or another. Such sets are partitions of labels, and we say that a partition 

holds at just those labels which are its members. For a partition Π of local labels, there is alternatively a 

distribution P(X0(v) ∈ Sπ
0 | x1(u)), which we call the return probability for the partition π. For any 

partition π, we sum scores:  

 

P (X 0(v) ! Sr) = P (x0 | x1(u))
x0! Sr

!  

 

As Sπ is a partition of local labels, there is also a partition of labels in neighbor nodes, in terms of the 

different effects in the local configuration. For that we need to define an equivalence class of labels, 

formally:  

 

x1
1(u) + x2

1 (u) * P (X 0! Sr
0 | x1

1(u)) = P (X 0! Sr
0 | x2

1 (u)) 

 

We will look at this equivalence relation in detail in the next chapter. For the moment, let the variable S 

range over these classes of labels in the node u (in which case the Xk⋅ S labels, for fixed Xk and varying S, 

are a partition of Xk). The rule of addictivity for probability, and for the product of probability and 

expected loss are: 

 

P (X 0) = P (X 0 : s)
S

! , 

P (X 0)L (X 0) = P (X 0 : s)L (X 0 : s)
S

! . 

The rule of averaging for expected loss of the node u in relation to v is then: 

 

Rv(u) = P (s | u)L (u : s)
S

! . 

 

Thence we can get an alternative definition of expected loss. For any element s, let [L=l] be the labels 

that holds at just those labels x for which L(x) equals l. Since they are a are a partition: 

 

Rv(u) = P ([L = l] | u) l
S

! . 
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The partition-set S is a useful tool to study the possible response of a node if selected to be a successor. 

And the measure Rv(u) basically quantifies the overall risk of existing a causal edge between u and v (that 

is, a direct return from u). Still, the partition-set does not provide the complete picture of u’s influence on 

v, since it considers only the paths of length one leading back to v. When a local label is observed, the 

best reaction may be to expect a transition to a different node, and a return from there – a return path of 

length two and so on. This issue will occupy most of the next chapter. For now, it suffices to mention the 

stochastic analog of the return function decomposition: 

 

v (x (u),r) =
max {P (X 0! Sr

0 | x (u)Et x (v)): for some v ! V, u ! v, x (v) ! Sr, and t > 0}

3, if qEtu Y! F for all t > 0
)  

 

This function measures the best amount of time for a Player π to allow a random walk starting at a node u 

with observed label x(u) to run. In parallel with the deterministic wining strategy, the stochastic strategy is 

given by an increasing sequence of subsets of V defined by S0=F (some initial subset of nodes), and 

sketched by the procedure  

 

St+1=St ∪ { p∈ V1 |  min
p

RSt
 } 

∪ { p∉ V2, |  max
p

RSt
 }. 

 

This leads to a minimax solution concept for the game. In the remainder of this chapter and thesis, we 

make this procedure more precise.  

3.4 Mixed Strategy 

So far we have considered only pure strategies for the game on the graph. A pure strategy defines a 

specific move, prediction or action that a player will follow in every possible situation in the game. Such 

moves are not drawn from a distribution, as in the case of mixed strategies where distributions correspond 

to how frequently each move is to be played. Suppose some local set of labels is chosen, let the variable 

Π range over candidate probability distributions for this configuration: functions assigning to each x0 in 

the partition a number p(x0) in the interval from zero to one, such that the p(X0)’s sum to one. Let [P=p] 

be the neighbor labels that holds at just those configurations where the chances of the X0’s are correctly 

given by the function p.  
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In the mixed strategies version, we are also interested in the random variable X0(v,0), but each player at 

that location have as hypothesis a probability distribution. For convenience, let us assume that Players I 

and II have a probability density function given by either pI or pII, where pI and pII are known functions. 

Therefore, the game involves for a node v the random variable X0(v,0) and two alternative hypotheses 

about its probability distribution. Let x1
0 be random samples of independent observations on X0(v,0) and 

consider the problem of reaching a decision, based on these data, whether the true distribution of X0(v,0) 

corresponds to pI or pII. A node where S(x0) = I favor the hypothesis associated with Player I - the 

alternative that pI is the true density of observations.  

 

We should maximize the expected utility calculated by means of such strategies. A formula defining 

expected utility in terms of configurations as consequents is: 

 

R (u) = P ([P = p] | s)p (s)L (u : s)
p

!
S

! . 

 

This is the version we will use in the remainder of the thesis. 

3.5 The Game 

We have studied the games on a graph in versions of increasing complexity. In this section we give the 

complete definition of the game. Let’s analyze then the game from a local perspective. Locally, a node 

has a set of outgoing and incoming edges for different levels, mirroring what we called decision and 

causal edges. For expository reasons it will be convenient to treat the combination of an outgoing and an 

incoming edge as a statistical experiment. Such an experiment might consist for example of sampling N 

locations in the graph (outgoing) and observing its labels (incoming). Typically, a Player will perform 

local experiments to accumulate confidence at the level k and only then move on to k+1.   

 

Let’s again assume a graph with vertices V, where Player I and II are playing in a node v0. We have seen 

that there is a random function S0 that assigns a winner based only on the local (label) observation at v0. 

But that this assignment may be faulty, and the player may correct it by observing values at neighbor 

nodes in the graph. To begin with, the player has at his disposal outgoing edges as possible actions which 

he can take, given he doesn’t know the state of its surroundings X1(v0). Let then X1 be the node’s 

neighborhood and S1 a random function S1 : X1 → Π = { I, II }. If the Player decides to take a global 

action e without local experimentation, it suffers a loss of S1. However, the player can perform local 

experiments and thus decrease the loss by gaining some information about X1(v0). For that, he must decide 
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which tests he is going to run, in what sequence, when to terminate the tests, and what to do when that 

happens. The player doesn’t have complete knowledge about X1(v0) because of the cost of the tests.  

 

We first define the local and global sample spaces for the player. Locally, the Player has a postulated 

sample space Xk which specifies all possible results of the local tests that the player can run. Associated 

with the space Xk is the local strategy space Π with elements π, and a function p defined on XkxΠ such 

that, for a fixed π, pπ
 is a probability distribution on Xk. From the point of view of Player I, the case where 

π≠I represent the local mixed strategies for the other players. There is also the global sample space Xk+1, 

associated with a conditional distribution, defined on XkxΠ  but conditioned in Xk+1. 

 

As an illustration, consider the following example: Player I has to decide whether its local label is 

X0(v,0)={0,1}, based on tests on surrounding three nodes. For each neighbor u∈V tested, X0(v,1) is the 

random variable over X0(v,1)={0,1}. Then, the sample space consists of the eight configurations: 

 

 

x1=(0,0,0) x2=(0,1,0) x3=(1,0,0) x4=(1,1,0) 

x5=(0,0,1) x6=(0,1,1) x7=(1,0,1) x8=(1,1,1) 

 

Figure 7: Sample space example. 

 

 

If so, Player I must now associate with each outcome of a test an edge e in E (defining how the Player 

will react to the result of that test). This is a stochastic strategy, that is, a function D mapping Xk into E. It 

can be considered as a partition of the set Xk+1 into mutually exclusive subsets 

 

S = { x : d(x) = e} 

 

whose union is Xk+1. If the result of a single test is contained in S, edge e is chosen. Thus, if we return to 

the previous example, if E consists of two elements e1 and e2, then a strategy d is a division of Xk+1 into 

sets S, such that, if x1∈S, the edge e1 is chosen, and if x∉S then e2 is chosen. 

 

Each neighborhood x∈Xk+1 is in reality an N-tuple xk+1=(x1
k,x2

k,…,xN
 k) where each xi

k, i=1,…,N, is an 

instance of a random variable over different neighbors. Consider the case where the player expect to 



 

34   

observe only the first T neighbors before a return. If so, a strategy assigns to each neighbor xk of Xk+1 two 

numbers, an integer T which specifies the number of neighbors of xk+1 needed to be sampled before 

wining the game, and an element e of E which specifies the action that will be taken in each case (where 

E is the set of edges at the level k+1). Thus a strategy is a decision function d with values d(x)=( σ(x), e ) 

with range in TxE.  

 

We will take a strategy to consist then of a partition T of  Xk+1 with elements T1,…TN together with a 

sequence of functions d1,…,dN such that for each t, dt is a function of the t neighbors in Xk+1. In the next 

section we turn to the forms the loss and cost function takes. 

3.6 The Solution 

We first outline the game solution before formulating it completely. We have seen that each player π ∈ Π 

at a node v0 is related to a different hypothesis, a prior distribution for XK. And a strategy for the players 

(say, Player I) consists in observing T neighbor nodes v1,v2,v3…,vT. To each observation at time t 

correspond a conditional distribution P(Xk(v,t+1) ∈ SI | X(v1)k,…, X(vt)k) aimed at predicting Xk from Xk+1. 

The loss suffered by choosing v is given by -< log p(Xk(vt) ∈ SI |Xk+1) >. The optimal strategy is a 

sequence of functions d1(v1),…,dN(vN) which minimizes the worst case loss incurred in this game: 

 

arg min
e

max
e

- log p (X k (v) ! SI | X
k + 1) . 

 

Suppose that the Player I wishes to select a single node to construct its reaction. The rationale behind the 

minimax principle is for the player to focus on the riskiest regions of the graph. We show that, under 

regularity conditions, minimizing the generalized entropy constitutes the central step towards finding the 

optimal act against opponents for the log loss score, and it leads to an equilibrium solution in the game. 

The general relationship between game and information theory have been studied specially in statistics, 

for computational takes on this see [38][39]. This line of work may be used to derive tighter bounds and 

convergence guarantees to our game, but this will not be explored here.   

 

Reconsider the example in Figure 7, but with truncated values σ(x) as assigned by the return time 

function. The strategy maps the nodes to binary words. If the winning frequency of individual paths are 

known, efficiency can be related to the average return time. The shorter the return, the higher the 

efficiency (to use information theoretic terms). Thus the efficiency depends both on the distribution 

P(Xk(v)|Xk+1) and on the return time function σ - which we have taken to be the map providing these 
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lengths (e.g., σ(x1
k)=3,…, σ(x6

k)=4). Then the average return time may be written as <σ,P(Xk(v0)|Xk+1)>, 

in bracket notation. There is then a mapping between P(Xk(v0)|Xk+1) and σ, as: 

 

v (x) =- logp (x) ,

p (x) = e-v (x).
 

 

where p(x) are the conditional probabilities for a strategy as defined in the last section.  

 

The cost function, seen from the point of view of Player I, is the map P(Xk(v0)|Xk+1) × σ → [0; N] given 

by the average return time. The cost function can be interpreted as the average time necessary to win the 

game, and it is natural for Player I to minimize this quantity. The logic in assuming that Player II has the 

opposite goal comes from game theory (a player cannot do better than supposing that the opponent 

behaves rationally in a way which is the least advantageous to him). This turns out to correspond to 

Jaynes’ reasoning behind his Maximum Entropy Principle [40]. Here however the principle is applied to 

classification, relating the prediction of Xk from Xk+1.  This suggests for the player to seek the distribution 

with minimal mutual information, which will motivate the method we study in the next chapter. 

 

The notion of equilibrium applied to the graph dynamics game says that Player π should consider the 

minimum of <σ,P(Xk(v0)|Xk+1)> over σ, which is the optimal response for Player I. The entropy can be 

conceived as minimal average return: 

 

H(X) = min <σ, P(Xk(v0)|Xk+1)>. 

 

The minimum is attained for the strategy adapted to Xk+1, assuming that H(P(Xk(v0)|Xk+1)) < ∝. 

 

Seen from the point of view of Player II - the adversary - the optimal performance is thereof achieved by 

maximizing entropy. The maximal value this player seeks is  

 

Hmax(P(Xk(v0)|Xk+1)) = supH(P(Xk(v0)|Xk+1)). 

 

On the side of Player I we can consider for each σ the risk  

 

R(σ|P(Xk(v0)|Xk+1)) = sup<σ, P(Xk(v0)|Xk+1)>, 
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and then the minimum risk value is 

 

Rmin(P(Xk(v0)|Xk+1)) = inf R(σ|P(Xk(v0)|Xk+1)), 

 

which is the value Player I seeks. We have now considered each side of the game. Combining them, we 

encounter concepts from the theory of two-person zero-sum games. Thus, an equilibrium solution is one 

where Hmax(P(Xk(v0)|Xk+1)) = Rmin(P(Xk(v0)|Xk+1)), and the value of the game is Hmax(P(Xk(v0)|Xk+1)) = 

Rmin(P(Xk(v0)|Xk+1)).  

 

While for Player II the optimal strategies comes from a distribution pII ∈ P(Xk(v0)|Xk+1) with the property  

H(p(Xk(v0)|Xk+1)) = Hmax(p(Xk(v0)|Xk+1)), for Player I the optimal strategy is characterized by the function 

σ with the property that R(σ | p(Xk(v0)|Xk+1)) = Rmin(p(Xk(v0)|Xk+1)), which is a minimum risk strategy. 
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4. Learning 

In the last chapter, we’ve studied a game where players situated in a node act by choosing edges – that is, 

their subsequent positions. When that happens, we can say the source node has activated the target node. 

An attractor set for a player is a set of nodes which, as a group, cause its own activation. Thus if u 

activates v, and v causes u, then u + v comprise an attractor set. In an environment where u appears 

followed by v, u + v can remain activated in detriment of other structures. Let’s say that a set of nodes 

wherein each node’s activation is caused by some other node in the set exhibits causal closure. It is of 

course highly unlikely that two nodes u and v that just happened to co-occur would happen to cause each 

other. However, this is more likely than the existence of a single node causing its own activation (a node 

with no repairs or contingencies, thus a fixed structure). But, when nodes interact their diversity increases, 

and so does the probability that some subset of the graph reaches a critical point where there is a causal 

pathway to every member. 

 

If we want to devise a way to iteratively learn self-regulatory networks, we need to answer the question: 

once a set of nodes has achieved some amount of causal closure, which other nodes should it choose to 

incorporate the attractor set? The importance, or utility, of a new node relative to the existing set should 

express the new node’s capacity to, if activated, cause (or lead back to) the original set – making the 

original set even more useful. An iterative, selective process using this quantity can elicit cliques in the 

network with progressive joint complexity and closure, eventually transforming some subset of nodes into 

a web for which there exists pathways counteracting a diverse set of contingencies.  If we think of the 

graph as a language automata, this is an automata expansion procedure that attempts to gather a few initial 

nodes into increasingly resilient structures.   

 

We have characterized a decision function with two elements: a partition and an action. In this section we 

take each of these elements in sequence.    

4.1 Partition 

The following is a straightforward derivation of concepts from information theory and statistical 

mechanics [41]. Mutual Information clustering has been considered in machine learning at [42],[67],[43] 

and [44].   
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Take a game field as defined in the last chapter. It offers the prior state-space for a dynamical system that 

moves through the graph’s nodes. We have seen that several moves can have however similar influences 

in the system’s local behavior. As result, the effective state space of the system is in reality more succinct. 

 

Suppose we can observe the random variable Xk+1 and wish to predict Sk. Any function on the global 

neighborhood defines a local statistic, a good local statistic outlines the influence of the neighbor nodes in 

what happens locally. Let Sk+1 be a partition function Sk+1 : {x1, x2, …,xn} → {s1, s2, …, sl}, where l << n. 

Because Sk+1 is a function of Xk+1, I[Sk; Sk+1] ≤ I[Sk; Xk+1]. A statistic S(Xk+1) is sufficient when I[Sk; Sk+1] 

= I[Sk; Xk+1], see [41]; that is to say, a sufficient statistic is a function of the data that is as informative as 

the original data.  

 

For a node v ∈ V and a node u ≠ v in its neighborhood, let π denote the local winner at v. Let Sk
π be the set 

of labels in v that belong to π. Consider a fixed player π’ ≠ π and a changing neighbor configuration x(u). 

There is a certain conditional distribution over local configurations, P(Sk
π’ | X(u) = x, X(v) ∈ Sk

π ) - which 

we shorten to P(Sk | x, π ). Let us say that two neighbor configurations are equivalent if they have the 

same conditional distribution, 

 

x1 + x2* P (X k (v) ! S
lr

k | x1 ,r) = P (X k (v) ! S
lr

k | x2,r) 

 

The statistic Sk+1 is simply the equivalence class of neighbor configurations over all neighbor nodes of v 

(and not the single node u). 

 

Sk + 1(v) = {sk + 1| P (Sk | sk + 1) = P (Sk | xk + 1)}. 

 

where Sk+1(v) ⊂ Xk+1(v). The equivalence class (or state), written Sk+1(v) is sufficient. Plus, the local and 

global neighborhoods are independent given the local state. In a broader scope, this equivalence 

relationship corresponds to a view on causality first advocated by Wesley [59][44]. And H[Sk+1] is the 

amount of information on the neighborhood about the local state.  

 

We now turn to an algorithm that will devise the set of neighborhood states from data. We first select the 

initial node v, and for each configuration estimate a local distribution over Π. We have now the local 

winner for each local configuration, argmax
r ! P

P (r | x). We will return to the issue of how to select the 

initial position (node), in this section we will focus on how a player organize its neighborhood to cope 
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with an unfavorable outcome on the local game.   To each node u in its neighborhood of size ℵ, we 

determine which neighbor configurations are in fact present in the data. Then, for each neighbor 

configuration x, we estimate P( Sk | x, π ), using the Parzen window method. We can then cluster neighbor 

configurations based on the similarity of their conditional distributions. These clusters are then the 

estimated states of the dynamical system. We associate with each cluster a different conditional 

distribution and an entropic measure. The first is the weighted mean of the distributions of the 

configurations it contains, and the second is H [Sk + 1] =- P (si) log2

i

! P (si). 

 

Perhaps the most straight-forward model for the joint intensity distribution P( Sk | x, π ) would be a 

mixture of Gaussians, but the mixture is sensitive to initialization parameters and in some cases results in 

an inaccurate prior model of the joint label function. We therefore estimate the underlying distribution 

based on the Parzen window density with Gaussians as the windowing function, see [46]. It is obtained by 

centering a small Gaussian kernell around each training point. In practice then the method samples 

directly the training data and provides a better explanation of the label correlations than the Gaussian 

mixtures that require the prior estimation of various parameters. For computational efficiency this 

probability distribution is stored in a look-up table, see [47].  

 

We are interested in clustering (quantitizing) Xk+1 into l disjoint (hard) clusters, which corresponds to 

finding the map S : {x1, x2, …,xn} → {s1, s2, …, sl}. We will judge the quality of a cluster by its ensuing 

conditional loss in mutual information, L = I(Sk, Xk+1) – I(Sk,S(Xk+1)). For a fixed distribution P(Sk, Xk+1), 

I(Sk, Xk+1) is fixed; hence minimizing the loss amounts to maximizing I(Sk,S(Xk+1)). The loss in mutual 

information can be expressed as the distance of P(Sk, Xk+1) from the approximation P(Sk, S(Xk+1)); that is,  

L = D( P(Xk, Xk+1) || P(Xk,S(Xk+1)) ), where D is the relative entropy. This form is, in turn, equivalent to: 

 

L = p (xk + 1)p (sk | xk + 1, xk) log
P (sk | S (xk + 1), xk)
P (sk | xk + 1, xk)

xk + 1: S (xk + 1 ) = s

!
s

!  

   

For each global configuration, xk+1, we find its cluster index iteratively by 

S (xk + 1)i= argmin
s

D (P (Sk | xk + 1, xk ) | | P (Sk | xk + 1, xk )). This corresponds to an iterative and 

agglomerative clustering procedure. We repeat, i = i + 1, until D (P (Sk,Xk + 1) | | P (Sk, Si(Xk + 1))) stops 

decreasing under a quality threshold. As we give this procedure more and more data, it converges in 

probability on a local optimum set of states. As a practical matter, we need also to limit how far locally, 
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and globably, the neighborhood will extend, ℵ k and ℵ k+1.  We give the pseudo-code at the end of this 

chapter.  

4.2 Strategy 

Last section equipped us with the means to represent the interaction/relationship between two nodes. We 

are now in position to increase our scope to the entire graph. The background for this section consists of 

basic sequential stochastic decision processes [54][56][57][58].  

 

We are interested in the return time function with the property 

 

σ(sk+1) = minimum total expected cost 

 

where the expectation is conditional on a given initial state, sk+1. The problem we have defined on the last 

chapter involved associating with each state a strategy size given by the return time function, and its 

solution indicates the optimum strategy sizes for a process starting at arbitrary states. At each state that 

occurs, a decision must be made whether the player should move to some other position in the graph or 

not. Consider then a Markov chain with possible states in the set of partitions, s0
 k+1, s1

 k+1, s2
 k+1, …sl

 k+1 

whose motion is governed by a probability law specified by a transition matrix P, where P=(pij) is a l × l 

matrix with elements pij≥0, such that pij= 1
j

! . For any given state 0 ≤ i ≤ l, the probabilities pij, j = 

0,1,2,…,l, describe the distribution of the next state. We have a Markov system s0,s1,s2,…sl  in which every 

st belongs to the state space {0,1,2,…,l} and, given that st=i at any time t, the next state is a random 

variable with the conditional probabilities P(st+1 = j | st = i) = pij. 

 

If the underlying random process is Markovian, a decision on whether to increase the strategy size or not 

can be based on comparing the return probability for the present state with the expected return after 

transitioning to another state. Suppose that for player π the return probability associated with being in 

state i is ri = b ⋅ P( sπk | st
k+1, …, s0

 k+1 ) ≥ 0, which is readily calculated from the distribution associated 

with the neighbor state sπk+1 and the parameter b. The immediate cost associated with a decision to move 

from state i is ∆hi ≥ 0, which represents the cost of the next transition. It can be interpreted as the expected 

loss of replacing st = i by a new state st+1 = j given by the probability distribution pij, j = 0,1,2,… 
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Consider the maximum expected net return given an initial state i, and name it fi. From that position, a 

player is is allowed a transition to a different node i → j, which leads a net expectation -Dhi+ pij f j
j

! . 

The decision whether the player should move to the other node j depends on whether the return ri for the 

current location surpass this value or not, that is: 

 

fi= max ri, - Dhi+ pijj
! f j$ .. 

 

The optimal return time for a state can be determined by the method: assume that the return time is 1, and 

increase if fi > ri.  

 

Remember that T is the return time assigned by the mapping σ : xk+1 → T for a given initial state. Take T 

to be a random variable associated with the Markov chain {s0,s1,s2,…}. Let A be a subset of the state space 

and suppose that the initial state of the Markov chain is s0 = i. The corresponding return time T is defined 

as the first time that the process reaches a state in A: 

 

T = inf t $ 0 | st! A# -. 

 

If st ∉ A for all t ≥ 0, then T = ∞, which defines what we called a trap for the player.  

 

Consider the expected net return, starting at state i and using a return time of T. With the cost for each 

transition, there is the conditional expectation 

 

E -Dhs0
- Dhs1

- g - DhsT - 1
+ rsT | s0= i# -. 

 

The maximum expected net return fi is  

 

fi= sup
T $ 0

E -Dhs0
- Dhs1

- g - DhsT - 1
+ rsT | s0= i# -. 

 

The problem as formulated is far too computationally expensive to be practical; we can however simplify 

it while maintaining its optimality. Consider that a player is allowed at most n further steps before 

stopping. This restricts the choice of strategy lengths so that 0 ≤ T ≤ n, and suggests a dynamic 

programming approach [57], which is one of the most fundamental and widely used techniques in 



 

42   

Artificial Intelligence. The essence of dynamic programming is Richard Bellman's well-known Principle 

of Optimality [55]. The principle is intuitive:  

 

“An optimal policy has the property that whatever the initial state and the initial decisions are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the first 

decision.” 

 

If we can frame the problem in such a way that this condition always holds, the optimal solution can be 

found by simple recursion. For each i ≥ 0 and any non-negative integer n, call fi(n) the maximum 

expected net return given the initial state i and allowing at most n transitions. Clearly, 

 

fi(0) = ri, 

 

and, for n ≥ 1, the recursion obeys the principle of optimality  

 

fi(n) = max ri, - Dhi+ pijj
! f j(n - 1)$ . 

 

for each i ≥ 0. That is, we can use the time limit n to decompose the function {vi, i ≥ 0} into a monotone 

sequence of approximations. The maximum expectation fi(n) is non-decreasing in n, because the class of 

admissible return times grows when n is replaced by n+1. We have 

 

fi(n+1) ≥ fi(n), 

 

and intuitively, it is clear that fi(n) converges to fi as n → ∞, if the limit is finite.  

 

It is then straightforward to define attracting sets determined by each of the approximations {fi(n), i ≥ 0}. 

The limit function {fi(n), i ≥ 0} satisfies the optimality equation, allowing us to define a decision region  

 

A = {i ≥ 0 : fi = ri}. 

 

The set A form the optimal attracting regions for the problem. 

 

For each n ≥ 1, let 
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A(n) = {i ≥ 0 : fi(n) = ri}, 

 

leadind to a decreasing sequence of regions: A(1) ⊃ A(2) ⊃ …. And because fi(n) ≤  fi it follows that A(n) 

⊃ A. Backward induction then shows that fi(n) is attained by the following return time: 

 

Ti(n) = min{t ≥ 0: st ∈ A(n-t) | so = i},  

 

which leads to the iterative method from the last chapter, based on the attracting set A(1). Recall that 

 

A(1) = {i ≥ 0 : fi(1) = ri}, 

 

where fi(1) is the maximum expected return, given the initial state i, when one transition is allowed: 

 

fi(1) = max {ri, - Dhi+ pijrj}
j

! . 

 

The procedure is to stop as soon as the underlying Markov chain reaches a state in A(1).  It is a sub-

optimal procedure, but in our setting it approaches the optimal policy. This occurs if the attracting set 

A(1) is closed, in the sense that transitions from A(1) to states outside it are not possible, which is true by 

construction.  

4.3 Conclusion 

To learn the network, the basic procedure is to construct the attractor for each of n different players at 

positions chosen by the different players {vI, …, vn} with a neighborhood of size ℵ (a parameter). The 

training data is denoted Ω, and to each player correspond a subset of the data Ω π, 0 < π ≤ n, such that Ω 

= ΩI∪ ΩII ∪ … ∪ Ωn,. As noted, it is computationally useful to first select the configurations that are 

actually observed in the data before partitioning the different labels. This step involves an unproblematic 

parameter pmin which is a probabilistic threshold. A heuristic to select the initial positions for a player π is 

to choose the position with largest average KL divergence (relative entropy) between the player π and 

others local distributions X0, as estimated by a histogram over the training data.  
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The conditional distribution over graph labels is the empirical one determined by the training data. We 

now assume a training set Ω of data points with known labels X(v, t, ω) ∈ X, ω ∈ Ω. Given D ⊂  Ω  and 

#D is the number of elements in D, the conditional distribution is 

 

P (X (v, t + 1) = x2| X (u, t) = x1) = # {~ ! X | X (v, t + 1,~) = x1}

# ~ ! X | X (v, t + 1,~) = x1,X (u, t,~) = x2# -
. 

 

In conclusion, the overall method is (see Figure 8 for pseudo-code): choose a node v and for each local 

game outcome, partition its entire neighborhood into equivalence classes of prediction on the node’s local 

labels, X(v,0). Each equivalence class is associated with a different conditional probability and a mutual 

information level. Different classes (and the labels wherein) then forecast different local configurations, 

which in turn have different utilities to the player, requiring different responses.  If a class makes a 

favorable and certain prediction, we take it to belong to v’s neighborhood S1. Such labels have strategies 

with size σ = 1 (requiring just one action/edge for repair). The labels that do not belong to v’s immediate 

neighborhood are partitioned further, into equivalence classes of prediction on S1. They may belong to v’s 

neighborhood’s neighborhood or so on, and have a more indirect influence on v. The strategies sizes grow 

accordingly. With this process, the Player focuses its resources on the riskiest distributions, and (given the 

assumption of correct partition-sets) asymptotically approaches the optimal strategy-set.    

 

   

 



 

  45 

 

Parameters: k, {ℵ1, ℵ2, …,ℵk}, pmin, hmin, cmin, m, w, h 
 
- Subsample image grid to size w × h 
- Estimate marginal distribution P( Π | x ) for each x ∈ X0 and each v ∈

V using a histogram. 
- For each player π 

- Select vr= argmax
v

D (p (x | r) | | p (x | lr ))
lr ! P

!  

- For each player π’ if H(π’|x) > hmin 
- Let S1 be the set of all labels in Xk+1 truncated by 1 where 

x ∈ S1 if P(x) > pmin 
- For j = 1,…, ℵk  

- t=0 
- For each xk+1 ∈ Sj = {s1,…,sm}  

- Estimate distribution P(Sk|x,π) using Parzen 
window method.  

- (1) S j

(t + 1) (k + 1)(x) = argmin
s(t + 1) (k + 1)

D (p (Sk | x,r) | | p (Sk | s(t + 1) (k + 1),r))

- t = t + 1 
- if 

D (p (Sk | x) | | p (Sk | s(t + 1) (k + 1),r)) - D (p (Sk | x) | | p (Sk | s(t) (k + 1),r))
 > cmin, goto (1) 

- For each i, si ∈ Sj 
- Calculate ui(1) 
- If ui(1) > ri add si to Sj+1 

 

 

Figure 8: Overall procedure. 

 

Notice that, for each player, we re-organize its sample space into a set of new variables S1
k+1, S2

 k+1, …, Sn
 

k+1 taking values in different labels at different positions throughout the graph, with the obvious 

normalizations.  
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5. Flow  

In the previous chapter, we have considered a method capable of learning the representation of an 

attractor structure. The representation captures the notion of a strategy-set of a game played in the graph. 

It consists of a set of tests a player can run in different locations throughout the graph. Now the player has 

to decide which tests to run on which nodes. One approach would be the player run every test on every 

node. Another would be a dynamic policy, in that case at each time tick the player could decide which 

tests to perform on which node, based on the result of previous tests and the information extracted on the 

last chapter about the costs, equivalence relationships and effectiveness of the tests. This chapter explores 

this idea: how to dynamically decide which tests to run on which position in the graph to construct the 

best classifier for the overall state of the graph. Recent relevant references on active and semi-supervised 

learning are [50], [51], [52] and [53]. 

5.1 Graph Flow      

For illustration, let’s consider a random walk in a graph with nodes s0, s1, s2, s3 and transition matrix given 

by 

 

P =

0.3

0

0

0

0.7

1.0

0.6

0

0

0

0.4

0

0

0

0

1.0

J

L

K
K
K
KK

N

P

O
O
O
OO

. 

 

The walk will stop with high probability when it reaches either state s1 or s3. The states s1 and s4 are 

commonly called absorbing states. These are states that, once entered, cannot be left. When the chain is 

started in a non-absorbing state, it will ultimately end up in an absorbing state [64]. In this chapter, we 

will take the sets in the players’ local partition to be absorbing states and the neighbor’s partition as non-

absorbing states.  

 

Remember that Sk is the set of local states and Sk+1 the set of neighbor states. For neighbor state si
k+1 and 

local state sj
k, write Rij for the probability that the chain starting in si

 k+1 will end up in state sj
 k, and R the 

matrix with entries Rij. The matrix dimensions are m×n, where m is the number of local states and n 

neighbor states. For example, the entries Bi,j will give the probability that a walk initiated at si
 k+1 will 
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reach the label set si
 k before reaching any of the player’s other states. It is straightforward to obtain the 

matrix R by Markov chain algorithms, and thus to simulate the dynamical system on the graph. See [63], 

[65] and [66] for a more detailed and general description. To that end, suppose that P is an absorbing 

Markov chain, and organize it so that the local states come first and the neighbor states come last – that is, 

in the canonical form: 

 

P =
I

K

0

Q
e o, 

 

where I is a m×m identity matrix; 0 is a matrix of dimension m×n with all entries 0. And consider the 

matrix N = (I − Q)−1 and the column vector 1 with all entries 1. Then the vector t = NI provides the 

expected number of steps before absorption for each starting state. The absorption probabilities R are 

calculated from N with the equation 

 

R = (I − Q)−1K. 

 

Suppose also that for a Player π, rπ is a random function rπ: Sk+1 → sk
π with domain the state space of a 

Markov chain P such that for i in S k+1, 

 

rr(i) = Pijrr(j)
j

! , 

 

which defines a binary value r ∈ [0,1] for the player’s individual states. The value r = 1 means that the 

node belongs to Player π, or predict it wins. Order the vector rπ  in the form 

 

rr=
rr
o

rr
u

e o, 

 

where rπo stands for the observed or sampled values rπ of nodes on the current level and rπu unobserved 

values. Since R = NK,  

 

rπu = (I − Q)−1K rπo. 
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We start with only the local value at the node v0 observed in the graph; that is, no tests in the 

neighborhood performed. We then choose the tests to be performed by minimizing the risk of the 

prediction using the graph, which can be computed with matrix methods. The Bayesian risk R of the state 

st ∈ St node u can be estimated with 

 

R (st) = H (st)
t = 1

n

! p (st| st - 1, ..., s1) - H (st)
t = 1

n

! r . 

 

After we query an unobserved state st the return function r will be altered. The new function is denoted 

r+s. The active learning criterion we will use is that of myopically choosing the next query st that 

minimizes the expected risk: 

st= argmin
ls

R ( ls ). 

 

To this end, we need to re-compute the function r+s after adding a state to the observed set.  

 

We have seen that an individual player associate with each state sπ k+1 a conditional distribution p( Xk | sπ 
k+1 ), or simply pπ.  In that respect, to say that a player has chosen a node is equivalent to saying that the 

player has chosen a distribution, pπ. Let x1, x2, …, xc be random samples of independent observations on 

Xk-1, and define the value of observed state with index i for k > 0 as 

 

rr
o(i) =

1, if
p lr (xj)

pr(xj) > t
j = 1

c

% ,0 lr ! r

0, otherwise
* , 

 

which is a “winning criteria” calculated after the players have selected their individual tests. In this case 

the criteria is derived from the likelihood ratio among the player’s local distributions (where ρ is a 

threshold). It is intuitively clear that large ratios support the hypothesis associated with Player π, the 

hypothesis that pπ is the true density of observations. Notice then that rπo ∈ {0,1} is the player’s observed 

value for the random function S : Xk → Π = π  for the observed nodes, while rπu ∈ [0,1] is its estimated 

value of the same function for the unobserved nodes.  

 

In conclusion, rπ  is a binary random field associated with a given player π and its binary function P(St-1 ∈ 

π). The field allows us to efficiently estimate the expected generalization error after testing a node. Once 

the nodes are selected, a classifier can be designed using both the observed and still unobserved 
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information. We can understand the return probability r(i) in terms of random walks on graphs: starting 

from an unobserved state i, a player moves to a node j with probability pij after one time tick. And the 

walk continues until the player reaches an observed node. Then r(i) is the probability that the player, 

starting from a node i, reaches an observed node with value 1 (that is, a position where St-1 ∈ π) - 

remember that we have taken the observed nodes as the absorbing boundary for the random walk on the 

graph. We can then think of the observations at time t as opening either “pathways” or “blocks” to 

outcomes in t-1 – that is, walking to a given observed node means walking directly to a favorable (or not) 

outcome in the level below.        
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Parameters: k, µ, ρ, c, m, u 
 
- For each player π 

- For j = 1,…, k-1  
- Select node sj randomly 
- Add sj to observed set 

- For each player π 
- For j = 1,…, k-1 

- Calculate rπ
o for sj  

 
- Let µ = 1.0  
- While µ < u  

- Let winner() = -1 be a k-length vector  
- For each player π  

- For j = 1,…, k-1  
- If winner(j) ≠ π 

- Select sj= argmin
ls

R ( ls ) 

- Add sj to observed set 
- For each player π  

- For j = 1,…, k-1  
- If winner(j) ≠ π 

- Calculate rπ
o for sj 

- If rπ
o = 1 

- winner(j) = π  
 

- For each player π  
- For t = 1,…, k-1 

- Select st= argmax
ls ! Sj

P ( ls | rr) 

- Build NB-classifier from each player’s s1,…,sk-1  
- Run classifier and calculate µ 

 
 

 

Figure 9: Sampling procedure. 

 

While we have developed the machinery for selective sampling, we still need to devise a decision 

function for classification. The selected node st, the corresponding distribution and the set of labels x ∈ st 

compose a feature vector for classification with first-order dependencies on st-1 and st+1 (in case t-1 ≥ 0 

and t < k). A Naïve Bayes (NB) classifier is a causal net with a structure that assumes that feature values 

are conditionally independent given the class label. Our classification process takes a sequence of samples 

from the different players {xu,π}, where sample xu,π requests the label of node u, X(u), from a instance 

associated with player π. Given the feature vector x = {xu,π}, Bayes’ rule can be used to compute the 
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winner argmaxπ P( S = π | X = x), which is returned as the most likely classification given x and the 

players’ models (due to the independence assumption, it does not matter from which player the observed 

value comes).  Although independence is generally a poor assumption, in practice the NB often competes 

well with very sophisticated classifiers. The number of samples requested from each player in one 

iteration is | st|
t = 1

k

! , where |s| is the number of labels in the chosen cluster s. It is a simple matter to 

assemble a Naïve Bayes classifier, see [61] or [5]. The accuracy of the classification can be estimated 

with the gini index, µ, over the winners.  

 

Let’s take a final stock. Suppose that n nodes, xn = x(v1,1),…,x(vn,n), are tested sequentially in a graph. 

After each test xt-1, t = 1,…,n, a player is asked how likely each  x(u)∈ Xt is to be the result of the next 

test. When the actual test is performed, the player π suffers a loss, which we have taken to be log p(xt∈Sπ| 

xt-1). In order to achieve a minimal expected loss the player should predict with the conditional 

distribution p(xt∈Sπ| xt-1). We have defined a set equivalence on labels for this process, where each class 

St corresponds to a distinct distribution for states for time t-1 (a mixed strategy to be played at that time). 

We have also seen that to each equivalence class s(xt-1) correspond a distribution p(Xt-1), which in turn 

allowed us to identify the worst-case prediction classes under log-loss over the sequential game. Given 

the player’s choice to improve its strategy on different positions in the graph, the player is best of 

improving the strategies starting in these classes. For labels in these classes, we optimized the best 

amount of time to let the stochastic process starting at that position to run, leading to a function σ over 

labels we called the return time function. In our solution formulation, this corresponds to the assumption 

that opponents will choose high-risk positions, maxs R(s). Earlier in this chapter, we have devised the 

other side of this assumption, which express the player’s contrasting desire to minimize the risk, and thus 

mins maxs R(s).  

 

To get to this point, we have made assumptions. We have assumed that strategies are memoryless, thus 

not extending more than one step in the game tree. We have broken down, so to speak, the game into n 

subgames – which is reflected on the solution concept, a subgame perfect equilibrium solution. A 

subgame perfect equilibrium of an extensive-form game is a strategy whose restriction to each subgame is 

a Nash equilibrium of the subgame. We have only drafted this development, and much remains to be 

done. We have taken the game to be information asymmetric. And we have taken the losses to be 

expected losses (that is, calculated over the training set as opposed to run-time losses). We have assumed 

that our clustering algorithm converges to the optimal set of states, that the random fields rπ approximates 

the return probabilities after observations and that the marginal classification decisions combine into a 
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joint decision function. Yet, we claim to have addressed and brought attention to what we consider is the 

core aspect of sequential games, which is their interactive nature. In this respect, the players not only look 

ahead and plan what they would do in various contingencies, but also, as situations progress, constantly 

reassess their individual plays in response to new, actively obtained information.                    

5.2 Results 

If we have a training set consisting of binary images of m different objects (or a background), we can 

make each correspond to a different player in a classification game. To recognize a given object, the NB 

classifier can be tested against different positions on the image grid. The following results are for a two-

level network, with ‘point’ and ‘shape’ graphs. They were learned with 4 and 16 pixels neighborhoods, 

respectively. The point graph is first evaluated; then, for locations and players where the accuracy of the 

NB classifier P (S0! r | X (v1, 1) = x,X (v2, 1) = x, ...,X (vj, t) = x) falls above the 0.96 threshold, we run 

the shape graph. And the maximum a posteriori winner at the shape level identifies the object. 

 

We have tested this procedure against two well-known and publicly available datasets. Both address the 

problem of visual recognition, the first of objects (COIL-20) and the second of handwritten characters 

(MNIST). In both experiments, the values of some parameters need to be fixed. Notably, accuracy is very 

much influenced by the number of clusters used, l. The optimal size is problem-dependent. In our 

experiments, this parameter has been tuned manually. Manually tuning parameters is a common practice; 

nonetheless, cross-validation could be used to determine its value automatically. All images were 

preprocessed with a Canny edge detector and a distance transform operator [68]. In addition to the 

different objects, in both cases we included a null-hypothesis player (black background).  

 

The MNIST database [70] is a widely used collection of images of handwritten digits, examples in Figure 

9(a), and poses a different challenge to object recognition systems. It consists of a collection of 70,000 

images. They have been centered and sized-normalized to a 28x28, 256 grey level images. The MNIST is 

a large collection of 2D shapes in ten distinct classes (digits, corresponding to different players) with 

often subtle similarities and differences. In the literature, the first 60000 images are generally used for 

learning. Evaluation on this dataset shows competitive results, we have obtained an error rate of 0.72%, 

whereas the reported error rates in [70] vary from 12% to 0.7% (the best being the boosted LeNet-3 

system). A more recent system has reported a 0.4% error rate [71].          
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The Columbia Object Image Library [72] is a database of images of 20 objects (corresponding to the 

different players, with 72 images/poses per player), examples in Figure 9(b). Each image has been 

normalized to 128x128 pixels and are in true color. For our experiments, we have resized the original 

images to 32x32 pixels. From the complete sequence of images, it is usual practice to take the odd ones as 

training images and the even as tests. Our system has achieved 0% error rate in the COIL-20 dataset, as 

have a few other systems. At the moment, however there doesn’t seem to exist an alternative for 3D 

object recognition that is as popular.  

  

For both problems, our results are very competitive with the best results achieved. The significance is 

high since we strictly followed public protocols and since we have not tuned the system to the specific 

datasets. We also value the non-incremental nature of these results (that this is a fairly new and untested 

approach and it should be better studied). A disadvantage of our algorithm is its learning and recognition 

computational inefficiency. Recognition models were learned from ½ to ¾ of a week in a personal 

computer. It can also be said that the approach is altogether more complex than simpler systems with 

comparable success (for example, [19]).  

 

 

 
 

Figure 10: Datasets. 

 

While for the COIL-20 dataset a few systems have reached zero error rates, for the MNIST dataset it has 

been argued that not much performance improvement will be possible (or will be meaningful). These 

results (on datasets with unocluded objects, homogeneous background and controlled illumination) can be 

misleading, since they do not encompass the true difficulty of the general object recognition problem. It 

seems that only recently the computer vision field has turned apt to address its central problem: general 

object classification in unconstrained environments.  
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Many researchers today use their own private data, which unfortunately prevent comparisons. We are 

forced to do the same: we captured a video sequence of a lab scene with a moving camera. The scene 

contains two tables in a cluttered office environment; on the first table there is only a mug, while on the 

other there is a (different) mug as well as several other random objects (bowl, keyboard, etc.). The 

justification for using a video clip (instead of setting-up separate still images) is based on the general 

observation that the output of many vision algorithms (specially ones based on classifiers) varies 

constantly with unapparent image changes (such as slight illumination or pose changes, camera 

movements and motion blur), making them not always suited for real world applications. The video starts 

with a frontal take of the two mugs (with the first table closer), and as it proceeds, the camera travels from 

the first table to the second, then the camera elevation varies from low (table level) to high on the second 

table (moving from a frontal to a top view of the objects), afterwards the camera returns to its original 

position and the mug is waved in front of the camera, Figure 10. The video was re-sampled at 6 fps with 

duration of 40 seconds, which we divide in 12 blocks of 20 frames.  

 

 

 
 

 
 

Figure 11: Experiment. 
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We trained the system with three players, corresponding to frontal-imaged mugs (70 frontal images at 

slight different angles of 4 different mugs), top-imaged mugs and generic background (null hypothesis, 

110000 images of random scenes). In this way, we can compare the performance of the proposed system 

with a decision tree approach and demonstrate the graph dynamical system’s ability to better generalize 

across object instances, even in varied backgrounds. We have built a CART tree [21] with Haar-like 

features using the Intel OpenCV library. To make the comparison more meaningful we change the first 

level label-set of the graph dynamical system from the binary set, X0={0,1}, to indices in the bank of 

Haar-like filters, X0={0,1,2,3,4,5,6,7,8,9}. Figure 11(a) illustrates the set of filters used, all computed 

from simple differences between the sums of pixels within two adjacent rectangular regions. They were 

originally proposed by Papageorgiou [73] and can be extracted quickly. Both algorithms will run 

classifiers (the NB or the CART) against different positions in the image and in 20 different scales. 

 

 

 

 

 
 

Figure 12: Features. 

  

We have found the CART system to work best when different classifiers were assembled for individual 

object instances in the scene (thus in spite of using one classifier for all mugs, use an ensemble). We have 

also manually determined its best parameters for this scene to be a tree size of 14 and a window size of 

21x21. Each recognition trial operates on one video frame. Figure 12 depicts the results over sequential 

blocks of 20 frames in the clip. True positive trials correspond to situations where the object was in the 

scene and was recognized in the right position, while false positives correspond to situations where the 

object was recognized but was not in the scene or was in a different position. We classified the trials in 

this way subjectively, by analyzing the video and the two systems’ outputs.    
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Figure 13: Result on cluttered scene. 

 

For both systems, the worst error rates were generally obtained in blocks corresponding to the camera 

movement between tables (blocks 3 and 7-9) and thus corresponding to atypical views of the objects 

(non-front or non-top point of views). Together with the fact that only one NB classifier can recognize all 

mug instances, this observation shows that the graph dynamical system generalizes better the structure of 

the objects. Figure 13 shows some of the frames misclassified by the NB system. We have observed that 

most misclassification were either due to overly poor conditions for low-level processing or occlusion of 

critical object parts. Although the filter bank used is recognizably low-quality, a state-of-the-art edge 

detector would not radically improve the results (this is illustrated on the bottom Figure 13). The graph 

dynamical system as proposed here works in a streamline bottom-up fashion (from features to objects, 

committing to all-or-none decisions on the way). We believe that developing mechanisms to integrate 

information in the opposite direction is the key to true improvement, for example by taking temporal 

(tracking), scene or semantic information into account.        
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Figure 14: Misclassified frames. 
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