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Abstract

This thesis addresses three interrelated questions of early lexical acquisition. First,
how do infants discover linguistic units which correspond to the words of their lan-
guage? Second, how do they learn perceptually-grounded semantic categories? And
tying these questions together: How do infants learn to associate linguistic units with
appropriate semantic categories?

To address these questions, we have developed and implemented a computational
model of Cross-channel Early Lexical Learning (CELL). Learning is driven by a search
for structure across channels of sensory input in an information theoretic framework.
CELL acquires lexical items which model word-meaning associations with high mutual
information.

CELL has been implemented using computer speech and vision processing tech-
niques. A lexicon is acquired from microphone and camera input. This is the first
implementation of automatic language acquisition which discovers words and their
semantics from only raw sensory input without human-assisted preparation of data.

CELL has been evaluated on natural speech recordings of six caregiver-infant
interactions centered around play with common objects. The speech recordings were
coupled with visual images of the objects taken from multiple perspectives. CELL
successfully acquired a lexicon of shape names from each of the six participants.
When compared to an acoustic-only baseline model, cross-channel structure proved
to increase performance dramatically.

This work has applications in human-computer interaction. It provides a new
approach to creating spoken language interfaces which adapt to the vocabulary and
semantics of individual users. Early prototypes show promise for building natural,
robust, and personalized interfaces.
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Chapter 1

Introduction

Infants are born into a ‘buzzing, booming confusion’ of sensations. From this sensory
chaos, they construct mental representations to model structure that they find in
the world. These representations enable infants to understand and predict their
surroundings and ultimately to achieve their goals.

Around their first birthday, infants first begin to use words® which refer to salient
aspects of their environment including objects, actions, and people. They learn these
words by attending to the sights, sounds, and other sensations in their environment.
The acquisition process is complex. Infants must successtully segment linguistic input
into units which correspond to the words of their language. They must also identify
semantic categories which correspond to the meanings of these words. Remarkably,
infants are capable of all these processes despite continuous variations of natural
phenomena and the noisy input provided by their perceptual systems.

This thesis presents a computational model of early lexical learning. Learning
is driven by a search for structure across channels of sensory input. The model is
accordingly named Cross-channel Early Lexical Learning (CELL). It is a cognitively

plausible on-line model which processes data incrementally.

!The term “word” is used throughout this thesis in accordance with Webster’s Dictionary: “A
speech sound or combination of sounds having meaning and used as a basic unit of language and
human communication.”

17



18 CHAPTER 1. INTRODUCTION

CELL has been implemented as a real-time system driven by microphone and
camera input. This is a significant result: CELL is the first implemented model
of language acquisition which learns words and their semantics from raw sensory
input without any human-assisted preparation of data. This implementation has
been evaluated with infant directed data and has successfully demonstrated early
lexical acquisition.

This thesis also explores applications of automatic language learning for human-
computer interaction. The CELL architecture provides a new approach for developing
adaptive spoken interfaces. We have implemented several prototypes which show

promise for building natural, robust, and personalized interfaces.

1.1 Problems of Early Lexical Acquisition

Before specifying the problems of lexical learning addressed by CELL, we provide
operational definitions of several terms which are used throughout this thesis. For
expository purposes, these definitions are presented in simplified form. They are
developed more precisely in Chapter 3.

Lexical items are the output of CELL. Fach lexical item specifies a linguistic unit
and a semantic category. Linguistic units model the surface form of a word, i.e.
the sound of a word when spoken or its visual form when gestured. A linguistic unit
consists of a prototype which defines the ideal form of the word and a radius parameter
which specifies the allowable variation relative to this prototype. The semantics of
linguistic units are grounded in sensory input. A semantic category specifies a range of
sensory inputs which can be grouped and associated with a linguistic unit. Semantic
categories are defined by a prototype which specifies the ideal or central form of
the category and a radius of allowable variation. For example, a semantic category
might specify a portion of the color spectrum, where the prototype corresponds to a

particular point of the spectrum, and the radius parameter would specify the allowable
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deviation from this prototype. Such a semantic category could be used to ground the
semantics for a color term such as “red”. A lexical item encodes the association
between a linguistic unit and its corresponding semantic category.

This thesis addresses three interrelated questions of early lexical acquisition. First,
how do infants discover linguistic units which correspond to the words of their lan-
guage? Second, how do they learn perceptually grounded semantic categories? And
tying these questions together: How do infants learn to associate linguistic units with
appropriate semantic categories?

Discovering linguistic units of a language is difficult since most infant-directed
utterances contain multiple connected words. There are no equivalents of the spaces
between printed words when we speak or gesture naturally; there are no pauses or
other cues which separate the continuous flow of words. Imagine hearing a foreign
language for the first time. Without knowing any of the words of the language,
imagine trying to determine the location of word boundaries in an utterance, or for
that matter, even the number of words! Infants first attempting to segment linguistic
input face a similarly difficult challenge. This problem is often referred to as the
speech segmentation or word discovery problem.

In addition to successtully segmenting linguistic units, infants must learn cate-
gories which correspond to the semantics of words. In this thesis we consider only
semantic categories which can be grounded in sensory input. For example, categories
of shape, color, texture, and motion may serve as semantic categories.

The third problem of interest is how infants learn to associate linguistic units with
appropriate semantic categories. Input consists of linguistic utterances paired with
nonlinguistic contexts. Fach utterance contains instances of one or more linguistic
units. Each context suggests multiple possible semantic categories?. Given a pool of

utterance-context pairs, infants must infer word-to-semantic mappings (lexical items)

?This is true in even the simplest of situations. A caregiver might present an apple and say,
“Look, it’s red!”. The utterance contains multiple words, and the context includes instances of
several possible semantic categories including object shape, color, size, position, etc.
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which best fit the data.

1.2 Scope

All input in CELL is grounded in sensors. Thus, both linguistic units and semantic
categories must be defined directly in terms of sensory input. This delimits the scope
of CELL. The semantics of many words such as because and love cannot be grounded
directly in the physical world. However, a large portion of words which are learned at
an early stage by infants can be grounded in the physical senses (See Section 3.2.1).

Infants exhibit a lag between receptive and productive abilities: they understand
words before they start using them [9]. CELL models only the early stages of lexical
learning which occur prior to the production of first words. CELL is based on the
assumption that in this early non-feedback stage, the learner attends to the world
and constructs models which reflect regularities across multiple channels of input.
Lexical acquisition is viewed as a process in which these regularities are found and
represented internally by the language learner.

This thesis is not concerned with the acquisition of syntax. This work is, however,
related to questions of syntax since syntax cannot be acquired until at least some
words are known to the language learner [89]. With an initial lexicon in place, the
learner may observe structural regularities in sequences of known words leading to

syntax acquisition.

1.3 Overview of the CELL Model

This section describes the main concepts underlying CELL. CELL extracts repre-
sentations of utterances and their co-occurring context from a set of sensors (Figure
1-1). An utterance contains instances of one or more linguistic units. The number of
linguistic units and the location of inter-unit boundaries is unknown. Context con-

sists of other sensory input which co-occurs with the linguistic input. The context



1.3. OVERVIEW OF THE CELL MODEL 21

Utterance-Context Pair

n r
Sensors utterance
e il linguistic linguistic | linguistic
o L B unit 1 unit 2 unit M
f
W\ i \W(Jga‘\ﬂ'ﬂ‘{“‘ H‘J‘,‘M’W'y i il semantic
' WA V - catregory 1 +  semantic
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Figure 1-1: CELL extracts representations of utterances and co-occurring context
from sensors.

category N

context

contains instances of multiple semantic categories. A key assumption is that any
linguistic unit in an utterance may refer to any semantic category inferred from the
co-occurring context.

As an example, consider a learner with two sensors: visual and auditory. Utter-
ances might consist of phonetic representations of spoken sequences recorded by the
auditory sensor. The context might consist of representations of visually observable
objects and their motions. Potential semantic categories would include categories
of shape, color, size, and path of motion. Semantic categories could also consist of
conjunctions of attributes, e.g., red objects which are round, or small objects which
move along parabolic trajectories.

As utterance-context pairs are encountered, they are “deconstructed” (Figure 1-
2). Utterances are “unpacked” into a set of hypothesized linguistic unit prototypes.
Contexts are unpacked into a set of hypothesized semantic category prototypes. Any
linguistic unit prototype may potentially be paired with any semantic category proto-
type which is derived from the same utterance-context pair. As shown in Figure 1-2,
the deconstruction results in a fully interconnected network of hypothesized prototype
pairs.

In a second stage (Figure 1-3), the prototype pairs are filtered and clustered to
generate a set of lexical items. Filtering is based on a model of short term memory

and attention to recurrent events in close temporal proximity. The clustering process
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linguistic unit  linguistic unit linguistic unit
prototype prototype prototype
P \M
semantic semantic semantic
category category  --- category
proto ype proto ype prototype

Figure 1-2: Deconstructing input into {linguistic unit, semantic category} prototype
hypotheses.

is driven by a search to maximize mutual information between instances of linguistic
units and co-occurring semantic categories.

The word learning process in CELL relies on combining evidence from multiple
observations. This need for pooled observations raises issues of memory capabilities
of the learner. It is unlikely that large amounts of memory are dedicated to storing
unanalyzed sensory input®. To ensure cognitive plausibility, CELL combines input

from multiple situations with only limited dependence on rote memory.

1.4 Interaction between Linguistic and Semantic

Learning

A common assumption underlying most previously proposed models of language ac-
quisition is that linguistic unit discovery, semantic category formation, and lexical
item formation occur in stages. For the case of learning from spoken input, most
models assume that speech segmentation and acoustic unit discovery is driven only
by acoustic analysis. There is no clear evidence to support strict modularity and
staged sequencing of these tasks. Infants have perceptual and learning capabilities
which allow them to leverage contextual information when analyzing linguistic input,

and vice versa. This thesis explores the possibility that linguistic and semantic input

3However, the ability for limited rote memory is known to exist [87].
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I|ngu|st|c Imgwstlc linguistic
unit unit

prototype prototype . prototype

VA,

semantic semantic .
category category Lexicon
prototype prototype
linguistic
Ilngwstlc v Ilngw?tlc unit
unit uni ;
prototype prototype semantic
category
linguistic
se;nantlc seinantlc se;nantlc unit
categor category categor :
proto yp)é prototype proto ypé semantic
category
Ilngwstlc Ilngwstlc . linguistic °
unit unit unit °
prototype prototype prototype °
semantic semantic semantic
category category category
prototype prototype prototype

Figure 1-3: Building a lexicon from word-to-meaning hypotheses.
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is used in a mutually constraining process to accelerate learning.

1.5 Sensory Grounded Input

Allinput in CELL is derived from raw sensory signals. In the current implementation,
linguistic input comes from a microphone, and semantics are grounded in contextual
information obtained from a color video camera. The sensory grounded nature of
CELL differs significantly from other models of language acquisition which typically
provide human-generated representations of speech and semantics to the system. In
these models, speech is often represented by text or phonetic transcriptions. As
a result, each time a word appears in the input, the model receives a consistent
sequence of tokenized input (e.g., [51, 3, 23, 22]). Semantics are usually encoded by
a predefined set of symbols or structured sets of symbols (e.g., [114, 1, 115, 31]). The
problems presented in Section 1.1 would be simplified greatly if CELL had access to
such consistent representations.

We have chosen to avoid such simplifications for three reasons. First, models
which operate with raw sensory input work under constraints which are closer to
the natural constraints under which infants learn. Infants only have access to their
world through their perceptual systems. There is no teacher or trainer who provides
consistent and noiseless data for the infant. Similarly, there should be no equivalent
teacher or trainer to help a computational model. Thus, unlike any previous model
of language learning, CELL grounds linguistic and semantic input in sensors.

Consider the difference between raw audio and phonetic transcriptions of speech.
In raw speech, pronunciations vary dramatically due to numerous factors including
phonetic context, syllable stress, the speaker’s emotional state, the speaker’s age,
and gender. On the other hand, a trained transcriptionist will abstract away all
these factors and produce a clean phonetic transcription. From a language modeling

perspective, such transcriptions may seem equivalent to using raw audio with some
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“noise” removed. We argue that the differences go much deeper. Transcriptionists
will leverage their knowledge of language to overcome ambiguities in the acoustic
signal. These sorts of effects based on pre-existing knowledge are bound to trickle into
any model which relies on human-prepared input data. In addition, raw speech also
contains prosodic information which provides cues for segmentation and determining
points of emphasis. Such information is lost when only a phonetic transcript is used.

Second, we are interested in addressing the symbol grounding problem [50]. Sym-
bols ultimately derive meaning from their relationships with the physical world. Ma-
chines which manipulate ungrounded symbols are ultimately limited by their dis-
association from reality. Instead of treating language learning as only a symbolic
processing problem, we are interested in grounding the semantics of lexical items in
the physical world. This is achieved by grounding semantic categories in sensory
input.

Third, a sensory-grounded computational model leads to powertul applications for
human-computer interaction. The implementation of CELL presented in this thesis
has led to the creation of adaptive spoken interfaces which learn the communication

patterns of individual users.

1.6 Adaptive Spoken Interfaces

An important motivation for implementing CELL was to build better human-computer
interfaces [101]. A fundamental problem which plagues current speech interfaces is
their inherent rigidity and scripted feel. Unless the user knows what words and phrases
may be spoken, when they may be spoken, and how they should be pronounced, the
interface will fail. The problem lies in the fact that there are wide variations in how
people express their intentions through words. People vary in how they pronounce
words, what words they choose to utter, and the semantics they associate with par-

ticular words and phrases. It is impossible for an interface designer to anticipate and
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preprogram all possibilities.

CELL provides a basis for creating spoken language interfaces which learn indi-
vidual users’ speech patterns, word choices, and associated semantics. Since CELL
is grounded in sensory input, it is easily applicable to situations with natural, noisy

input. This thesis presents prototypes of adaptive interfaces based on CELL.

1.7 Road Map

The remainder of the thesis is organized as follows:

o Chapter 2: Background on relevant aspects of infant development, previous
related work on models of lexical development, and a review of computational

modeling techniques.

o Chapter 3: Description of CELL at an implementation-independent level of
abstraction. This chapter describes a general model for acquiring lexical items

from multiple streams of sensory input.

o Chapter 4: An implementation of CELL grounded in camera and microphone
input. This implementation uses computer speech and vision processing tech-
niques to implement CELL for use with natural, noisy sensory input for the

task of learning words which refer to colors and shapes.

o Chapter 5: An evaluation of the implementation using infant-directed data.
Natural speech directed towards prelinguistic infants was recorded from six
caregivers as they played with their infants. CELL successfully acquired a

lexicon from this speech and co-occurring visual input.

o Chapter 6: Application of CELL for developing adaptive spoken interfaces for
human-machine interaction. We present prototype interfaces which interac-

tively adapt to individual users.
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o Chapter 7: Contributions of this thesis, future directions and concluding re-

marks.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Background

This chapter presents a review of several topics relevant to this thesis. Due to the
broad range of topics, we highlight only selected works. We begin by reviewing
some aspects of infant development which relate to language. Models and theories of
lexical learning are presented in the following section. The third section discusses sev-
eral computational modeling techniques which form a basis for implementing sensory

grounded models of lexical learning.

2.1 Language Development

2.1.1 Speech Perception

Within the first few days of life, infants are able to differentiate between the sounds of
their native language and other languages, possibly by attending to prosodic proper-
ties of speech [76]. A preference for listening to speech over other auditory input also
arises in the first few months or even days of life [26]. These initial biases for attend-
ing to speech coupled with a presumed bias for mapping sensory forms to possible
meanings paves the way for language acquisition.

Infants seem to be born with auditory processing abilities which enable them to

distinguish all phonemes of all languages. For example, at the age of one month,

29
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infants exhibit categorical perception of speech along phonemic boundaries [36].They
begin to ignore phonetic differences which are not phonemic [64, 123]. It appears
that at least some phonetic structure of the native language is acquired before lexical
acquisition begins. The frequency distribution of various phonemes might drive this
initial acquisition of phonetic structure. As early words are acquired, infants may use

semantic constraints to learn further phonetic distinctions [59].

2.1.2 Visual Perception

Similar to the auditory system, the human visual system is designed to extract prede-
fined salient aspects of the environment. Consider the case of color perception. The
retina consists of rods and cones which operate in dim and bright light, respectively.
Cones come in three kinds, each maximally sensitive to a different part of the color
spectrum. It is likely that these color sensitivity biases lead to patterns in how the
world’s languages categorize color [35]. Although different languages and cultures
vary in number of color terms used, there are strong correspondences between the
foci, or central exemplars of color categories across languages [14].

Biological structures in the visual system also provide analyzers for spatial and
temporal aspects of input. For example, the human visual system is sensitive to
specific spatial orientations of edges [65], providing a basis for shape perception.
Other independent analyzers exist for extracting information along many dimensions
including spatial frequency, spatial position, temporal frequency, temporal phase,
temporal position, and direction of motion [72].

Although an infant’s visual system develops considerably in the first year of life,
basic abilities which may facilitate language learning are present at a prelinguistic
stage [75]. Experimental findings show that infants perceive color in roughly the same
manner as adults [18]. Infants as young as one month exhibit a bias for attending to
the overall shape of an object over other details [77]. Infants also attend to salient

motions in the visual scene [25].
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Object permanence refers to the ability to mentally represent an object which
is not perceptually observable. The capability to form such mental representations
is assumed to be a cognitive prerequisite to naming [16]. Baillargeon has provided
evidence that infants may be able to represent hidden objects as early as 3.5 months
of age [6].

Many of the perceptual abilities required to represent and categorize objects,
people, colors, sizes, and actions are present in the infant at a very young age, before

they produce their first words.

2.1.3 Sensitivity to Correlations

Infants are sensitive to statistical correlations or co-occurrences between multiple per-
ceptually observable attributes. In the visual domain, Younger and Cohen found that
10-month-old infants were able to perceive differences in correlations between features
of two-dimensional animal drawings [126]. Sensitivity to correlations in acoustic input
has been demonstrated by Saffran, Aslin, and Newport [107]. In this study, infants
were able to detect patterns of speech based on only conditional probabilities of sound

sequences.

2.1.4 First Words

Children begin producing their first words sometime after the age of 9 months [10].
The most common type of first words are nominals which refer to objects, followed
by words referring to actions [13, 11, 41]. Huttenlocher and Smiley [57] conducted a
study to determine patterns of object naming in ten infants raised in the Mid-western
region of the United States. They studied language production patterns in the second
year of life. They found that the vast majority of early object names referred to mobile
objects which are easily held by infants. Examples of common words across subjects
included ball, shoe, hat, and apple.

Infants exhibit a lag between comprehension and productive abilities: they rec-
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ognize words before they start using them. Experimental evidence suggests a lag of
at least five months between comprehensive and productive abilities for early vocab-
ularies [9, page 363]. Infants possess some ability to detect words in fluent speech
contexts by the age of 7.5 months [60]. Studies have also shown that infants can
recognize their own names at the age of only 4.5 months [73].

The lag between recognition and production suggests that the earliest stages of lex-
ical learning are accomplished without feedback on the learner’s productions. When
infants eventually attempt to communicate verbally, they will receive feedback which
helps to shape further lexical development. Feedback does not have to be explicit. If
a child asks for an object and receives it, attaining the desired object provides implicit
positive feedback. Failure to achieve their goals serves as negative feedback.

The meanings of words acquired by young children often differ from adult mean-
ings. Children often under-extend the meaning of a word, applying it to a smaller
subset of phenomena than in adult usage. Over time the child learns to extend (or
decontextualize) the meaning so that it better matches adult meaning [63]. In other
cases a word might become over-extended and again this is corrected both by feed-
back from adults, and as other words are learned and “take over” portions of semantic

space.

2.1.5 Infant Directed Speech

Infant directed speech (IDS) differs from normal adult directed speech along several

significant dimensions [117, 118]:

Structurally simplified Sentence structure is simple compared to adult speech,

containing fewer complex phrases with subordinate clauses.
Shortened utterance length On average, utterances contain fewer words.

Redundancy Words and phrases are often repeated in close temporal proximity.
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Reference to immediate context The topic of speech is tightly bound to the in-

fant’s immediate context, i.e., IDS refers to the “here and now”.

Exaggerated prosodic contours Average pitch is raised, and prosodic contrasts

are exaggerated in IDS compared to adult directed speech.

Characteristics of IDS are common across numerous cultures. Understanding
these characteristics may be helpful for building computational models of language

learning.

2.2 Models and Theories of Lexical Acquisition

2.2.1 Principles of Lexical Acquisition

This section summarizes several guiding principles of lexical acquisition. Infants seem
to be innately driven by the principle of reference: words refer to objects, actions,
and attributes of the environment [45]. Observational learning may be used to deduce
word meanings from cross-situational experiences. Joint attention plays an important
role in learning terms of reference. Infants are more likely to connect words with their
referents when engaged in joint attention with their caregivers [7]. Learning from
immediate contexts poses potential problems for verb learning. Verbs are less likely
to co-occur with the associated actions, especially for non-observable verbs such as
think [43].

The philosopher, Quine, posed a well-known problem in observational learning:
an infinite number of possible meanings can be inferred from a finite set of utterance-
context pairs [91]. Imagine a person in a foreign land points to a rabbit running
and exclaims “gavagai!”. How is the observer to infer the referent of “gavagai”?
Possibilities include not only rabbit, but also furry, undetached rabbit parts, and
abstract referents such as rabbithood. A likely answer to this problem is that all

infants have certain biases which constrain the set of possible meanings of words.
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Markman has proposed a set of constraints which children follow to avoid Quine’s
paradox [74]. The whole object assumption proposes that children will assume a novel
label refers to a whole object rather than its parts, substance or other properties. The
taxonomic assumption proposes that children expect labels to refer to basic-level cat-
egories. This assumption lets them rule out thematic relations such as the particular
spatial context in which the object is observed. The mutual exclusion assumption
proposes that children prefer to assign only one label to a concept. Although this
assumption obviously can fail (e.g., dog and poodle), Markman suggests that it is a
good strategy for bootstrapping the inference process. This assumption may force the
learner to consider attributes, substances, and parts of objects as possible referents
which were initially avoided due to the whole object assumption. Problems related
to different levels of taxonomic reference (car vs. toy) are resolved only later in the

learning process.

2.2.2 Speech Segmentation

In this section, we review several models and theories of speech segmentation and
word discovery. Let us begin with the hypothesis that infant directed speech contains
many words spoken in isolation. The child could first memorize these word forms
and then use them to bootstrap the segmentation process. They must locate these
known words in longer utterances and find word boundaries which are defined by
their end points. Studies of infant directed speech do not support such a theory.
Although IDS is syntactically simple [88], caregivers rarely use isolated words [3]. A
more likely strategy for speech segmentation may be to remember sound sequences at
the beginning and end of pause delimited utterances since these will also correspond
to the beginnings and ends of words.

Cutler suggests that segmentation strategies are based on the prosodic rhythm of
spoken language [28]. She proposes that infants use stress units, syllable units, and

mora (subsyllabic) units to locate word segments in English, French and Japanese
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respectively. An unresolved aspect of this theory is how the infant is to decide which
prosodic cue to initially use.

In a related theory, Cutler and Mehler suggest that infants are born with a bias
for periodicity in auditory signals. This would result in vowels, which have relatively
steady state properties in the frequency domain, to be highlighted and contrasted
from consonants. A periodicity bias allows the infant to detect syllable structure of
speech which can act as scaffolding for the word segmentation process.

Another potential cue for segmentation is to use the distributional statistics of
phonemes. The predictability of a phoneme given its prior context is high within
words but low at word boundaries. Infants could learn the distributional character-
istics of the language and then attempt to segment utterances at points of low pre-
dictability. Saffran, Aslin, and Newport provided support for this theory by demon-
strating that 8-month-old infants are able to find word boundaries in an artificial
language based on only distributional cues [107].

Harrington, Watson and Cooper wrote a computer simulation of word boundary
detection based on phoneme triplets found within words and between words [51].
They tabulated all within-word phoneme trigrams which occurred in a database of
the 12,000 most commonly occurring words of English. The simulation detected word
boundaries by looking for instances of trigrams which did not occur in the 12,000
word database. The system was able to detect 37% of word boundaries with a false
alarm rate of 11%. The performance could probably be improved by using trigram
probabilities rather than discrete occurrence tables.

Brent explored the problem of speech segmentation by using a combination of
phonotactic constraints and distributional regularities in a minimum description length
(MDL) framework [23]. Phonotactic constraints dictate the allowable phoneme se-
quences of a language. For example, although /cat/ is an acceptable syllable in
English, /pcat/ is not. Distributional regularities encode the frequency statistics of

phoneme sequences. Brent’s word segmentation algorithm attempts to maximize the
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cumulative probability of postulated words based on distributional statistics while
constraining the search with phonotactics. The MDL constraint was used to insure
a compact lexicon. The model was implemented and tested on a corpus of hand-
transcribed speech and resulted in segmentation into word-like units. Although the
system relies on consistent transcribed input, the underlying model could be applied
to raw audio as well, although performance would drop significantly.

De Marcken proposed a model of speech segmentation which learned a hierar-
chically structured lexicon using MDL constraints in a Bayesian framework [31]. In
contrast to Brent’s model, this model has richer a priori constraints due to the hierar-
chical nature of the model. Brent reports the successful acquisition of word-like units
from unsegmented text. The model was also tested with raw acoustic input but its
performance degraded drastically. When input was switched from transcribed data to
raw speech, de Marcken only provides sample output and remarked that ”Except for
isolated sentences, the segmentation of speech data are not particularly impressive.”
[30].

To summarize, there are several types of cues which infants are able to detect and
use to segment speech. Although studies show that infants can notice each of these
cues, it remains to be established which strategies or combinations of strategies are

actually used by infants for speech segmentation.

2.2.3 Word Learning

Jusczyk has proposed the WRAPSA (Word Recognition and Phonetic Structure Ac-
quisition) model to explain how infants develop perceptual abilities necessary to rec-
ognize words in fluent speech [59]. In the model, phonetic distinctions are initially
language-independent and become tuned to the native language with experience.
Jusczyk proposes that phoneme discrimination shifts are initially driven by frequency
patterns of the language. The infant’s auditory analyzer learns to attend more to

frequently occurring sounds, which logically are the phonemes of the native language.
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As the infant starts to learn first words, the semantics help drive more precise learn-
ing of the sound pattern of the target language. Language independent phoneme
discrimination abilities are gradually pruned in the process. Word segmentation is
aided by prosodic analysis to arrive at syllabic structure which is used to chunk input
speech. Word recognition is achieved by matching stored acoustic templates. Acous-
tic templates are represented in terms of syllabic structure and acoustic features which
become richer as the lexicon size grows.

Sankar and Gorin created a computer simulation of a blocks world in which a
person can interactively type sentences which are associated with objects of various
colors and shapes [108]. Input representations are abstract: segmented text serves
as linguistic input, and discrete valued vectors encode object shape and color. Using
an interactive graphical interface, objects can be brought to the system’s attention
and labeled with text strings. The system learns to identify information-bearing
words and associate them with their color or shape semantics. This model used a
network with internal structure designed to reflect the target semantic domain. In
particular, the model had sub-networks specialized for learning shape and color terms.
By partitioning the semantic space, the system learned faster.

Feldman et al., have initiated a research project to study language acquisition
with computational models [38]. The goal of the project was to build a system
which can learn the appropriate fragments of any natural language from sentence-
picture pairs. Sentences are represented as segmented text, and the pictures are
synthetic blocks-world style images. This work led to interesting results in learning
labels for spatial relations between objects [96], and verb names [5]. In recent efforts,
the group has incorporated structural knowledge about the human body into their
connectionist learning networks. Verbs, spatial relations, and metaphor are grounded
in terms of their model of embodiment. Similar to Sankar and Gorin’s system, this
model incorporates structural constraints of the world to constrain and ground the

semantics of language.
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Gorin developed a language acquisition system which learned from raw acoustic
speech and semantic annotations [46]. In initial experiments the system accepted
interactive feedback which was used to associate isolated spoken words with one of
three semantic classes [47]. A second system learned to answer 20 almanac questions
about the 50 American states [79]. In later versions, input consisted of connected
utterances paired with one of 20 semantic class tags. The system is able to learn which
words were useful for a classification task using a measure of semantic relevance based
on mutual information. In Gorin’s framework, the salience, or semantic importance
of a word is estimated using the weighted mutual information between the occurrence
of the word, and the the occurrence of classification tags. Gorin’s system did not
attempt to learn semantic classes, and also did not address the problem of speech
segmentation.

Siskind has developed a computational model which acquires the semantic and
syntactic roles of words as well as phrase structure. Input consists of segmented text
sentences paired with semantic annotations of the contextual situation [115, 116].
The learning mechanism employed a cross-situational strategy to assign semantic

primitives to words which best account for all data in memory.

2.2.4 Bootstrapping Syntax

Although it is beyond the scope of this thesis to address the acquisition of syntax,
we briefly discuss the question of syntactic category acquisition. Categories, such as
verbs and nouns, form the building blocks for learning the rules of grammar including
grammatical relations, cases, and phrase structure configurations. Without syntactic
categories a learner will be unable to acquire the rules of the language. One-to-
one mappings between syntactic and semantic classes do not seem to exist. For
example, although persons, places, and things count as nouns, so do heat, year, and
flight. Tt is difficult to find semantic groundings shared by all of these terms which

give them the status of nounhood. Bootstrapping theories offer solutions to these
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problems by providing strategies for deriving syntactic categories from perceptual
input. We consider two theories, semantic bootstrapping [89], [48] and prosodic [0,
44] or phonological [81] bootstrapping.

Semantic bootstrapping proposes that the language learner uses semantic cate-
gories to seed syntactic categories. Perceptually accessible categories such as objects
and actions would seed syntactic classes for nouns and verbs. Once these initial cat-
egories have been established, novel input utterances are used in combination with
constraints from Universal Grammar to deduce phrase structure. In turn, the acquired
phrase structure can be applied to input utterances with novel words to expand the
syntactic classes through distributional analysis. This theory assumes that the learner
has already acquired words and their semantics without the use of any syntax.

Prosodic or phonological bootstrapping encompasses a variety of theories which
use information in the phonetic, phonotactic, and prosodic aspects of acoustic input
to guide the process of syntax learning. For example, Gleitman has suggested that the
prosodic structure of English correlates with syntactic structure [80, 44], enabling a
language learner to acquire syntax from prosody. Research indicates that a combina-
tion of phonological cues may lead to the acquisition of some syntactic knowledge (see
the collection in [81] for various approaches to this theory). A potential objection is
that many of the prosody-based inference schemes are language-dependent and would

fail if applied without modification to other languages [89].

2.3 Computational Modeling Techniques

2.3.1 Speech Recognition

This section provides a brief survey of common techniques found in many speech
recognition systems today. These techniques may be employed to implement compu-
tational models which process raw acoustic input.

Spectral representations have become widely accepted as a suitable representation
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of speech. Mel-scaled cepstral representation has proven to be especially useful for
speech recognition applications [93]. The mel scale is a log-linear scale which approx-
imates the frequency tuning curves of the ear. The cepstrum is a Fourier transform
representation of the log magnitude spectrum. To deal with environmental noise, sev-
eral models based more closely on human audition have also been proposed including
RASTA-PLP [53] which was used to implement CELL and is described in Section
4.2.1 (see also [42]).

Automatic speech recognition is based on creating models of reference speech
sounds which serve as templates to match against novel auditory input. Multiple
models compete as likely matches for the input speech. Novel input is recognized by
comparing the input to each template and selecting the best match.

The simplest method of creating a speech model is to use a spectral template
derived from a single exemplar of the word or phrase. To compare input which is
different in duration the template must be stretched to match in length. Dynamic
time warping (DTW) can be used to non-linearly stretch the template in order to
properly align with input sequences. The use of DTW has largely been replaced by
the use of Hidden Markov Models.

Hidden Markov Models (HMMs) are a powerful method for modeling speech as
a sequence of observations generated by a hidden finite-state structure [92]. The
Estimation-Maximization algorithm can be used to train parameters of the HMM
from labeled speech. Viterbi decoding is used to recover the hidden state sequence
from an observed sequence (i.e., novel speech). Multiple HMMs, each representing
a different unit of speech (e.g., a phoneme or a word) can compete to explain an
observation. Recognition is achieved by selecting the HMM which has the highest
likelihood of having produced the observation. The HMM provides the same non-
linear time warping capabilities of DTW, but in addition the HMM is able to encode
information about multiple utterances in a single probabilistic model. It does so by

encoding statistical models of variations in the signal based on a training corpus.
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Although similar capabilities may be achieved by maintaining multiple templates
and using DTW, the HMM framework provides a principled statistical framework for
doing so.

Neural networks (NN) have also proven to be useful in speech recognition tasks
[105], [121], [97]. Neural networks with feedback weights are called recurrent neu-
ral networks and are useful for short time scale recognition tasks such as phoneme
recognition. In practice, neural networks perform at approximately the same level as
HMMs for phoneme level recognition tasks. In higher level tasks, the HMM framework
is better suited since statistical language models and human knowledge of domains
are difficult to incorporate into NN-based systems.

Large vocabulary speech recognition systems require language models or gram-
mars to constrain word hypotheses during lexical search. Two approaches are com-
monly used for specifying language models. The first consists of defining context-free
grammars (CFG) which define legal word transitions based on word class definitions
and possibly recursive rewrite rules. A second approach is to define a statistical n-
gram model which defines probabilities of words conditioned on n previous words.
Context-free grammars are easy to design for small domains but typically lead to
highly constrained systems. To successfully use the systems, the user must be aware
of the allowable sequences of words that may be spoken. For larger domains, hand
written grammars become unwieldy and difficult to design. In comparison, statisti-
cal grammars lead to more robust recognition but they require massive amounts of
training data. Most effort in training statistical grammars goes into finding ingenious
ways to extract reliable probabilities from small amounts of data.

Subword units are often used in large vocabulary systems since sufficient data
to train individual word models is typically impractical. Context dependent units
(e.g., generalized triphones) may be used to account for co-articulation effects of
continuous speech. New words can be modeled by concatenating HMM models of the

appropriate constituent word models [2]. Variance statistics of the subword models
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are automatically incorporated into the resulting model, providing a better model of
possible alternate pronunciations of the word than a single template combined with

DTW would provide.

2.3.2 Visual Object Recognition

Haralick and Shapiro divide two-dimensional object representations into 5 broad
classes [19]. An object can be represented using its segmentation mask, a binary
image where only the pixels corresponding to the object are set to 1. Scale, rotation,
translation and skew invariant measurements of the mask can be used as a compact
representation of an object which can be compared using Euclidean or other dis-
tance metrics. Hu’s moment invariants are a classic example of this method [56]. In
a second representation class, only the boundary of the object rather than the full
mask image is stored. Third, salient local features such as holes, corners and edges
of the object are extracted. The features are stored in a representation which retains
spatial relationships and allows objects to be compared based on alignment of fea-
tures. A fourth class, suitable for stroke based objects (such as written and printed
characters), consists of skeleton representations which attempt to encode the under-
lying “stick man” structure of objects. Finally, a representation-by-parts approach
attempts to decompose complex objects into component parts.

The main trade off between representations lies between detail of representation
versus robustness of matching novel instances of a class of objects. For example, a
global representation based on segmentation masks combined with moment invariants
is a relatively robust method of comparing objects. The largest likely source of error
would be from poor foreground/background segmentation. Many objects, however,
which may be discriminated using some more detailed representations such as bound-
ary cues may fail to be separated using moment invariants alone. On the other hand,
feature based methods also suffer from problems of noise which may cause failure of

higher level matching processes that rely on specific feature correspondences.
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Three dimensional object recognition adds the complexity of dealing with multiple
viewpoints of an object. Two basic strategies exist: explicitly model the object’s 3-D
form, or treat multiple two-dimensional views of an object as its 3-D representation.

The latter is referred to as view-based representations [120, 82, 94, 109]. The CELL

implementation uses a view-based approach based on histograms [109].

2.3.3 Machine Learning

In this section we briefly review three areas of machine learning which are relevant
to the thesis: clustering, Hidden Markov Models, and neural networks.

Clustering techniques are used to group data such that members of each group are
close to one another according to some predefined distance metric [34]. Clustering
is typically thought of as an unsupervised problem. Given a set of samples without
labels, the goal is to divide the samples into useful groups. Most clustering techniques
are iterative and attempt to minimize cost function which penalizes grouping distant
samples together. A commonly used clustering method is the K-means algorithm [71].
Given a set of samples, the algorithm begins by randomly assigning each sample to
one of K sets. It then computes the mean of each set, and re-assigns each sample to
the set with the closest mean. The calculations of means and assignment of samples
is iterated until there is no change in sample groupings. The I[SODATA algorithm
provides a set of heuristics to automatically determine the number of clusters, K, in
a set of data [8].

Hidden Markov Models model dynamic processes using stochastic finite-state ma-
chines [92]. The most difficult aspect of employing HMMs is setting their parameters
to maximize the likelihood of an HMM for a set of training data. The Baum-Welch
algorithm, a special case of the EM algorithm, provides a solution to the training
problem based on an iterative algorithm which converges on a local solution of the
parameter search space. A second problem is to recover the most likely state sequence

given an observation sequence. Conceptually, all paths through the HMM must be
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enumerated and the path with the highest likelihood is chosen. In practice this search,
which is exponential with respect to observation length, can be reduced to a linear
search based on the Viterbi dynamic programming algorithm.

Artificial neural networks, also called connectionist or parallel distributed process-
ing models, are dense interconnection of simple computation units [15]. A subset of
the units are designated for input, and another subset for output. When an acti-
vation pattern is applied to the input units, the pattern is propagated through the
network. Fach unit computes its output activation as some (typically non-linear)
function on the sum of the weighted input activations. Once the propagation is com-
plete, the response of the network to the input can be read off the output units. The
back-propagation algorithm provides an iterative solution to the problem of learning
connection weights for multilayer networks with non-linear units [105]. The algorithm
learns the transition weights of a network for a given set of training data. The train-
ing data consists of pairs of input activation vectors and desired output activation
vectors. An interesting extension for modeling dynamic processes such as speech is
to add time delay units and feedback weights which let activation levels from any

part of the network from a previous time step become input for the current time step

37, 58].

2.4 Discussion

This chapter has highlighted a broad range of topics in infant development, theories
and models of language acquisition, and computational modeling techniques. From
these, we can summarize four key ideas relevant to this thesis.

Experimental evidence suggests that prelinguistic infants are able to perceive and
discriminate visual forms and speech sounds. They are also sensitive to correlations
and probabilistic associations in their environment. The built-in mechanisms avail-

able to CELL prior to learning are modeled on these assumptions. CELL includes
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“innate” knowledge for extracting useful representations from sensory input, and for
performing probabilistic analyses on these representations.

Most previous models of language learning including those reviewed in this chapter
assume that at least some input is represented in a clean symbolic form. In contrast,
CELL is grounded in raw sensory input. None of the models to date ground both
linguistic and semantic input in sensors.

In general, models which explain speech segmentation are based on acoustic anal-
ysis alone. Models of higher level learning assume that linguistic input is already
segmented into words. An underlying assumption of these models is that learning
to segment the speech signal (i.e., word discovery from continuous input) precedes
acquisition of word meaning and syntax. In contrast, CELL proposes that acoustic
and semantic analysis occur together in a combined learning framework.

Computational tools developed in the fields of computer vision, speech process-
ing, and machine learning can be applied to implement models of sensory grounded
language acquisition. Such models may more closely approximate the actual tasks
performed by infants in realistic noisy environments. CELL has been successfully
implemented using these techniques and has been evaluated on raw infant-directed

speech and camera images.
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Chapter 3

Cross-Channel Early Lexical

Learning

The Cross-channel Early Lexical Learning (CELL) model has been developed to un-
derstand how infants acquire early words from multiple streams of sensory input.
Lexical learning is driven by a search for structure across input channels, hence the
term cross-channel. CELL constructs models of this structure by creating lexical
items. A lexical item contains a specification of a linguistic unit (for spoken lan-
guage this would correspond to the acoustic model of a word), and a specification
of a corresponding perceptually grounded semantic category to which the linguistic
unit refers. CELL is a model of early stages of the acquisition process. Later stages
which involve feedback from caregivers as the language learner attempts to produce
words is not modeled. The model is computational which means its processes and
memory structures are specified with sufficient precision to enable implementation on
a computer and evaluation with test data.

This chapter presents an implementation-independent description of the model.
The following three chapters describe the implementation, evaluation, and applica-
tions of the model. The separation of the model from implementation emphasizes

the general nature of CELL, which may be applied to a variety of domains beyond
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those implemented in this thesis. We do believe, however, that implementation and
data-driven evaluation is essential to assess the viability of this and any other model.

This chapter begins by revisiting three problems we wish to address in this thesis.
The bulk of the chapter then presents the core model in terms of processes and
memory structures which acquire lexical items from sensory input. The last part of
the chapter presents several extensions of CELL. These extensions are not central to
the thesis but provide a basis for integrating CELL with other theories of language

learning and cognition.

3.1 Problems Addressed by CELL

Chapter 1 introduced three problems of early lexical learning. We restate these prob-

lems to delimit the scope of issues addressed by CELL.

Problem 1: Linguistic Unit Discovery The first problem is to discover linguistic
units which correspond to words of the target language. This is a challenging
problem since most infant-directed language consists of multiword utterances
[3]. Furthermore, even though we assume that underlying linguistic units are
discrete in nature, these units will be rendered differently each time they are
produced due to variations in the speakers’ identity, age, gender, emotional state
and other factors. To complicate matters, linguistic units are only observable
through noisy sensory signals which are effected by background noise. The
learner must cope with this noisy evidence and infer the underlying linguistic

units.

Problem 2: Semantic Categorization A second problem is to learn semantic cat-
egories which serve as referents of linguistic units. No knowledge about innate
semantic categories is assumed by the model; instead, categories appropriate
for the target language must be learned from positive examples. The learner

must once again confront the problems of variations of natural phenomena and
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noise. For example, two shapes of red rarely look exactly the same. The learner

must form a category for the color red based on a finite number of exemplars.

Problem 3: Linguistic-to-Semantic Mappings The learner must associate lin-
guistic units with appropriate semantic categories. These associations must be
inferred from collections of experiences since single examples will have multiple

interpretations.

These three problems are treated as different facets of one underlying problem: to

discover structure across linguistic and contextual sensory input.

3.2 Lexical Acquisition

This section begins with an overview of the CELL architecture, and then proceeds

with details of the model.

3.2.1 Overview of the Model

An overview of the model is illustrated in Figure 3-1. Sensors provide input for the
model. In an implementation these might include microphones, cameras, touch sen-
sors and other physical sensory devices. Feature analyzers extract multiple channels
of input from the sensors. These analyzers represent innate biases which determine
aspects of sensor signals that will be represented in the model. There is no one-to-
one mapping between channels and sensors. Multiple channels may be derived from
a single sensor. Conversely, a single channel may combine evidence from multiple
sensors. The concept of a channel is illustrated below with several examples, and is
more precisely defined in Section 3.2.4.

A subset of the input channels are designated to carry linguistic information (e.g.,
spoken utterances) and are called the linguistic channels. Section 3.2.2 discusses

how channels might be separated into linguistic and contextual groups. Examples of
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Figure 3-1: Overview of data flow through the CELL model.



3.2. LEXICAL ACQUISITION 51
linguistic channels include representations of:
e Speech sounds in terms of phonemes or other sub-word units

e Pitch contours of speech (i.e., the fundamental frequency, F0)

Visually observed lip movements which aid speech understanding

e Hand gestures which complement spoken language, and form the primary com-

munication channel for learners with hearing impairments

A linguistic unit may be defined in terms of one or more linguistic channels.
Consider an example in terms of the above four channels. In English, red might be
defined in terms of a sequence of speech sounds and a corresponding sequence of
lip motions. Fundamental frequency and hand gestures might not be relevant for
the unit red. In a tonal language such as Thai, however, the fundamental frequency
contour would also need to be specified. In American Sign Language (ASL), the first
two channels would be disregarded, while lip motions and hand gestures would be
critical.

All remaining input channels are referred to as contextual channels. They encode
information about the environment in which the language learner is situated. We
assume that contextual channels carry semantic information about the co-occurring

linguistic stream. FExamples of contextual channels include representations of:

e Shapes of objects

Colors of objects

Size of objects

Spatial relations between objects

Motion of objects
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o Identity of human faces

An infant’s early conception of the semantics of ball might be grounded in visual
stimuli of round objects. A contextual channel which represents the shape of objects
would serve as a basis for learning such visual semantic categories. Similarly, each of
the listed channels would lead to different classes of semantic categories. The seman-
tics of red and big could be grounded in object color and size channels, respectively.
The semantics of the words above and beside could be formed using the spatial re-
lations channel. Verbs such as push and open might at least partly be grounded in
the motion channel. A channel encoding the identity of faces may be used to learn
the early semantics of people’s names. In addition, the meaning of a word may be
defined in terms of combinations of contextual channels.

CELL does not specify the channels of input. The lists above are provided as
examples of the sorts of input that CELL may operate on. Chapter 4 presents a
system which implements three of these channels: phonemic representation of speech,
and object shape and color. It is interesting to note that computer models and
implementations exist for all the representations listed above (for example, for the
linguistic channels see [93, 99, 119, 124, 20] and for the contextual channels [96, 17,
29, 120]). To search for structure across input channels, CELL performs the following

operations:

Hypothesize prototypes of linguistic units which correspond to words

Hypothesize prototypes of semantic categories

e Maximize mutual information between linguistic units and semantic categories

based on hypothesized prototypes

Create lexical items based on prototypes which result in high mutual informa-

tion
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The first and second operations generate large numbers of hypotheses of possible
linguistic units prototypes and their corresponding semantic categories prototypes.
The third step considers each prototype pair as the basis for forming a lexical item.
The fourth step selects the best hypotheses and generates lexical items on their basis.
Using these four operations, CELL simultaneously addresses the three key problems
of lexical learning stated earlier.

The CELL architecture was designed to achieve cognitive plausibility and to fa-
cilitate real-time implementation on standard computer platforms. As Figure 3-1
indicates, CELL has a layered memory structure which serves to funnel data from in-
put to long term memory. This architecture reduces dependency on rote or verbatim

memory while focusing processing on salient parts of the input stream.

3.2.2 Assigning Linguistic vs. Contextual Channels

CELL assumes that input features are grouped into channels innately. For exam-
ple, all features which collectively specify the shape of an object should be grouped
separately from all features which specity the color of an object. Knowledge of the
grouping of features into channels is innate and is inherently encoded in the design
of the feature analyzers.

A difficult question is: How does the learner decide which channels are linguistic,
and which are contextual? We do not try to answer this question in CELL; instead,
CELL assumes the separation of channels is known. In this section, however, we
discuss two possibilities for how a learner could come to know this decision.

One possibility is that the learner begins by treating all channels as equal and is
willing to form lexical items (or, perhaps, some precursor to lexical items) which model
structure across any set of channels. Over time, the learner notices which channels
are common across most lexical items, and assign these common denominators to
be the linguistic channels. From this point on, the learner would focus attention on

finding lexical items which involve these channels.
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Another possibility which may work in cooperation with the above hypothesis
is that infants have innate biases which lead them to focus on intentional behaviors
generated by their caregivers [90]. Innate biases to attend to cues such as exaggerated
prosody and eye contact may help the infant focus on speech and gesture which carry
linguistic information in all natural human languages. All other channels would be
assumed to carry context. These hyptotheses are speculative and require further

study.

3.2.3 Innate Learning Biases

A critical innate learning bias is the sensory apparatus available to a learner. The
sensors impose strong limits on what is learnable. In addition, a critical element
of any learning system is the choice of representation extracted from the sensors.
For example, the human visual system has innate mechanisms for detecting edges
at specific angles of orientation [65]. These biases facilitate learning categories of
shapes which are invariant to other aspects of the stimulus such as color and size.
Frogs, which do not have similar spatial edge receptors, are unlikely to represent and
recognize shapes in any manner similar to humans [69].

In general, if we can anticipate aspects of the raw input signal which will likely
be useful for the learning task at hand, we can accelerate learning by making these
representations innate. Infants are all born with similar sensory and motor systems.
The structure and known functions of these biological mechanisms provide insights for
representations which might be built into CELL. Representations are not discussed
further in this chapter since their choice depends on the learning task in question.
Chapter 4 returns to the issue and describes the choice of representations for a specific
implementation.

Similarity measures which compare representations are another important learning
bias. To form categories, a measure of similarity between samples must be available.

The nature of the measure critically affects how past experiences are categorized, and



3.2. LEXICAL ACQUISITION )

feature
analyzers

.5 E
’ \',\‘«\:.wgw;grl‘i‘b;wwuws»v‘\,'ap‘d:\vaw.m,wsw;,“qﬁwww.}‘;,~'>w’;\n%'~r‘wwm” g 2
56

g

1 ! i
‘vﬂ-,)\;\r“'\""‘w,"‘u‘uyw\ﬁ}‘.f)\ /\"\f‘;\l,“‘g\\ |
—_—>

' \',\‘«\gs»gw;;rl‘i‘!xwwa»JJap‘d:\%‘aw.»w&\?;pa‘;,“qﬁw‘ﬁ;miw.}‘;,»'wn’;\pfw‘a«w:fwn”

Contextual
channels

I

time

Y

time

Figure 3-2: Channels of features are extracted from sensory input signals.

how new input is related to existing representations.

3.2.4 From Sensors to Channels

We now present details of each aspect of CELL. Sensors generate input signals which
encode information about the learner’s environment. Figure 3-2 shows a set of sensors
(left) that generate time-varying signals conveying real-time information about the
world.

A set of feature analyzers extract salient information from the sensory signals.
As Figure 3-2 indicates, the number of feature analyzers does not have to equal
the number of sensors. Furthermore, feature analyzers may receive input from one or
more input signals, and the same input signal may feed into multiple feature analyzers.
The output of each analyzer is a set of time-varying features which are grouped into
channels. Channels represent different aspects of the environment.

A subset of input channels convey linguistic information to the learner and are
referred to as linguistic channels. The remaining input channels are referred to as

contextual channels. They carry information about the environment which encodes
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the underlying semantics of linguistic input.

Definition 1 Linguistic features are time-varying values extracted from sensory in-

put which encode linguistic input. The surface form of words are represented by these
features.

Contextual features are time-varying values extracted from sensory input which

encode non-linguistic input. The semantics of words are derived from contextual fea-
tures.

Linguistic channels are groups of linguistic features.

Contextual channels are groups of contextual features.

Examples of linguistic and contextual channels were provided in Section 3.2.1, and
possible methods for distinguishing linguistic from contextual channels was discussed

in Section 3.2.2.

3.2.5 From Channels to Discrete Events

Continuous streams of features from input channels are segmented into discrete
chunks called events (Figure 3-3). These events are referred to as L-events when

generated from the linguistic channels:

Definition 2 An L-event is a sequence of linguistic features delimited by pauses which

correspond to an utterance.

L-events capture activity in all linguistic channels for the period of time corre-
sponding to an utterance. For spoken input, an L-event corresponds to a spoken
utterance delimited by silence. A speech/silence detector may be used to implement
this event detector. In natural situations, L-events will usually contain multiple con-
catenated words (See section [3]).

Another set of segmentation processes operate on the contextual channels to gen-

erate S-events which record non-linguistic information:
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Figure 3-3: Event detectors chunk continuous data from input channels into L-events
and S-events.

Definition 3 An S-event is a sequence of contextual features.

An S-event captures activity in all contextual channels corresponding to a discrete
period of time. S-events are generated in response to salient events in the environment.
The definition of a salient event depends on the nature of representations in the
contextual channels. For example, if one of the contextual channels encodes color,
an S-event might be generated whenever a highly color-contrasted scene or object is
encountered by the learner. As a second example, a channel carrying motion might
be used to generate events whenever a significant visual action is witnessed. S-events

record all contextual channels regardless of which channel actually triggers the event.

3.2.6 Unpacking Events

Events can be divided into discrete time segments, and along channels. Figure 3-4
illustrates the process of event segmentation along the time axis. The event segmenter

identifies natural segment boundaries in an L-event or S-event. CELL must discover
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Figure 3-4: An event segmenter locates potential segmentation boundaries along the
time dimension. The combination of channel groupings and segment boundaries leads
to a grid decomposition of an event.

units from these unanalyzed blocks of data. Event segmentation identifies all possible
linguistic unit boundaries. As an example, consider an L-event derived from three
linguistic channels: phonemes, F0, and visual lip movements. Each channel may be
segmented in time based on the contents of any of the linguistic channels. Each major
transition in FO contour, phoneme transition, or salient lip movement could result in
a segment boundary. Each of these boundaries forms a hypothesis of the location of
a linguistic unit boundary.

An S-event may similarly be divided into time segments. Consider a channel
which represents motion. Each significant change in velocity, or each point of contact
between objects, could lead to a segmentation boundary. These boundaries would
form potential boundaries of a complete visible action.

Channel and time segment boundaries define the finest granularity at which an
event can be analyzed. Segments are non-overlapping; the complete set of segments
generated from an event can be concatenated to create the original event. Based on

this channel-segment array, we can define the concept of a subevent.

Definition 4 An L-subevent is a subsequence of an L-event composed of one or more
linguistic channels.
An S-subevent is a subsequence of an S-event composed of one or more contextual

channels.
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An event divided along time
segments and channels

Some potential subevents

L

Figure 3-5: Subevents may be extracted from an event using the time-channel decom-
position generated by the event segmenter. Fach of the darkened regions represents
examples of possible subevents extracted from the event at the top.

Subevent end-points coincide with event segmentation boundaries.

Subevents consist of any possible contiguous combination of segments, composed
of any possible combination of channels.

Any L-subevent is potentially an instance of a linguistic unit of the target lan-
guage. The set of all possible L-subevents derived from an L-event represents the
complete set of hypotheses of linguistic units embedded within that L-event. Simi-
larly, an S-event can be partitioned into a set of all possible S-subevents which may
correspond to the semantics of words in the target language. Figure 3-5 illustrates
this concept. At the top of the figure, an event is shown with three channels and
eight time segments. Below, are four of many possible subevents derived from this

event.
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Figure 3-6: A co-occurrence filter is used to select linguistic events (L-events) and
contextual events (S-events) which occur together. Co-occurring events are paired
into LS-events and placed in short term memory (STM).

3.2.7 Co-occurrence Filtering

Infant directed speech usually refers to the immediate context [88]. Words and their
meanings are often perceived together. In terms of CELL, we assume that L-events
contain linguistic units whose reference may be found in co-occurring S-events. A
natural bias to facilitate early lexical learning is to only attend to L-events and S-
events which occur together. To facilitate this bias, S-events and L-events feed into
a co-occurrence filter which detects events that overlap in time (Figure 3-6). When

co-occurring events are detected, the filter generates an LS-event:

Definition 5 An LS-event consists of an L-event paired with an S-event which over-

lap in time.

The LS-event is the first structure in the model in which representations derived

from linguistic and contextual signals are coupled.
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LS-events are placed in a short term memory (STM) which maintains a complete
record of recent LS-events. The STM is a first-in-first-out (FIFO) buffer. When a
new LS-event is added, the oldest element of the STM is discarded. The size of the
buffer depends on the implementation, but in general it is expected to be relatively
small.

There are two related motivations for buffering incoming data through the STM.
The first consideration comes from a cognitive modeling constraint. Humans have
limited verbatim memory of sensory events, typically in the range of 742 events [78].
The STM in CELL models this memory capacity. A second motivation for the STM
is to conserve computational resources. CELL processes contents of the STM using
an exhaustive search for recurring subevents. The search space grows factorially with

the size of the STM, motivating a low upper bound on buffer size.

3.2.8 Recurrence Filtering

Infant directed speech is highly redundant [117]. A typical sequence might be, “Oh,
look at the balll The red ball! Does it go fast? Big ball!”. Whole or partial phrase
repetitions are common. Thus, we can expect that salient words will often recur in
close temporal proximity. This observation motivates the next stage of processing.
The recurrence filter searches for matching L-subevents and S-subevents across mul-
tiple LS-events in STM. The search is invoked each time a new LS-event arrives in
STM.

To match subevents, a method of comparison must be established. For this pur-
pose, a pair of distance measures, d() and dg() are assumed to be known. To compare
L-subevents, we use dz(). Similarly ds() is used to compare S-subevents. These mea-
sures return a scalar value of dissimilarity which approximate perceptual distances
that are computed by humans. The distance metrics operate on representations gen-
erated by the feature analyzers and are thus implementation dependent.

Both L-subevents and S-subevents may be grounded in any subset of linguistic
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and contextual channels, respectively. The distance metrics only compare subevents
which are grounded in the same set of channels. Subevents grounded in different chan-
nels cannot be matched, by definition. In the remainder of this chapter, however, we
assume that all subevents are grounded in the same set of channels. This reduces
cumbersome notation which would otherwise need to be carried at each step to in-
dicate that distance metrics are only applied to subevents with matching channels.
All processes which are presented in the remainder of this chapter may be applied to
each group of subevents with matched channels without loss of generality.

The search for recurrence is exhaustive within the STM. Figure 3-7 provides pseu-
docode of the search procedure. The distance between each pair of L-subevents and
S-subevents is compared to their respective thresholds ¢; and ts which determine
when a pair of subevents match. These thresholds are set liberally so that many
recurrency matches are produced at the expense of many false alarms. The next level
of CELL is designed to filter out unwanted data.

When a match is found between two or more L-subevents and corresponding S-
subevents, a representative L-subevent and S-subevent are extracted and placed in
the next level of memory. The L-subevent and S-subevent pair forms a hypothesis of
a possible linguistic unit and its corresponding meaning in the target language.

Figure 3-8 summarizes the process of recurrence filtering. Lexical candidates gen-
erated by the recurrence filter are stored in the mid-term memory (MTM). The MTM
is a buffer of lexical candidates being considered by the learner. Similar to the STM,
the MTM is also a FIFO buffer of limited but significantly larger size.

3.2.9 Linguistic Units and Semantic Categories

CELL uses a model of linguistic units and semantic categories based on prototypes.
Consider a linguistic unit in the target language. Each time an instance of this unit
is produced it will be realized with natural variations, presumably centered around

some idealized form. A simple model of the unit is to posit a central exemplar, or
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/* Consider all pairs of LS-events in short term memory */
for each pair of LS-events in STM, LS; and LSj {

/* Compare each pair of L-subevents in LS; and LS, */
for each L-subevent in LS;, L; {
for each L-subevent in LSy, Lj{
if d;(L;, L < t; then set Lygtch = TRUE

}

5)
}

/* Compare each pair of S-subevents in LS; and LS, */
for each S-subevent in LS;, S; ({
for each S-subevent in LSy, S4{
if dg(S;, Sy) < tg then set Spysren = TRUE

}
}

/* check for matches of L-subevents and co-occuring S-subevents */
if Lypaten = TRUE and Spatcn = TRUE
then recurrent match found

}

Figure 3-7: Pseudocode listing of the recurrence filter. An exhaustive search for
recurrent L-subevents and co-occurring S-subevents is performed over the short term

memory.
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Figure 3-8: Lexical candidates are generated when recurring L-subevents and S-
subevents are found in the STM.

prototype, and a error tolerance to allow for variation. Similarly, a semantic category
may be modeled by a prototype and allowable error tolerance where the prototype
specifies an ideal realization of the semantic category.

The connection between subevents, linguistic units, and semantic categories can
now be made: L-subevents and S-subevents serve as prototypes of linguistic units
and semantic categories, respectively. These notions are formalized by the following

definitions:

Definition 6 An L-unit, «, is a model of a linguistic unit in the target language.
An L-prototype, o, is the prototype of the L-unit, a. An L-subevent may serve
as an L-prototype.
An L-radius, 6%, specifies the allowable deviation from an L-prototype.
An S-category, 3, is a model of a semantic category.
An S-prototype, 3%, is the prototype of an S-category, . An S-subevent may serve

as an S-prototype.
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Figure 3-9: A lexical item consists of a linguistic unit (L-unit) and an associated
semantic category (S-category).

An S-radius, 6P, specifies the allowable deviation from an S-prototype.

A lexical item is the union of an L-unit and an S-category.

A prototype and radius define a range of inputs which may be grouped together
for the goal of forming lexical items. A novel subevent is said to match an L-unit or

S-category if it is within the radius of the prototype:

Definition 7 An L-subevent, [, matches an L-unit, o, if dp(a*, 1) < 6°.

An S-subevent, s, matches an S-category 3 if ds(B*,s) < 7.

These definitions are illustrated in Figure 3-9. Each plot represents an abstract
space in which linguistic units and semantic categories may be defined. Any point in
the two-dimensional space corresponds to an instance of a linguistic unit or semantic
category. The distance between two points in each space is determined by the distance
metrics dr,() and dg(). The prototypes define the center of each model, and the radius
determines the scope of the model. A subevent matches an S-category or L-unit if it
falls within the model’s radius.

The stages of CELL presented thus far can be viewed as a series of attentional
filters. A continuous stream of sensory input is processed by feature analyzers, event
detectors, a co-occurrence filter and a recurrence filter to produce L-prototypes and

corresponding S-prototypes which may lead to the formation of a lexical item.
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Definition 8 A [lexvical candidatle is a hypothesized exemplar of a levical item. It is

composed of an L-prototype and a corresponding S-prototype.

3.2.10 Creating Lexical Items

The recurrence filter identifies lexical candidates based on repeated observations of
similar subevents in close temporal proximity. Resulting lexical candidates are placed
in the MTM. The next stage of processing combines evidence from multiple lexical
candidates to create hypotheses of lexical items. To create lexical items, CELL first
calculates an optimal L-radius and S-radius for each {L-prototype, S-prototype} can-
didate in MTM. A measure of goodness based on mutual information is generated
for each hypothesized lexical item in the process of radii optimization. The process
described in this section is invoked each time a new lexical candidate is added to
MTM!.

Let us assume that the MTM contains N lexical candidates mq,ms, ..., my. For
each candidate m; we can denote a set of associated terms by adding an index 2 to

the notation introduced earlier:

o L-prototype in m;
o L-radius associated with o
B S-prototype in m;
(52»5 S-radius associated with g7

a; = {af, 68} L-unit derived from m;
B = {5, 525} S-category derived from m;
{as, Bi} Lexical item derived from m;
Let us choose a candidate from MTM at random and designate it as a reference

point called m,.s. This reference candidate can be evaluated as the basis for forming

a lexical candidate. In the model, each lexical candidate in MTM is treated as the

!Processing begins once the MTM is filled.
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reference and evaluated in turn. Based on this reference candidate, we wish to derive
an L-unit o, and a S-category 3,.;. The method of calculation of the radii 5?ef and
5fef are described later in this section.

Each lexical candidate m; may be thought of as an experiment which determines

the outcome of two random variables when compared to m,..:

I {0 dulGe0l) > b (3.1)
1 Zf dL(O‘:efvoé?) S 5?6f

. {0 if ds(Br.p. 87) > 6.y (3.2)
L if ds(Brp, 57) < 8

These binary variables I and S indicate whether a lexical candidate m; matches
the L-unit a,.s and the S-category f3,.s, respectively. The distance metrics d() and
ds() depend on the implementation of the model and are assumed to be innate (in
Chapter 4 we provide examples of these metrics for audio and visual input).

Mutual information is used to evaluate the degree of cross-channel structure cap-
tured by pairing an L-unit and S-category. Mutual information is a measure of the
reduction in uncertainty of one variable due to knowledge about a second variable [27].
We assume that the mutual information between L and S will be high if {aycs,0c5}
corresponds to an actual lexical item of the target language. This assumption is based
on the fact that infant-directed speech often refers to the immediate context [117];
knowledge about the existence of a word will greatly reduce uncertainty about the
presence of the word’s referent, and vice versa.

To simplify notation, we denote the event L = ¢ with [; and S = j with s;. The
mutual information between I and S is defined as:

I(L;8) = 323" P(li,s) log [%] (3.3)

The summations are over 0 and 1 for both ¢z and j. Mutual information is a



63 CHAPTER 3. THE CELL MODEL

symmetric measure since [(L;S) = I(S; L).

The probabilities in Equation 3.3 are estimated using relative frequencies:

—
.

PiL=i) = (3.4)
ps=j) = 2 (3.5)
P(ZZ',S]‘) == % (36)

N is the number of lexical candidates in MTM. The vertical bars denote the count
operator. For example |/;| is the number of MTM items for which L = ¢, and |, s;| is
the number of candidates for which L = ¢ and S = j. Probability estimates derived
from relative frequencies will be noisy when counts are small, requiring some form of

smoothing.

3.2.11 Maximizing Cross-Channel Mutual Information

We now turn to the question of how to calculate the values of the radii ¢, ; and
5fef. The definition of L and S in Equation 3.1 and 3.2 depend on the radii 67,
and 57°ﬁef‘ In turn, I(L;S) depends on L and S and thus is a function of the radii as
well. We can write that I(L;S) = f(5fef,5fef) for some function f(). To determine
the values of the radii, CELL performs a search over all values of ¢, ,, 5fef to find a

combination of radii which maximizes the mutual information between the linguistic

unit and semantic category:

Imax(L;S) = max  I(L;S) (3.7)

8
6?&]"67"6]‘

This maximization in Equation 3.7 is illustrated by a simple example in Figure
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3-10. Let’s assume that the MTM contains 27 lexical candidates. One of them is
used to define an L-prototype and S-prototype (labeled a*and * in the figure) and
the remaining candidates are labeled a-z. Each graph in the left column plots the
L-prototypes in MTM. The S-prototypes are plotted on the right. The top left graph
shows a circle centered on o* to indicate a L-unit defined by a* and a small L-radius,
6%. The subset {a,i,f,g,q} match this L-unit. Similarly, the circle in the top right plot
indicates a S-category defined by 3* and its ¢°. The subset {f,i,j,h,l,m,q,rs,t,x,2}
match this S-category. To aid the reader, the elements common to the L-unit and
S-category, ({f,q,i}, are shown in bold italics. In the next two rows, the L-radius is
expanded to show its effect on mutual information (the S-radius is held constant). In
this example, mutual information is highest for the mid-sized L-radius.

The search must compute [(L;S) for each combination of L-radius and S-radius
and choose the combination which maximizes the mutual information. In the example
in Figure 3-10, only the L-radius was varied (with large steps). A complete search
would also co-vary the S-radius to find a global maximum. If the MTM has N
candidates, the search must compute the mutual information of O(N?) configurations
(for each of N candidates, starting from a size of zero, each radii may be stepped
through N — 1 values to include an additional candidate in each step).

The search process is used to determine optimal radii for each lexical candi-
date in MTM. For each hypothesized lexical item which results, [,4.(L; 5) is found.
Imax(L; ) will be high for lexical candidates which successfully capture structure
across linguistic and contextual channels. [,q.(L; S) will be low for candidates which

don’t generalize well to the contents of the MTM.

Mutual Information Filter

The next stage of CELL is referred to as the mutual information filter (Figure 3-11).
This filter selects lexical candidates for which [,,,,,(L;S) > Tarr where Tyyg is referred

to as the mutual information threshold. The selected lexical candidates are coupled



70 CHAPTER 3. THE CELL MODEL

small &%
a P e
n
g y ob
d c
u
v w
k
I(S;L) = 0.013 bits
medium &* .
a . P e
y
b u 9 v R °
m
d ., d .
c s u ) =
k

I(S;L) = 0.29 bits

large &“

I(S;L) = 0.0 bits

Figure 3-10: Illustration of the search for the optimal radii 6% and é° to maximize
mutual information, /(L;5). For a mid-sized L-radius, I(L;5) is greatest.
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Figure 3-11: Lexical items are selected using a mutual information filter. For an item
to be selected, the mutual information between the associated L-unit and S-category
must exceed a selection criterion.

with their optimal radii to form lexical items. Lexical items are stored in long term
memory (LTM). In contrast to STM and MTM which are FIFO buffers, LTM is a
long term repository of information.

Once a lexical item has been created, the candidates which contributed to its
formation are removed from MTM by a garbage collection process. This includes the
MTM item which serves as the prototype of the lexical item (m,.s), and all lexical
candidates which match both the L-unit and S-category defined by m,.;.

An important property of the lexical acquisition process in CELL is the ability to
combine cross-channel evidence. The process we have described effectively combines
different similarity metrics via the mutual information search procedure. By using
mutual information to look for structure across channels, the model avoids the difficult
problem of directly combining different similarity metrics [104].

Extensions of CELL for learning the value of Ths; and for removing poor LTM

items based on environmental feedback are discussed in Section 3.3.
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3.2.12 Summary

CELL is driven by a continuous flow of sensory input. Sensory signals are processed by
feature analysers to extract salient aspects of the input. Short and mid term memory
serve to buffer partially analysed data which are likely to lead to the formation of
lexical items. The flow of data through CELL is summarized below as a review of

the acquisition process.

e Input originates from a set of sensors.

o Feature analysis extracts representations of salient aspects of the environment

which are grouped into linguistic and contextual channels.

o Event detection packages continuous feature streams into natural chunks of

data.

o Event segmenters unpack events, identifying the finest granularity boundaries

of analysis within events.

o The co-occurrence filter detects L-events and S-events which occur together
in time. Resulting LS-events are placed in STM, a short term FIFO memory
buffer. The STM provides limited rote sensory memory of recent salient sensory

events.

e The recurrence filter finds {L-subevent, S-subevent} pairs which occur multiple
times within the STM. Representations of recurrent subevent pairs are placed in
MTM, a larger FIFO buffer. These subevent pairs are hypotheses of prototypes
of potential lexical items. The recurrence filter searches the contents of STM

each time a new LS-event is generated by the co-occurrence filter.

e Optimal L-radius and S-radius values are calculated for each lexical candidate
in MTM. The maximized mutual information is recorded for each candidate.

The MTM is re-analyzed each time the recurrence filter adds a new candidate.
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e Hypothesized lexical items with high mutual information are stored in LTM.

3.3 Extensions

This section presents several extensions of CELL. These extensions are not central to
the thesis but provide a basis for integrating CELL with other theories of language

learning and cognition.

3.3.1 Recognizing Novel Input

[tems in LTM may be used to recognize novel input to make cross-channel associa-
tions. When a novel input utterance contains a linguistic unit which is stored in the
acquired lexicon, the associated semantic category may be retrieved. In figure 3-12,
a novel L-event is detected using the feature analysis, event detection, and event seg-
mentation components described earlier. A search procedure then looks for matches
between L-subevents in the incoming [-event and previous L-units stored in LTM.
This procedure is similar to the search used in the recurrence filter in that it considers
all possible subevents in the L-event. Unlike the recurrence filter, each L-prototype
in the LTM is compared to L-subevents without attempts to unpack L-prototypes. In
situations where more than one lexical item matches the same subevent, the match
with the smallest distance is selected. A similar approach is used to index into lexical
items in LTM based on an incoming S-event (Figure 3-13). When an instance of a
semantic category is observed in the environment, the associated linguistic unit is

retrieved.

3.3.2 Top-Down Feedback

The core CELL model processes data in a bottom-up fashion. Top-down feedback may
be added to accelerate learning. One type of feedback is illustrated in Figure 3-14.
An additional stage has been added to CELL prior to recurrence filtering. Recall that
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Figure 3-12: Finding a linguistic unit which corresponds to a novel S-event.
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Figure 3-13: Finding a semantic category which corresponds to a novel L-event.
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Figure 3-14: The lexical search component looks for matches between LS-hypotheses
and existing lexical items in LTM. Matched items are not processed further.

the recurrence filter performs a search for matching {L-subevent, S-subevent} pairs
in STM. The new stage first checks if each {L-subevent, S-subevent} pair matches
an existing lexical item. To match, both the L-subevent and S-subevent must match
the same lexical item’s L-unit and S-category. Matches are “explained away” by the
contents of the LTM and are not processed further. As the learner’s lexicon grows,
this stage will increasingly filter input which is consistent with prior knowledge of the

language.

3.3.3 Clustering Lexical Items

In Section 3.2.8 we presented a model of a lexical item as a single prototype and
constant radius of variation. This model assumes a rather homogeneous distribution
of samples around a single prototype. For the current discussion, we may refer to these
as elementary lexical items. In general, we might expect more complex distributions
which are not well modeled by a single elementary lexical item. Elementary lexical
items may be combined to form conglomerate lexical items which model complex
distributions.

Consider the following clustering algorithm:
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for each pair of lexical items in LTM, ¢ and j {
if dL(ozf,oz;) < 6 or dL(ozf,oz;) < 8% {
it ds(f7,87) < 67 or ds(B7,57) < 6] {

Cluster items ¢ and j

In this algorithm, items are clustered to form conglomerate lexical items. The dis-
tance between a subevent and a conglomerate item is defined as the average distance
between the subevent and each prototype in the conglomerate item.

For two items to be clustered, the L-prototype of one item must match the other’s
L-unit, and the S-prototype of one item must match the other’s S-category. An
example of this clustering process is illustrated by Figure 3-15. We start with two
elementary items of the sort generated by CELL. The middle box superimposes the
two items and we see that both L-units and S-categories overlap. The bottom frame
shows the contour formed by the merger of models.

An interesting situation arises when only the linguistic or semantic model of two
lexical items match (Figures 3-16 and 3-17). These branching structures represent
primitive forms of synonyms and homonyms. Additional learning mechanisms could
detect such structures and build higher level representations of relations between
lexical items.

As relationships between items are established, structured networks of lexical
items may emerge. In Figure 3-18, several clusters of items have been formed. This
network helps visualize an advantage of cross-modal structure. Consider the large
cluster of S-categories in the upper right corner of the figure. Using the semantic
distance metric dg() these categories are close together and thus confusable. Their
associations to easily separable linguistic units lets the learner keep the models sepa-

rate. Similarly, linguistic units which are confusable are pulled apart by their semantic
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Figure 3-15: Lexical items with matching L-units and S-categories are merged to form
a conglomerate lexical item.
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Figure 3-16: Two lexical items have overlapping S-categories but distinct L-units,
suggesting the existence of a synonym.
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Figure 3-17: Two lexical items have overlapping L-units but distinct S-categories,
suggesting the existence of a homonym.
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Figure 3-18: A network of associations between linguistic and semantic components
of lexical items.

associations. The merging algorithm presented earlier is based on the premise that if
there is significant overlap in both linguistic and semantic space, then the two items

must be variations of one underlying lexical item of the target language.

3.3.4 Word Classes and Syntax Acquisition

Problems of syntax learning are beyond the scope of this thesis. However, syntax
is clearly an important aspect of later stages of language development. We believe
that any model of lexical acquisition must provide a basis for the learner to begin
acquiring syntax. In this section we sketch the relation between CELL and one theory
of syntactic development, semantic bootstrapping.

The semantic bootstrapping hypothesis posits that the language learner uses se-
mantic categories to seed syntactic categories [89, 48]. For example, perceptually
accessible categories such as objects and actions would seed the syntactic classes of
nouns and verbs. Once these seed categories have been established, input utter-

ances are used to deduce phrase structure (in combination with constraints from a
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Universal Grammar). In turn, the phrase structure can be used to interpret input
utterances with novel words. Distributional analysis can then be used to expand
syntactic classes.

The contextual channels in CELL provide a basis for establishing word classes
which seed syntactic categories. For example, consider a configuration of CELL with
two visually-grounded context channels: shapes of objects, and the motion of objects.
Any word which is grounded in the shape channel would belong to Class A, and any
word grounded in the motion channel would belong to Class B. These classes of words

could seed syntactic classes corresponding to nouns and verbs in the target language.

3.3.5 Environmental Feedback

In this section we discuss a framework for assigning confidence values to lexical items,
and for setting the mutual information filter threshold, T (Ta; was introduced in
Section 3.2.11).

The learner begins with some initial Th;;. If the threshold is too low, unreliable
lexical items will be added to LTM. If the threshold is too high, valid lexical items
will not be extracted from the MTM. Figure 3-19 proposes a framework for adjusting
T and lexical item confidence levels based on environmental feedback.

A set of goals motivate the learner to take actions in the world. The action
selection component chooses actions which optimize goal satisfaction. As shown in
the figure, action selection may be influenced by lexical items in LTM. For example,
the learner might produce the name of a desired object to enlist the help of a caregiver
for obtaining that object.

As an action is executed, the learner monitors feedback from the environment.
Feedback is used to adjust confidence levels of individual lexical items and the global
parameter Ths;. The confidence level of an item increases if using it results in positive
feedback (i.e., the learner’s goal is achieved). Negative feedback (i.e., goal is not

obtained) causes the confidence level to decrease. Continued negative feedback results
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Figure 3-19: Feedback from the environment due to success or failure to obtain a
goal is used to adjust confidence levels of lexical items, and to adjust the mutual

information threshold.

in the removal of an item from LTM.

On a slower time scale, the learner monitors overall levels of confidence in the
LTM. If confidence in most current lexical items grows with feedback, T is reduced
to let in more items from MTM. If actions based on the LTM lead to significant
negative feedback, Thss is increased to insure that future items encode greater cross-

modal mutual information.
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Chapter 4

An Implementation of CELL with

Audio-Visual Input

CELL has been implemented for the domain of shape and color name learning in
a spoken English environment. The system implements all components of the core
model, and some extensions. It is grounded in microphone and camera input and uses
speech recognition and computer vision techniques to process sensory input. This
chapter provides implementation details of the system. Chapters 5 and 6 discuss
evaluations and applications of the implementation.

We restate the three problems of early lexical acquisition in the context of the

current implementation:

Acoustic Unit Discovery The linguistic channel is derived from microphone input.
A person (the teacher or caregiver) is expected to speak natural and fluent En-
glish. From this continuous multiword input, the system must segment speech

and discover acoustic units which correspond to FEnglish words.

Color and Shape Categorization The contextual channels carry representations
of object shapes and colors derived from camera input. The second problem

is to discover color and shape categories which correspond to the semantics of

83
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English shape and color terms.

Speech-to-Visual Association Inference The third problem is to establish asso-

ciations between acoustic units and corresponding shape and color categories.

Figure 4-1 summarizes the components of the implementation in terms of the
CELL architecture. Input is provided by two sensors. A color CCD video camera
provides images of objects presented to the system, and a microphone senses acous-
tic speech signals. Three channels of features are extracted from these sensors. A
phoneme analyzer produces time-varying estimates of 39 English phoneme probabili-
ties. These 39 features are grouped to form the linguistic channel!. A visual analyzer
detects objects in the scene. When an object is present, two contextual channels of
features which represent the object’s shape and color are extracted. Several innate
mechanisms are available to the system prior to learning. These mechanisms are
described as we proceed through the chapter, and are summarized in Section 4.9.

Table 4.1 provides a summary of the implementation of each component of CELL.

4.1 Contextual Channels

The system was developed to learn spoken names of shape and color categories. With

this goal in mind, a visual processing system has been implemented to:

o Acquire images of a stationary object from multiple perspectives.

o Extract a representation of object color which is invariant to changes in illumi-

nation.

o Extract a representation of object shape which is invariant to changes in scale

and in-plane rotation.

! Although CELL is capable of analyzing multiple linguistic channels, this implementation includes
the phonetic channel alone.
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Figure 4-1: Overview of an implementation of CELL for color and shape name learn-
ing based on acoustic and visual sensory input.
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Table 4.1: Summary of CELL implementation.

Structure

Implementation

Linguistic Channel

Phoneme probabilities extracted from mi-
crophone input

Contextual Channels

Channel 1: color of any object in view of
the camera; Channel 2: rotation and size
invariant representation of object shape

L-event A pause delimited spoken utterance
S-event Representations of an object’s shape and

color viewed from multiple perspectives
LS-event {L-event, S-event }

L-prototype

A speech segment extracted from an L-
event

S-prototype

Representations of either an object’s shape
or color viewed from multiple perspectives

Lexical Candidate

{L-prototype, S-prototype}

L-Radius Allowable acoustic distance from L-
prototype

S-Radius Allowable distance from an S-prototype us-
ing a visual distance metric

L-Unit {L-prototype, L-radius}

S-Category {S-prototype, S-radius}

Lexical item

{L-unit, S-category}
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To acquire images of an object from multiple perspectives, visual input to the
system is provided by a camera mounted on a four degree-of-freedom (DOF) robotic
platform as shown in Figure 4-5. The robot is essentially an armature with servo-
driven joints which enable it to actively direct the position of the camera. This robot
has been used both as an active image capture device (Chapter 5) and, after adding

several animation features, as the embodiment of a life-like human-computer interface

(Chapter 6).

4.1.1 Image Processing

Three-dimensional objects are represented using a view-based approach [120, 82, 94,
109]. In this approach, an explicit three dimensional model is not recovered. Instead,
multiple two-dimensional images of an object are captured from multiple perspectives
and grouped to collectively form a model of the object. Figure 4-2 shows the stages
of visual processing which are used to extract representations of object shapes and
colors. The result is a histogram representation of shape that is invariant to changes
in scale and in-plane rotation. The histogram representation of color is invariant to

changes in illumination.

Foreground / Background Segmentation

The video signal from the CCD camera is sampled at a resolution of 160x120 pixels
at a rate of 10Hz. Each pixel is represented by red, green and blue color compo-
nents denoted R, G, B. To eliminate variation due to illumination, the chromaticity

coordinates [49] or illumination-normalized color of a pixel may be computed by:

R
"= ’rG+B)
_ G
9 = (R¥G+B)

b= B
~ (R+G+B)

After illumination normalization, only two free parameters are necessary to rep-

resent the chromaticity of a pixel. In our system, images are characterized by the
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Figure 4-2: Extraction of object shape and color channels from a CCD camera.

normalized red and green components.

Foreground/background separation is simplified by assuming a relatively uniform
background color. A Gaussian model of the normalized background color is computed
using a set of sample background images. We have found 10 images of the background
taken from various perspectives to be sufficient for establishing a baseline. The mean
and co-variance of the average background pixel is estimated from these 10 images.
For a novel image, the probability that each pixel was generated by the background
model was thresholded to classify the pixel as foreground or background. The thresh-

old was set to produce clean object masks.

Object Detection

Connected regions analysis is applied to binary foreground / background images.
Connected regions analysis identifies and uniquely labels each set of pixels in a binary
image which are connected to each other by a path of pixels with binary value 1 [55,

page 28]. A scene which contains a single foreground object will often result in an
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image with multiple connected foreground regions due to noise and the presence of
multiple objects. For example in Figure 4-2 the foreground map contains three large
connected regions and several small ones due to noisy segmentation.

In the robotic setup, non-target objects often come into view along the periphery of
the image. The visual system must thus select the connected region which corresponds
to the target object. This selection is guided by the assumptions that the object will
be of some minimum size, and that it will be located near the center of the image.
The object is kept centered by active camera control as described in Section 4.1.2.

In our implementation of connected regions analysis, the binary image is scanned
left-to-right, line by line. If a candidate pixel has binary value 1, the value of its four
neighbors (to its left, top-left, top-center and top-right) are checked. If any of those
pixels are set to 1, the algorithm uses its label for the current pixel; otherwise, the
pixel is assigned a new label. After the entire image has been scanned, if neighboring
active pixels are found with different labels, the labels are merged into a single class.
This final step produces a set of connected regions, each assigned a unique label.
The centroid of each connected region is computed and the region whose centroid is
closest to the center of the image is selected as the object in the scene. This region
is denoted O = {(&,y)1, (2, )2, ..., (2, y)m} and consists of M pixel locations.

The above description assumes that the target object is in view. This is not
always the case?. To decide whether an image contains an object, three criteria must
be met. First, the centroid of the selected region must be in the center of the image
within a predefined maximum tolerable error. The error tolerance is determined by
the accuracy of the robot armature and was set to 38 pixels. Second, the area of the
connected region, M, must exceed some minimum threshold to reject noise due to
poor background models. This threshold was set empirically to 100 pixels. Third,

objects must be completely in view. To reject clipped views, any object mask which

ZChapter 6 describes a real-time application of this system in which a person can place and
remove objects interactively.
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Figure 4-3: Sample images of a toy dog and shoe. Below, the corresponding object

mask.

includes pixels at the edge of the image is rejected. Several sample images of objects
and their corresponding masks are shown in Figure 4-3. The images of a toy dog
and a shoe were taken with the robot-mounted camera. The interior of the shoe was
similar in color to the background and is thus not part of the object mask. Below
each original image, the foreground image after connected region analysis is shown.

Each image is the result of a change of position of the camera and the turntable.

Object Color and Shape Representation

Object color and shape is represented using a histogram approach based on the work
of Schiele and Crowley [109]. Schiele and Crowley have demonstrated that histograms
of local image features are a robust representation for visual object recognition. In our
implementation, a two-dimensional color histogram, H., is generated by accumulating
(r,g) values for each pixel specified by the region O. The normalized red and green

chromaticity values are divided into 8 bins leading to an 8 x 8 = 64 bin histogram.
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The shape of an object is also represented using a two-dimensional histogram, H,.

To compute this histogram, the system performs the following steps:

1. Locate all pixels which are at the edges of the object. A pixel is defined as an
edge point if it is part of the object mask but one or both horizontally adjacent

pixels are not part of the mask.
2. Estimate 7;, the angle of the tangent to the mask edge at each edge pixel ¢.

3. For each pairwise combination of edge pixels ¢, j:

e Compute the Euclidean distance, d;;, between the pixels, normalized by

the mean distance between all pairs of edge pixels in the object.

e Compute relative angle between edges 6,; = |7; — 7]

4. Accumulate a two-dimensional histogram of (d;;, é;;) for all pairwise combina-
tions of edge pixels. Both the inter-pixel distances and the relative angles are

divided into 8 bins so that H; is also composed of 8 x 8 = 64 bins.

This representation of shape is invariant to changes in scale since the inter-pixel
distances, d;;, are normalized by the size of the object. The representation is also
invariant to in-plane rotation of the object since only relative angles are stored in the
histogram.

To give insight into these representations, we have generated images of several
histograms. Figure 4-4 shows four images, their corresponding object masks, and
the resulting color and shape histograms. The symmetrical shape of a ball leads to
a near diagonal region of activation in the shape histogram (top right). The shoe
has circular regions which lead to diagonal elements in shape as well. The diagonal
activation from top-left towards bottom-right is due to the inner cavity of the shoe.

Also, notice similarities between the more complex shape histograms of the two dogs.
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Figure 4-4: Fxamples of shape and color histograms computed for four images.
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Figure 4-5: The robot has four degrees of freedom: two at the base and two at the
neck. A turntable provides a optional fifth degree of freedom for viewing objects from
various perspectives.

4.1.2 Active Camera Control

The CCD camera was mounted on a four DOF robotic armature enabling active
positioning of the camera. The mechanical platform is shown schematically in Figure
4-5. The robot was built using aluminum and plastic hardware. The base joints were
powered with an off-the-shelf motorized camera mount. The neck joints were powered
with standard radio control (R/C) servos designed for model aircraft control. A third
R/C servo was used to drive the turntable. All motors were connected to the host
computer through a pair of serial ports.

The robot was designed to gather multiple views of a stationary object placed on
a viewing surface in front of it. When the turntable was used, the robot was used to
gather images of an object placed at the center of the turntable. Control of the robot
is achieved through a visuo-motor map, a look-up table which specifies settings of all
four servo motors in order to center the camera on a specific point on the viewing

surface. A separate map was created for several different target positions on the
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viewing surface. For a given target location, the corresponding table supplies a list of
legal joint positions for the robot which will orient the camera to the desired location.
Different views of an object were obtained by placing the object on a target location
and sampling from the associated visuo-motor map.

A fragment of a sample motor map for the system is shown below. The units
for the base joints range from -2000 to 2000, and the neck joints range from -90 to
90 units. Each row of the table specifies the settings of the four joints to direct the

camera towards an intended position on the viewing surface.

Base Elevation Base Rotation Neck Elevation Neck Rotation

-350.0 0.0 90.0 -30.0
-425.0 -75.0 85.0 -34.0
-575.0 -375.0 63.5 -36.5
-725.0 -675.0 51.0 -46.0
-800.0 -600.0 51.5 -47.5
-950.0 -300.0 38.0 -51.0

The visuo-motor map is created using a target finding procedure. To initialize the
procedure, a small circular object (such as a tennis ball) is placed at the desired target
location. The robot is manually set to a position which brings the target object into
view. An iterative process then finds a setting of neck elevation and rotation which
best centers the target. The foreground/background separation and connected regions
analysis methods described above are used to calculate the center of the target. Once
the neck has been aligned, the set of four servo positions are found and recorded. To
build the complete visuo-motor map, the training procedure systematically steps the
base elevation and rotation joints through all mechanically possible values (with steps
of approximately 5 degrees). For each step, the optimal neck setting for centering the
target are recorded. For many of the base positions, the mechanical construction of

the robot makes it impossible to view the target. The training procedure discovers
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these limits since object centering fails in these situations. The result is that the final
map does not contain entries for those base positions. The entire procedure takes
approximately 40 minutes to build a visuo-motor map with 380 entries. A separate
map was generated for several target locations. A novel target location was viewed
by interpolating between existing maps.

Once a set of maps have been trained, the robot may be used to acquire images of
an object from multiple perspectives. Each entry in a map corresponds to a different
vantage point. Control of the robot does not require inverse kinematic calculations,
and it also does not need any information about absolute positions and angles. In-
stead, the coordinate system of the robot is vision centered. The robot’s goal is
to keep objects centered for the camera. All visual processing routines function with
multiple random views of an object without reliance on absolute position information.

Over time, the alignment of motors to the visual system may shift due to slight
changes in the camera mount and the position of the robot relative the target sur-
face. An on-line mode of operation lets the system quickly tune visuo-motor maps to
compensate for such misalignments. An existing map is loaded into the system and
the robot “practices” finding a target. Any errors in centering an object are corrected
using the original training procedure, and the map is updated accordingly.

For some applications (see Chapter 5) we found an additional degree of freedom
for rotating a target object is useful for obtaining additional viewpoints. A small
turntable was constructed which can rotate an object 360 degrees. The turntable
control is coordinated with robot control to result in synchronized movements.

For each incoming image, the system produces a pair of histograms which represent
the color and shape of the object. If an object is not in view, the visual channel

encodes this information as a binary flag, and the histograms are not generated.
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Figure 4-6: Extracting the linguistic channel from microphone input.

4.2 Linguistic Channel

The linguistic channel is grounded in acoustic signals originating from a microphone.
Feature analysis generates a time-varying vector of English phoneme probabilities.
The implementation thus assumes that the learner has knowledge of the phonetic
structure of English prior to lexical acquisition. Figure 4-6 depicts the two stages
involved in the linguistic feature analysis. Linguistic features are extracted from a
microphone generated acoustic signal. The first stage, Relative Spectra Perceptual
Linear Predictive (RASTA-PLP) analysis, extracts a spectral representation of the
acoustic signal [53]. A recurrent neural network takes RASTA-PLP coefficients as

input and estimates phoneme and speech/silence probabilities.

4.2.1 Acoustic Analysis: RASTA-PLP

The microphone signal is sampled at 16 kHz with 16-bit resolution and converted to

the RASTA-PLP representation. RASTA-PLP is a spectral representation of speech.
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It is designed to attenuate non-speech components of an acoustic signal. It does so
by supressing spectral components of the signal which change faster or slower than
speech. To start, the critical-band power spectrum is computed and compressed
using a logarithmic transform. The time trajectory of each compressed power band is
filtered to suppress non-speech components. The resulting filtered signal is expanded
using an exponential transformation and each power band is scaled to simulate laws of
loudness perception in humans. Finally, an all-pole model of the resulting spectrum
is estimated. In our implementation, 12 all-pole model coefficients are computed on
a 20ms (320 sample) window of input. A window step size of 10ms (160 samples) is
used, resulting in a set of 12 RASTA-PLP coefficients estimated every 10ms.

4.2.2 Phoneme Analysis: Recurrent Neural Network (RNN)

A recurrent neural network (RNN) has been trained to compute likelihoods of English
phonemes based on RASTA-PLP input. When presented a set of spectral coefficients
at time ¢, the RNN produces a 39-dimensional output vector. The first 38 elements
of the vector contain likelihood of 38 English phonemes (we use the same phoneme
classes as Robinson [97]). The 39" element contains the likelihoods that the input
signal is silence. The output activations are all positive values and guaranteed to sum
to 1.0° and can thus be treated as probabilities. The phonemes encoded in the RNN
are listed in Table 4.2.

The RNN is an extension of a standard feed-forward neural network [37, 58].
In a standard feed-forward network, the units of the network compute a non-linear
(typically sigmoidal) transfer function on the sum of its input activations. Arcs in a
network have associated weights which scale the activations carried by them. Using
the back-propagation training algorithm, a three-layer network can be trained to
approximate a broad range of input-output transfer functions [106]. To use a trained

network, input vectors are applied to the first layer of units. The units’ activations

3The softmax function is used to normalize output activations.
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Table 4.2: Phonemes encoded in the RNN.

Phoneme Example Phoneme Example

aa caught | lay

ae bat m may

ah but n no

aw about ow boat

ay bite oy boy

b bat p pay

ch chat q bat (glottal stop)
d dog r ray

dh then s say

dx dirty sh shoe

eh bet sil (silence)
er bird t to

ey bait th thin

i fun uh book

g go uw boot

hh hay v vision

ih bit w way

iy beet y yacht

jh joke zZ 700

k catb
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are propagated through the network. Output is generated by the final layer of the
network.

In a RNN, the output units are a function of present and past inputs. This is
accomplished with time delay units which serve as memory for past network activity.
The RNN we implemented contains 176 hidden units. These units feedback through
a time delay and are concatenated with incoming RASTA-PLP coefficients. The
weights connecting the feedback units are learned using an extension of the back
propagation training procedure known as back propagation in time [122]. In this
method, recurrent weights are unfolded into a static network. The expanded network
contains a hidden layer for each time step of a training sequence. Back propagation
training with tied weights across layers can then be applied.

The RNN was trained with the TIMIT database of phonetically transcribed Amer-
ican English speech [112]. This database consists of read sentences spoken by 630
speakers from eight dialect regions of the United States. To train the network, each
sentence is presented to the back propagation in time training procedure. The target
outputs are set using the transcriptions provided in the TIMIT database.

To summarize, the auditory processor receives input from a microphone and pro-
duces a vector of phoneme probabilities (and silence) at a rate of 100 estimates per
second. Figures 4-7 and 4-8 show examples of output from the RNN run on natural
samples of infant-directed speech. Figure 4-7 depicts the RNN output for an utter-
ance produced by a mother to her 10-month old infant while playing with a ball.
Symbols for each RNN output are printed along the left and right edges of the plot.
The strength of each RNN output determines the brightness of the associated trace
as a function of time. Figure 4-8 is an RNN for a longer phrase spoken by the same

mother.
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Figure 4-8: RNN output for the utterance “Oh, you can make it bounce too!”.
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4.3 Event Detection

The visual system and phoneme analyzer provide a constant flow of linguistic and
contextual features. A pair of event detectors have been implemented to chunk these

streams into L-events and S-events.

4.3.1 S-Events: Object View-sets

An S-event consists of a set of NV views of an object, called a view-sef. When run
in an interactive situation (see Chapter 6) the robot continuously searches for the
presence of objects on the viewing surface in front of it. When an object is detected,
the robot records the image and moves to N —1 other locations to gather other views.
These view points are selected randomly from a previously learned visuo-motor map.
If the object is not present during any of the N — 1 views, the system discards the
collected images and re-initiates the search procedure for a new object. If all N views
are successfully captured, shape and color histograms from each view are extracted
to generate an S-event. For the evaluations with infant-directed data in Chapter 5,

N =15 and the interactive system presented in Chapter 6, N = 5.

4.3.2 L-Events: Spoken Utterances

The linguistic feature stream is chunked into utterances. Each utterance is composed
of an array of phoneme probabilities delimited by silence.

The pseudocode listing in Figure 4-9 specifies the algorithm used to detect ut-
terances from continuous acoustic input. The end-pointing algorithm is designed to
detect sustained speech activity. Short bursts of speech are ignored (since they are
likely due to environmental noise), and short silences within an utterance are absorbed
into a single utterance. The silence estimate from the RNN drives the end-pointing
process. The variable STL is set to 1 if the silence estimate of the RNN is greater

than any phoneme probability, and is set to 0 otherwise. Two parameters are used to
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control the behaviour of the algorithm. UTTERANCE_START_DELAY determines
how many milliseconds of contiguous speech frames must be encountered before the
algorithm decides that an utterance has begun. The second timing parameter, UT-
TERANCE_END_DELAY, determines the duration of silence that must be observed

before an end of utterance is detected.

4.4 Unpacking Events

Each L-event is assumed to contain instances of one or more words. Fach S-event
contains an instance of a shape category, and an instance of a color category. The
next two sections describe the finest granularity of analysis on each type of event

which is considered by the recurrence filter.

4.4.1 L-subevents: Speech segments

Spoken utterances (L-events) are segmented in time at phoneme boundaries. A
phoneme boundary occurs when a speech signal transitions from one phoneme to
another. These boundaries serve as hypotheses for potential boundaries which are
used by the recurrence filter.

To locate phoneme boundaries, the RNN outputs may be treated as state emission
probabilities in a Hidden Markov Model (HMM) framework [19]. When viewed in this
way, a sequence of RNN outputs is equivalent to an unpruned phoneme lattice [93,
page 43]. A dynamic programming search may be used to obtain probable paths
through the lattice.

We have implemented an HMM with 39 states, one for each RNN output. The
states are arranged in a parallel configuration (Figure 4-10). Using this HMM struc-
ture, a Viterbi search is performed to decode the most likely phoneme sequence in
an utterance [93, page 339]. The RNN-HMM hybrid system achieves a phoneme

recognition accuracy of 69% on the standard TIMIT speaker independent training
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state = 1; count 2 = 0; count 3 = 0; count 4 = 0
UTTERANCE START DELAY = 50ms; UTTERANCE END DELAY = 300ms

for each RNN output vector, 1(t) {

state 1: SILENCE
if SIL != 1 {
utteranceStartIndex = t
state=2 }
else { state = 1 }

state 2: POSSIBLE START OF UTTERANCE
count_2 = count_2 + 1
if SIL = 1 {
count_2 = 0
state = 1 }
else if {count 2 > UTTERANCE START DELAY) {
state = 3 }

state 3: UTTERANCE
if SIL {
state = 4 }
else {
count_3 = count_3 + 1
state = 3 }

state 4: POSSIBLE END OF UTTERANCE
count 4 = count 4 + 1

if SIL != 1 {
count 3 = count 3 + count 4
count 4 = 0

state = 3 }
} else if count_4 > UTTERANCE END DELAY {
utteranceEndIndex = t - count_4 - 1
ProcessUtterance (utteranceStartIndex, utteranceEndIndex)
count_2 = 0
count_3 = 0
count_ 4 = 0
state = 1

Figure 4-9: Pseudocode listing of the utterance end-point detection algorithm.
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set. Although this accuracy level is state-of-the-art, an error rate of over 30% in the
underlying linguistic representation poses a great challenge for lexical acquisition. In
Chapter 5 we show the benefit of leveraging co-occurring contextual information to
reduce this acoustic ambiguity.

From a segmentation point of view, 69% phoneme accuracy is quite useful. Al-
though nearly one in three phonemes is incorrectly transcribed, the errors are typically
confusions between phonemes within broad classes. For example, a stop consonant
might be confused for another stop consonant, but is unlikely to be mistaken for
a vowel. As a result, the phoneme transition boundaries generated by the Viterbi
algorithm are quite accurate and serve as a useful first step towards locating word
boundaries in continuous speech.

The transition probabilities for entering each phoneme state (and silence) are set
using bigram phoneme transition probabilities computed using phoneme transcrip-
tions from the TIMIT training data set. State transition probabilities for staying
within a state and exiting states were also trained using the TIMIT training set.

After Viterbi decoding of an utterance, the system obtains:

e A phoneme sequence. This is the most likely sequence of phonemes which were

concatenated to form the utterance.
e The location of each phoneme boundary.

Each phoneme boundary may serve as a L-subevent start or end point. Any sub-
sequence of an L-event terminated at phoneme boundaries may form an L-subevent.
In this implementation, L-subevents are referred to as speech segments. A speech

segment is a hypothesis of an instance of a spoken word.

4.4.2 S-subevents: Color / Shape view-sets

An S-event is a view-set which consists of N color and shape histograms. Both shape

and color are assumed to be static aspects of an object. For this reason, S-events are
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Figure 4-10: A Hidden Markov Model for computing most likely phoneme sequences.
HMM state emission probabilities are computed by the RNN.

not segmented in time. An S-event is only divided along channels. A view-set may
be partitioned into a color view-set which contains N color histograms, or a shape
view-set which contains NV shape histograms *. A color view-set is a hypothesis of
an instance of a color category, and similarly a shape view-set is a hypothesis of an
instance of a shape category.

The S-subevents implemented for this thesis are relatively simple since they as-
sume objects are rigid and will remain static during viewing. Many computer vision
techniques exist for processing more complicated input including articulated objects

and motion. In the future, these techniques could be integrated into the current

system.

4An extension which we implemented but did not evaluate in this thesis is to treat an entire S-
event as an S-subevent. In other words, to let CELL look for semantic categories which are defined
as a conjunction of a color and shape categories. For example, the meaning of apple might refer to
round objects which are red.
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4.5 Co-occurrence Filtering

The co-occurrence filter detects when a spoken utterance overlaps in time with a view-
set. Its implementation is straightforward. The utterance end-pointing algorithm
time stamps the start and end point of each utterance. The visual processing system
time stamps the first and last image of each view-set. If the time stamps of the two
events overlap, the co-occurring pair of events are bundled into an LS-event. LS-
events are stored in a short term memory buffer with a capacity of five LS-events.
The short term memory is implemented as a circular buffer which overwrites the
oldest contents with new entries.

The co-occurrence filter focuses the system’s attention on speech which is heard
in the presence of an object (and vice versa). We assume that co-occurrence of events
signifies that the utterance may contain one or more words which refer to either the

color or shape of the object in view.

4.6 Recurrence Filtering

The recurrence filter searches for recurrent speech segments paired with recurrent
color or shape view-sets. To implement this, we must establish a distance metric for

comparing speech segments, dr,(), and a distance metric for comparing S-subevents,

ds().

4.6.1 Acoustic Distance Metric

To perform recurrency analysis, we must define a distance metric, dz,() which measures
the similarity between two L-subevents, in this case speech segments. Recall that a
speech segment consists of a sequence of phoneme probabilities generated by the
RNN. For each speech segment, we can also obtain the most likely phoneme sequence

which generated the RNN output (Section 4.4.1).
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Figure 4-11: The Viterbi algorithm finds the most likely phoneme sequence for a
sequence of RNN output. A left-to-right HMM is constructed by assigning a state for
each phoneme in the sequence.

One possibility is to treat the phoneme sequence of each L-subevent as a string and
use string comparison techniques to derive dr() [62]. This method has been applied
to the problem of finding recurrent speech segments in continuous speech [125]. A
limitation of this approach is that it relies on only the single most likely phoneme
sequence. A sequence of RNN outputs is in fact equivalent to an unpruned lattice from
which multiple phoneme sequences may be derived. To make use of this additional
information, we have devised a new method for comparing speech segments.

Let ) be an array of phoneme probabilities generated by the RNN for a speech
segment. Using the Viterbi algorithm, the most likely phoneme sequence may be
estimated from (). This sequence may in turn be used to generate an HMM model A
by assigning an HMM state for each phoneme in the sequence and connecting each
state in a strict left-to-right configuration. In Figure 4-11 the RNN output for the
word ball leads to the phoneme sequence /bal/. This sequence is used to generate a
3-state left-to-right HMM. State transition probabilities are inherited from a context-
independent set of phoneme models trained from the TIMIT training set.

Consider two speech segments, a7 and o 5 and corresponding phoneme probability

>Speech segments are L-subevents which in turn serve as L-prototypes in CELL. Hence we use
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arrays (); and ();. From these arrays, we can generate HMMs A; and A;.

We wish to define a metric for measuring the distance between o and o. We do so
by testing the hypothesis that A; generated a7, and vice versa. The Forward algorithm
[93, page 335] can be used to compute P(Q;|\;) and P(Q;|);), the likelihood that the
HMM derived from speech segment o} generated speech segment o and vice versa.
However, these likelihoods are not an effective measure for our purposes since they
represent the joint probability of a phoneme sequence and a given speech segment.
An improvement is to use a likelihood ratio test to generate a confidence metric [98,
page 318]. In this method, each likelihood estimate is scaled by the likelihood of a
default alternate hypothesis, A\*:

PQN)

L(Q, A\ M) = PO (4.1)

In our metric, the alternative hypothesis is the HMM derived from the speech
sequence itself, i.e. A4 = \; and )\}4 = A;. The distance between two speech segments

is defined in terms of logarithms of these scaled likelihoods:

A (a7 0%) = —l{log lP(Qz’P\j)] N [P(Qﬂ)\z’)” (4.2)

o 2 P(QilA:) P(Q;1A;)
This metric is symmetric, i.e. dp(af,a}) = dp(a},af). Logarithms are used to
avoid floating point mathematical underflow problems in the implementation. The
negative sign converts the likelihood score, a measure of similarity, into a score of

dissimilarity (i.e., a distance).

4.6.2 Visual Distance Metric

The color and shape of an object observed in a single image are represented as two-
dimensional histograms. An S-subevent consists of N color or shape histograms. To

define the distance metric ds() between two S-subevents, we first define a metric for

L-prototype notation to refer to speech segments.
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comparing two individual histograms.

Schiele and Crowley compared several methods for matching histograms [109] and
found that the y%-test was best for their task of object recognition. The y*-test for
two histograms H; and H; is defined as:

hi:x _hx 2
X?(H“H]) — Z ( Y J 71/)

(4.3)
z,y hi:x,y + hj:ac,y

Where x and y index into the two-dimensional histograms, and .., , is the (x,y)"
element of histogram H;.

To compare two S-subevents, dgs() is defined as the sum of the best M of N
matches between individual histograms. Histograms are compared using Equation
4.3. A histogram can only be used once to match another histogram. By choosing
only a subset of views for comparing view-sets, the system does not require every
view in one view-set to have a matching view in the other view-set. As long as M of
the views match, the distance will be small.

For the evaluations in Chapter 5, N = 15 and M = 4. For the interactive

application presented in Chapter 6, N =5 and M = 3.

4.6.3 Recurrence Detection

The recurrence filter searches for matching speech segments and S-subevents in the
STM. The search is invoked each time a new LS-event is added to STM. A lexical
candidate is generated when two or more LS-events contain matching speech segments
and shape or color view-sets. To decide whether two subevents match, thresholds must
be set for each distance metric. These thresholds are set relatively low so that many
lexical candidates are generated at the expense of more false hypotheses. Later stages
of processing are designed to remove erroneous candidates. Section 5.7.1 discusses
how recurrence thresholds are set in our evaluations. To reduce search time, speech

segments are considered only if they contain a vowel and are less than one second in
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duration.

The search considers each pairwise combination of speech segment, shape view-set,
and color view-set. When multiple LS-events containing matching speech segments
and matching colors or shapes are found, a lexical candidate is generated. The candi-
date contains a representative of each matched set of subevents. The representative
is a copy of the “central” member of a set. This central member is defined as the
subevent whose cumulative distance to all other matching subevents is minimum. In

the case of only two subevents in the set, one of them is chosen at random.

4.7 Maximizing Audio-Visual Mutual Information

Once the MTM has been sufficiently populated, the mutual information between -
units and S-categories may be measured for each lexical candidate. The definition for
mutual information in Equation 3.3 may be rewritten by factoring the joint proba-

bility:

I(L; 8) = 3 3 P(s|16) (1) log [%1 (4.4)

Recall that each candidate in MTM may be thought of as an experiment in which
the value of random variables S and L are determined with respect to a reference
candidate and set of radii. The terms s; and [; are as defined in Equation 3.1. The

probabilities in Equation 4.4 are estimated using relative frequencies:

(4.5)

P(l;) = (4.6)
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_ |5jvli|

P(s;|l;) = B

(4.7)

N is the number of lexical candidates in MTM (not including the reference candi-
date), and vertical bars denote the count operator. To overcome difficulties with small
frequency counts, noisy probability estimates are smoothed by linearly interpolating

their values with priors [47]:

fn 1 Sy
PQ(SZ') :(1_05N)?‘|‘05N|N| (48)
ﬁa):u—x)i+xlﬂ (4.9)
2 N TN ‘
D 7Y . Dl |5jvli|
Py(s|l;) = (1 —an)P(sj) + an (4.10)

|l

K is set to the number of candidates in MTM. The interpolation parameters ay,
An, and By are set to N/(m + N) for some fixed prior mass m.

For a selected reference candidate, a two-dimensional space of L-radii and S-radii
may be searched to locate the point of maximum mutual information. Figure 4-12
presents two examples of mutual information surfaces from an infant-directed speech
corpus (see Chapter 5 for details). In each plot, the height of the surface shows
mutual information as a function of the L-radius and S-radius. On the left, the
L-prototype corresponding to the word “yeah” was paired with the L-subevent of
view-set corresponding to a shoe. The resulting surface is relatively low for all values
of radii. The leixcal candidate on the right pairs a speech segment of the word “dog”

with a view-set of a dog. The result is a strongly peaked surface form. The radii
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Figure 4-12: Mutual information as a function of L-radius and S-radius for two lexical
candidates.

are selected at the point where the surface height, and thus mutual information, is
maximized.

Each time a new candidate is added to MTM, all candidates are evaluated. Any
candidates which result in high mutual information are promoted to LTM. The radius
settings are stored with the candidate to define a new lexical item. When a new item
is formed, all candidates in MTM which match both the L-unit and S-category of the

newly formed item are removed from MTM.

4.8 Implementation Platform

The system has been implemented on a single SGI 02 workstation (MIPS R10000
CPU) with 128 megabytes of main memory. Speech is recorded using a noise-
cancelling head-worn microphone whose output is digitized by the SGI on-board
sampler at a rate of 16 KHz with 16-bit resolution. Visual input is provided by
a miniature CCD camera mounted on a custom built robotic platform. The camera

video signal is also sampled by the SGI’s on-board hardware at a resolution of 160
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columns by 120 rows of pixels. Each pixel is represented by a 24-bit RGB value.

4.9 Innate Knowledge

Several types of knowledge are built into the system before lexical learning begins.

The innate knowledge includes:
e Spoken utterance detection and end-pointing capability.

o Models of English phonemes. These models are trained from the TIMIT database
which contains speech samples and phonetic transcriptions. The phoneme
models include (1) an acoustic feature to phoneme probability transform (im-
plemented with an RNN), (2) phoneme duration models, and (3) a table of

phoneme bigram transition probabilities.
e Visual foreground / background separation and object detection capabilities.
e Representations of object shape and color in terms of histograms.
e Distance metrics for comparing speech segments, color, and shape.

In Chapter 2 we reviewed experimental evidence which shows that infants have

similar perceptual abilities prior to lexical acquisition.

4.10 Implementation of Extensions

Two of the extensions presented in Section 3.3 have been implemented. We mention

them briefly in this section, and expand on them in Chapter 6.

Recognizing Novel Input: The recurrence filter contains all components needed to
analyze novel linguistic and semantic input and search for matches with lexical
items in LTM. We have implemented these features and demonstrated them in

the context of a real-time adaptive interface.
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Co-occurrence of Word Classes: Two word classes may be defined for the audio-
visual implementation of CELL: shape terms, and color terms. An analysis
module was implemented to search for adjacent words (i.e., words occurring
in sequence with no intervening words) from different word classes in the in-
put data. The module estimates the transition probability between these two
word classes when in adjacent positions. These word transition probabilities
were used for a simple grammar for connected word speech recognition, and to

determine word order in a speech generation task.



Chapter 5

Evaluation with Infant-Directed

Data

This chapter describes an evaluation of the audio-visual implementation of CELL
using natural infant-directed speech and raw visual images. A study involving six
caregivers and their prelinguistic infants was conducted to gather a corpus of infant-
directed speech. The participants were asked to engage in play centered around
seven types of objects commonly named in early infant speech. The speech was then
coupled with sets of images of these objects (taken by the robot) and used as input for
CELL. In this evaluation only the shape channel was utilized!. Chapter 6 discusses
an application which uses both shape and color channels.

To compare the added utility of cross-channel learning, we implemented an acoustic-
only model which ignores the contextual (visual) channel. The acoustic-only model
selects lexical items based on acoustic recurrency in MTM. By doing so, this alter-
nate model approximates the behaviour of a system driven by a minimum description
length (MDL) criterion. On three different measures of early lexical learning, CELL

out-performed the acoustic-only model across all six participants.

nfants are known to have a “shape bias” and tend to learn names of shapes before colors and
other visual classes [67]. Thus this initial investigation evaluates the performance with the shape
channel alone.
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Table 5.1: Participants of the evaluation study .

Participant Occupation Parent Age (years) Infant Age (months)

CL Home maker 27 8
cPp Administrator 26 10
TL At home 17 8
S Teacher 27 9
pPC Journalist 44 11
AK Home maker 23 9

5.1 Participants

Six caregivers and their prelinguistic infants participated in this study. Partici-
pants responded to a classified advertisement placed in a local newspaper in Toronto,
Canada. By coincidence, all caregivers were female, and five of six infants were male.
Table 5.1 summarizes the occupation and age of participants, and the age of their
infants.

All participants were native speakers of English ? and screened to insure that they
had no speech or hearing impairments. Each participant confirmed that their infant
could not yet produce single words. However, they reported varying levels of limited

comprehension of words (e.g., their name, no, dog, milk, wave).

5.2 Objects

Participants were asked to interact naturally with their infants while playing with a

set of age-appropriate objects. Huttenlocher and Smiley [57] identified a list of object

?The experiments were conducted in Toronto and all participants were long-time residents of
Eastern Canada.
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classes commonly named in early infant speech (Section 2.1.4). We chose seven classes
of objects from the top of their list: balls, toy dogs, shoes, keys, toy horses, toy cars,
and toy trucks. A total of 42 objects, six objects from each class, were obtained and
are shown in Figure 5-1. The objects in each class varied in color, size, texture, and

shape.

5.3 Protocol

To ensure controlled experimental conditions, collection of speech samples took place
in a sound-treated child-appropriate room. To elicit natural interactions, caregivers
and their infants were left alone in the room during sessions. The room was equipped
with steerable video cameras and one-way observational windows. Each participant
wore a noise-canceling head-worn microphone and wireless transmitter. All speech
was recorded on a digital audio recorder for off-line analysis by CELL. Interactions
were video taped for annotation purposes only.

Each caregiver participated in six sessions of play with their infants over a two day
period (i.e., three sessions per day). Participants signed an informed consent sheet
which detailed the experiment. The sheet explained that the goal of the study was
to understand how infants learn words from listening to speech and watching their
environment. For each of the six sessions, participants were provided with a set of
seven objects, one from each of the seven object classes. The order in which object
sets were provided was randomized across participants. The objects were placed in
a box marked “in-box” at the start of each session. Participants were asked to take
out one object at a time, play with it, and then return it to an “out-box”.

The mothers were instructed to engage in play centered around the objects, one
object at a time®. They were not told to teach their infants words. They were free

to choose the order in which objects were selected for play, and the duration of play

3This restriction was made to simplify post-processing and annotation of the resulting speech
recordings.



118 CHAPTER 5. EVALUATION WITH INFANT-DIRECTED DATA

Figure 5-1: Objects used in the infant-directed speech experiments. Six examples of
seven different objects: trucks, keys, dogs, shoes, cars, horses and balls.
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with each object.

Sample speech recordings from the study were played to two speech-language
clinicians who independently agreed that the recordings were natural and represen-
tative of infant-directed play. On average, each session lasted for about 12 minutes.

Interaction with a specific object ranged between 30 seconds to over 3 minutes.

5.4 Speech Data

A total of 36 sessions of speech recordings were obtained (6 participants, 6 sessions
per participant). Utterances were extracted from the recordings using the algorithm
presented in Section 4.3.2. These utterances served as L-events for CELL. A sample
of automatically extracted utterances for one participant, CL, is shown in Table 5.2.

We assume that infant-directed speech is redundant and that salient words will
often be repeated in close temporal proximity [117]. This forms the basis for the
recurrence filter in CELL (Section 3.2.8). This assumption was in fact confirmed
in all our experimental sessions. Repetition of words occurred throughout all data
sets, despite the fact that participants were not specifically instructed to teach their
infants, or to talk exclusively about the objects. They were simply asked to play
naturally. A temporal “clumping” effect for salient words was evident. For example,
the word ball would appear several times within the span of half a minute because
of the focused and repetitive nature of the interaction. This finding was even more
pronounced when caregivers and infants were engaged in joint attention with respect
to an object. The STM in CELL may be thought of as a buffer which is large enough
to capture temporal clumps. This allows the learner to focus higher level processing
efforts on only a short window of recent events in the world.

Table 5.3 summarizes several characteristics of input data sets obtained from all
six caregivers. The first column shows the total number of utterances extracted

across all six sessions. The next column shows the estimated total number of words
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Table 5.2: Transcription of automatically extracted spoken utterances for participant
CL. The left column shows the object in play at the time of each utterance. Notice
that utterances may contain words which refer to objects not in view (e.g., line two

below).

Object Utterance

dog He’s gonna run and hide

dog He’s gonna hide behind my shoe

dog Look, Savanah

dog See his eyes?

dog You like anything with eyes on it, eh?
dog Just like you he has eyes

dog Ruf ruf ruf

car That’s what your daddy likes, look!

car Doors open vroom!

car The seats go forward, and they go back!
shoe You're always climbing into the shoes at home
shoe Savanah! (infant’s name)

truck OK, you want it to drive?

truck The wheels go around

truck Your uncle Pat drives a truck like that
dog He has a red collar

key Let me see it

key Do the keys have teeth?

key You only have two teeth

key Look through the key hole, look!

key I see you

key What are we gonna unlock? you are gonna unlock something?
key Where you gonna lock it up?

key What are you gonna do with it?

horse You always like horses

horse See this brown horse?

horse You see him?

horse See the tail?
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accumulated across all these utterances *. The total number of words is divided by
the total number of utterances to generate the third column which shows that, on
average, utterances contained approximately five words. Although one and two word
phrases did occur, they were far less common than longer utterances. This highlights
the problem of word segmentation from a continuous stream of speech.

To understand the distribution of words, we manually annotated the data sets
for keywords and their frequency of occurrence. Keywords which were annotated in-
cluded: “ball”, “car”, “shoe”, “dog”, “doggie”, “ruf” (dog’s barking sound), “truck”,
“horse”, “horsey”, and “key”. These annotations were strictly made for to understand
the data. The annotations were not used in any way by CELL during evaluation. The
total number of keywords in each data set is reported in column four.

The final column in Table 5.3 calculates the percentage of input words that refer
directly to the provided object shapes. On average, over 92% of the input speech
contains non-keywords. This further illustrates the difficulty of the task of lexical

learning with this corpus.

5.5 Visual Data

The robot described in Section 4.1.2 was used to create a database of images for
the 42 objects. The motivation was to generate a set of images of each object from
a first-person perspective. A set of 209 images were captured of each object from
varying perspectives resulting in a database of 8,778 images °.

From each pool of 209 images, we created view-sets of each object by randomly
selecting sets of 15 images. View-sets were compared using a match size of 4 views

(see Section 4.6.2)°.

*To calculate this, the speaking rate of each participant was estimated from a sample set of
utterances. The cumulative duration of all input utterances was computed and multiplied by the
estimated speaking rate to generate the estimated total word count.

>Sample images shown in Chapter 4 were taken from this database.

5The sampling was designed to minimize re-use of images in different view-sets. No two images
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Table 5.3: Summary of input data obtained from parent-infant study.

Estimated Estimated Estimated
Total Total Words per Total Percent
Participant Utterances Words Utterance Keywords Keywords

CL 1141 5168 4.5 425 8.2%
CP 792 2797 3.5 359 12.8%
TL 1275 4152 2.6 356 8.6%
SI 1696 8702 5.1 479 5.5%
PC 1643 8735 5.3 425 4.9%
AK 1056 6955 6.6 429 6.2%
Average 1267 6085 4.6 412 7.7%

To help characterize the image database, we computed pair-wise distances between
view-sets. The resulting distances were used to generate a set of histograms (Figure
5-2,5-3,5-4). The horizontal axis marks histogram bins, and the vertical axis indicates
bin occupancy. The vertical axis of all histograms have been normalized to aid in
visualization. The horizontal axis is held constant to enable comparison between
histograms. The histogram bins represent increasing distance between view-sets from
left to right.

Figure 5-2 shows a histogram of all distances between different view-sets of the
same object. For example, all view-sets of truck C are compared to all other view-sets
of truck C. Distances for all 42 objects are accumulated in this histogram. There is
little variability in the distances between view-sets of the same object. Distances
between view-sets of the same object are relatively small.

Figure 5-3 shows histograms of distances between all view-sets of objects belonging

to the same class. For example, all view-sets of truck A were compared to view-sets of

were used more than twice across multiple view-sets. When view-sets were compared, we used the
sum of the four best views so the effects of one shared image between view-sets was not significant.
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Figure 5-2: Histogram of distances between view-sets of the same object.

truck B, C, D, E and truck F (but not to other view-set of truck A). This histogram
shows significantly greater spread than the first indicating large variability of objects
within a class. As Figure 5-1 shows, dogs and trucks have large within-class shape
variations whereas balls have almost none.

Figure 5-4 shows a histogram of distances between each view-set and all other
view-sets across all 42 objects. The bimodal nature of this histogram suggests that
the view-sets form clusters based on similarity in shape. The most obvious clusters
arise from self-similarity since view-sets of the same object are being folded into this
histogram. Objects with similar visual forms such as dogs and horses, and balls
and shoes (which both have circular edges), contribute to the first mode. Dissimilar

classes such as balls and trucks, or cars and keys result in the second mode.

5.6 Combining Speech and Visual Data to Create

LS-events

Caregivers were asked to play with one object at a time. All utterances that were
produced by the caregiver between the time when the object was removed from the

in-box and placed in the out-box were paired with that object. Video recordings of
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Figure 5-3: Histogram of distances between view-sets of different objects from the
same object class.
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Figure 5-4: Histogram of distances between all pairs of view-sets in the database.
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the caregiver-child interactions were used to guide this pairing process. To prepare
the data for CELL, we generated an LS-event for each spoken utterance by pairing
it with a randomly selected view-set of the corresponding object. By pairing every
utterance with a view-set, we effectively perform the function of the co-occurrence
filter.

Generating an LS-event for every spoken utterance simplified data preparation.
We assumed that all utterances occurred while the infant was looking at the object.
In reality, however, infants were not watching the object in some cases. Although
this assumption allowed us to use all the recorded speech for evaluation, it may have
made the problem of lexical learning even more difficult. Caregivers may have been
less likely to refer to an object if they were aware that the infant was not attending

to it.

5.7 Processing the Data by CELL

CELL was used to process each participant’s data in a separate experiment. The LS-
events generated from each participant were presented to the system in the sequence
in which they were recorded. The STM size was set to 5 LS-events, and the MTM
size was set to 1000 lexical candidates. The result of processing the data is a set of

lexical items which are deposited into LTM.

5.7.1 Setting Recurrency Thresholds

To run the recurrency filter, the distance metrics for comparing L-events and S-
events must be thresholded. Analysis of the input data suggests natural values for
both thresholds. For the visual data, we had to set a threshold to determine matches
between shape view-sets. Recall that the distribution of distances between all view-
sets in the database have two distinct modes (Figure 5-4). A natural choice for the

threshold is the point at which this distribution reaches a minimum between the two
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modes. The visual recurrency threshold was set to this value for all six participants.
The histogram does not rely on any training labels since all view-sets across unlabelled
object classes are used to compute the histogram. The only assumption underlying
the calculation of the threshold is that the learner has some visual experience with
target object classes prior to lexical acquisition; enough experience to acquire a rough
histogram of distances between objects.

An analysis of the distribution of distances between speech segments was used to
set the acoustic recurrency threshold. We selected 200 random segments of speech
ranging in duration from 100-1000 ms. The segments were taken from one of the par-
ticipants in the database. The distance between each pair of segments was computed
using the metric defined in Section 4.6.1. A histogram of these distances is shown in
Figure 5-5. The acoustic threshold was set at the maximum of this distribution. The
intuition is that as the radius of allowable error from a prototype grows, the density
of samples captured will increase until the mode of this distribution is reached. We
set the distance threshold at this point to capture a large number of segments which
are within a tight radius of a prototype.

Both methods of setting thresholds rely solely on overall distributions of distances
between randomly selected view-sets and speech segments. No training labels or man-
ual assistance is needed to set either threshold. In practice the exact value of either
thresholds was not been found to be critical. Small variations from the optimized

value lead to similar overall performance.

5.7.2 Recurrency Processing

Recurrence filtering resulted in a series of lexical candidates which were deposited
in MTM. Table 5.4 summarizes the data in MTM for each participant. The first
column shows the total number of words which passed through STM. This matches
the number reported in Table 5.1. The second column shows the number of lexical

candidates generated by the recurrency filter, and the third column shows the average



5.8. BASELINE ACOUSTIC ONLY MODEL 127

9000

8000 -

7000 -

6000 -

5000

4000 -

3000 -

2000 -

1000 -

0 | T—— L L
0 5 10 15 20 25 30 35 40 45

Figure 5-5: Histogram of acoustic distances between randomly selected speech seg-
ments less than 1 second in duration.
number of words per speech segment in the MTM.

The average number of words in a lexical candidate L-subevent is approximately
three times less than the average number of words in an L-event. The MTM was made
large enough to hold all lexical candidates generated by any participant (i.e., greater
than 935 candidates). As a result, this implementation does not exercise the FIFO
nature of the MTM specified by CELL which is intended to limit MTM capacity for

much larger amounts of data than we were able to gather for these studies.

5.7.3 Selecting Lexical Items for LTM

For each lexical candidate in MTM, the mutual information maximization search
produces a lexical item hypothesis. In this evaluation, the top 15 items were selected
and placed in LTM. We expect that incorporating feedback into the model would

enable the system to select an optimal number of lexical items (see Section 3.3.5).

5.8 Baseline Acoustic Only Model

To assess the difference between cross-channel audio-visual learning and mono-channel

learning, we implemented an acoustic-only system based on components of CELL.
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Table 5.4: Lexical candidates generated by the recurrency filter.

Total Estimated Lexical Average Number of
Participant  Input Words Candidates Words per Candidate

CL 5168 732 1.5
CP 2797 231 1.7
TL 4152 935 1.1
SI 8702 669 1.7
pPC 8735 855 1.6
AK 6955 490 2.1
Average 6085 652 1.6

Although the system was presented with LS-events (i.e., spoken utterances paired
with view-sets), only the acoustic portion of the input was used to generate lexical
items. The acoustic-only model attempts to identify speech segments which recur
most often in the input. The model assumes that some underlying language source
concatenates words according to a set of unknown rules. The problem of segmentation
persists. The boundaries between words are unavailable to the learner since utterances
are spoken fluently and the learner has no prior knowledge of the lexicon. In this
model, highly recurrent segments of speech form likely candidates of lexical items
in the language. The acoustic-only model implemented here relates to minimum
description length approaches in the literature. Lexical items are defined as those
which occur most frequently, and thus best explain the input data. In contrast
to work by Brent or de Marcken [23, 22, 31], here we are not interested in a best
segmentation of the entire input corpus, but rather to identify a set of most likely
lexical items of the target language.

The acoustic-only model utilized many of the same components implemented in

CELL. The recurrency filter was modified to ignore the visual channel. Recurrent
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speech segments were extracted from STM and placed in MTM based on acoustic
matching only. The STM and acoustic recurrence threshold were configured identi-
cally to the experiments with CELL. A second recurrence filter searched for recurrent
segments throughout the entire MTM. Each lexical candidate in MTM was ranked
according to how many other MTM candidates it matched acoustically. This thresh-
old was set by hand for optimal performance. We found that a significantly higher
threshold (i.e., requiring closer acoustic matches) worked best for this filter. Once
the lexical items had been ranked according to acoustic recurrence, the top 15 were
selected and placed in LTM. We choose 15 items to allow for direct comparison with
the CELL implementation. The S-event paired with each input L-event was carried
through the system so that each LTM item had an associated shape model. The
underlying assumption is that the meaning of the lexical item is embedded in the
context in which the selected speech segment originally occurred. This allowed us to

compare if LTM items were associated with the appropriate object.

5.9 Evaluation Measures

Results of the experiments were evaluated using three measures. For each acoustic
and visual prototype used to generate a lexical item in our systems, a pointer to
the source speech recording and image set were maintained. An interface was built
to allow for listening to the original speech recording from which a prototype was
extracted. The interface also displayed the images of the corresponding view-set. An
evaluator trained in phonetic transcription used this tool to assess the results.

For each LTM item we recorded several types of information:

Measure 1: Segmentation accuracy Do the start and end of each speech proto-

type correspond to word boundaries in English?

Measure 2: Word Discovery Does the speech segment correspond to a single En-

glish word? We accepted words with attached articles and inflections, and we
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also allowed initial and final consonant errors. For example the words /dag/
(dog), [ag/ (*dog, with initial /d/ missing), and /dadag/ (the dog), would all be
accepted as positive instances of this measure. However /daglz/ (dog is) would

be counted as an error.

Measure 3: Semantic Accuracy If the lexical item passes the second measure,
does the visual prototype associated with it correspond to the word’s meaning?

It a lexical item fails on Measure 2, then it automatically fails on Measure 3.

It was possible to apply Measure 3 to the acoustic-only model since the visual
prototype was carried through from input to output. In effect, this model assumes
that when a speech segment is selected as a prototype for a lexical candidate, the

best choice of its meaning is whatever co-occurred with it.

5.10 Results

Table 5.5 lists the contents of LTM for one of the participants using CELL. A phonetic
and text transcript of each speech prototype has been manually generated. For the
text transcripts, asterisks were placed at the start and/or end of each entry to indicate
the presence of a segmentation error. For example “dog™” indicates that either the /g/
was cutoff, or additional phonemes from the next word were erroneously concatenated
with the target word. For each lexical item we also list the associated object based
on the visual information. The letters A-F are used to distinguish between the six
different objects of each object class.

Several phoneme transcripts have the indicator “(ono.)” which indicate onomatopo-
etic sounds such as “ruf-ruf” for the sound of a dog, or “vroooommmm” for a car.
The corresponding text transcript shows the type of sound in parentheses. We found
it extremely difficult to establish accurate boundaries for onomatopoetic words in

many instances. For this reason, these lexical items were disregarded for all measures
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of performance. It is interesting to note that CELL did link objects with their ap-
propriate onomatopoetic sounds. They were considered meaningful and groundable
by CELL in terms of the shape channel. This finding is consistent with infant learn-
ing; infants often use onomatopoetic sounds to refer to common objects. The only
reason these items were not processed further is due to the above stated difficulties
in assessing segmental accuracy.

The final three columns show whether each item passes the test of each measure.
In some cases a word such as fire is associated with a fire truck, or lace with a shoe.
These are accepted as valid by Measure 3 since they are clearly grounded in specific
objects. At the bottom of the table, the measures are accumulated to calculate
accuracy along each measure .

For comparison, the LTM items acquired by the acoustic-only model are shown
in Table 5.6. These results are derived from the same participant’s data as Table
5.5. In cases where no discernible words were heard, the text transcript is left blank.
CELL out-performs the acoustic-only model across all three measures. This pattern
was observed consistently across all six participants®. Figures 5-6, 5-7, and 5-8 plot

average scores across all six participants for each measure.

Measure 1, segmentation accuracy, poses an extremely difficult challenge when
dealing with real acoustic data. The acoustic-only model produces lexical items which
correspond perfectly with English words only 1 in 14 times. In contrast, 28% of lexical
items produced by CELL were correctly segmented single words. Of these 28%, half
of the accepted items are not grounded in the contextual channel (i.e., they fail on
Measure 3). For example, the words choose and crawl were successfully extracted
by CELL and associated with car A and ball F respectively. These words do not

directly refer to shape categories and thus fail on Measure 3. Yet, there seems to be

“Onomatopoetic items do not contribute to the denominator of the sums.
8The only exception was that in one instance (participant CL) Measure 1 (segmentation accuracy)
increased from 20% to 33% from CELL to the acoustic-only model, respectively.
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Table 5.5: Contents of LTM using CELL to process one participant’s data (partici-
pant=PC).

Phonetic  Text Shape Segment. Word Semantic
Rank Transcript Transcript Category Accuracy Disc. Accuracy

1 Ju shoe shoe E 1 1 1
2 fair o fire™ truck D 0 1 1
3 rok *truck truck C 0 1 1
4 dag dog dog D 1 1 1
5 Inof in the* shoe A 0 0 0
6 ki key key C 1 1 1
7 ki key key E 1 1 1
8 daggi doggie dog C 1 1 1
9 bal ball ball C 1 1 1
10 bal ball ball A 1 1 1
11 kis key™ key C 0 1 1
12 Afu a shoe shoe B 0 1 1
13 ondlslz *and this is  shoe B 0 0 0
14 (ono.) (engine) truck A - - -
15 (ono.) (barking) dog A - - -

Total 54% 85% 85%
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Table 5.6: Contents of LTM using the acoustic-only model to process one participant’s

data (participant=PC).

Phonetic Text Shape Segment. Word Semantic

Rank Transcript Transcript Category Accuracy Disc. Accuracy
1 (ono.) (engine) car C - - -

2 dzudzudzu do do do shoe A 0 0 0

3 (ono.) (engine) truck C - - -

4 (ono.) (engine) truck C - - -

5 wayugonnad what you shoe A 0 0 0

gonna do*

6 nawhirk now here okay* ball B 0 0 0

7 lamiyuz *amuse car I 0 1 0

8 beybi baby horse A 1 1 0

9 ahhi? ah he’s™ horse E 0 0 0

10 iah *be a ball A 0 0 0

11 wayugonnd  what you key A 0 0 0

gonna do*

12 iligud *really good shoe F 0 0 0

13 v - ball F 0 0 0

14 yulbio you’ll be a ball A 0 0 0

15 Tey *today dog D 0 1 0

Total 8% 25% 0%
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Table 5.7: Summary of results. Each entry shows percentage accuracy for CELL, and
in parentheses for the acoustic-only model.

Segmentation Word Semantic
Participant Accuracy Discovery Accuracy
pC 54 (8) 85 (25) 84 (0)
SI 25 (0) 75 (10) 42 (10)
CL 20 (33) 87 (60) 80 (20)
TL 17 (7) 50 (35) 25 (14)
CP 17 (0) 50 (8) 42 (8)
AK 33 (0) 92 (45) 67 (27)

Average 2846 (745) 72:48% (3148%) 5T+10% (134+4%)

some structural consistency between the word and the shape which aids the system
in producing this segmentation.

For Measure 2, word discovery, almost three out of four lexical items (72%) pro-
duced by CELL are single words (with optional articles and inflections) (Figure 5-7).
In contrast, using the acoustic-only model, performance drops to 31%. These results
demonstrate the benefit of incorporating cross-channel information into the word
learning process. The cross-channel structure leads to a 2.3-fold increase in accuracy
compared with analyzing structure within the acoustic channel alone. This result
has implications for understanding language acquisition in infants. Rather than seg-
ment speech as a preparatory step towards acquiring sound-to-meaning mappings, a
more efficient strategy may be to combine the segmentation process with the mapping
process. The additional structure from the contextual channels may accelerate the
overall process of early lexical acquisition.

On Measure 3, semantic accuracy, we see the largest difference in performance

between CELL and the acoustic-only model (Figure 5-8). With an accuracy of 57%,
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Figure 5-6: Segmentation accuracy (Measure 1) results averaged over all participants.
Error bars indicate standard deviation about the mean.
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Figure 5-7: Word discovery (Measure 2) results averaged over all participants. Error
bars indicate standard deviation of the mean.
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Figure 5-8: Semantic accuracy (Measure 3) results averaged over all participants.

CELL out-performs the acoustic-only model by over a factor of four. In the input
speech, less than 8% of words are grounded in shape categories (Table 5.1). In the
output, this ratio increases over seven times. The acoustic-only model acquires a
lexicon in which 13% of the items are semantically accurate. This is operating at
chance level since random guessing will yeild 14% (1 / 7 object classes).

The acoustic-only model is not without merit. It succeeds in learning many words
which are not acquired by CELL including “go”, “yes”, “no”, and “baby”. These
are certainly reasonable words to enter a young infant’s vocabulary. This suggests
that in addition to cross-channel structure, the learner may also notice within-channel
structure to hypothesize words with yet unknown meaning. In a top down process,
the learner might then look for the meaning of these words. This is a well explored
hypothesis and our findings support it as a mechanism which may operate in parallel
with CELL. Similarly, other hypotheses of word segmentation, for example based on

prosodic contours [28], may also be employed to improve learning.
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5.11 Summary

The results presented in this chapter are significant. They represent the first suc-
cessful effort to automatically acquire linguistic knowledge from raw infant directed
speech and natural raw visual context. The CELL implementation acquires a lexicon
of visually grounded words across six different participants without any changes to
system parameters. The success of the model on this database serves as an existence
proof that the strategies proposed in CELL might be employed by an infant to learn
from similar types of input.

Comparisons with an acoustic-only model demonstrate the importance of cross-
channel structure in the lexical acquisition process. Semantic accuracy increased
over four fold when the visual channel was used. Most surprisingly, cross-channel
constraints dramatically increased word segmentation and discovery performance in
comparison to the acoustic-only model.

An underlying assumption of modularity is typical in current models of speech
segmentation, word discovery, and lexical acquisition. Models of segmentation and
word discovery typically operate on the acoustic channel alone. These models as-
sume that sufficient information is available within the structure of a single channel.
Similarly, models of lexical learning assume that linguistic units have already been
identified by the language learner.

Our results bring the assumption of strict modularity into question. The model
demonstrates improved learning by leveraging information across channels at an early
stage. Infants are known to possess all the necessary capabilities of sensory processing
and correlational analysis necessary to employ the strategies proposed in CELL. Re-
gardless of the details of the model, these results lead us to believe that cross-channel

structure is harnessed by infants on the path to language.
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Chapter 6

Adaptive Spoken Interfaces

6.1 Introduction

The current state of human-computer interaction (HCI) is strongly biased towards
desktop computing based on a windows metaphor and point and click interaction.
Although an effective desktop interface for current software, this paradigm is severely
impoverished when compared with human-human interaction (HHI). A significant
difference between HHI and HCI is that people tend to use rich modalities such as
speech and gesture when interacting with one another. These modes of communica-
tion come naturally and without conscious effort. The ultimate goal of HCI design is
to create interfaces which enable similarly natural and effortless expressivity.
Spoken language is the dominant mode of communication between people and yet
it is largely untapped in current human-computer interfaces. This chapter is con-
cerned with the use of speech input for HCI. We begin by presenting some problems
with using speech input. Several common approaches for addressing these problems
are reviewed. We then describe a new framework for creating adaptive spoken inter-
faces based on CELL. We present two prototype interactive systems based on CELL.
Several application domains are identified in which the adaptive interfaces are effec-

tive, and we close with some comments about scalability of the approach.
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6.2 Problem

Speech recognition technologies have improved remarkably over the past twenty years
leading to commercial software for speech-to-text conversion. These systems work well
if the user’s speech conforms to predefined normative acoustic models. Performance
degrades when the user’s speech diverges from expected norms due to accents, speech
impairments, or other non-normative acoustic patterns.

Progress has been far slower for speech understanding tasks than for speech recog-
nition. In a dictation task, the machine does not have to infer any semantics. The
problem is strictly to transcribe, verbatim, acoustics into text without interpreta-
tion. In speech understanding systems, the mapping from a user’s words to the user’s
intentions becomes an issue.

A key problem in using speech input is the individual variability of spoken lan-
guage, both in surface form and semantic content. No two people sound exactly the
same, and no two people choose the same words to express the same intents. We
summarize these two sources of variability in which we make an explicit distinction

between surface form variability and the semantic mapping problem:

Surface form variability The acoustic characteristics of the speech signal may vary
widely as a function of the speaker. Some of the many factors include: vocal
tract characteristics, accents, speech impairments, age, and gender. Any of these
factors may affect the performance of a speech recognition system. A mismatch
between the user’s speech and the speech used to train the recognizer’s acoustic

models along any of these dimensions result in a drop in recognition accuracy.

The semantic mapping problem The meaning of a word or phrase, even in iden-
tical contexts, may vary from person to person. Experimental evidence suggests
this is especially troublesome for command oriented tasks in which input con-

sists of single words or short phrases [39].

The semantic mapping problem was studied by Furnas, Landauer, Gomez, and
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Dumais [39]. In their experiments, participants were asked to spontaneously name
objects for five application-related domains 1. In every case, the probability that any
two people selected the name for the same object was less than 0.2. The authors

concluded that:

There is no one good access term for most objects. The idea of an
“obvious”, “self-evident” or “natural” term is a myth! ... Even the best
possible name is not very useful...Any keyword system capable of provid-
ing a high hit rate for unfamiliar users must let them use words of their

own choice for objects [39, page 967].

One way to address these problems might be to design a system with multiple
synonyms which cover all possible words chosen by all possible users. There are
problems with this approach. First, as the vocabulary grows, recognition accuracy
decreases. Second, Furnas et al. conducted experiments in which they created lists of
20 synonyms for each command in their sample task. In a task with 25 commands,
the chance that any two people who decided that the same term meant the same
command was only 15%. These results suggest that not only is word choice not
predictable, but the semantic association of a word is also highly ambiguous, even in

fixed contexts.

6.3 Current Approaches

The problem of acoustic variability is well known to the speech research community.
The field of speaker adaptation is devoted to this problem. Approaches include both
supervised retraining of models, and unsupervised adaptation of models over time

(e.g., [111, 40, 33]).

'The domains were: (1) verbs used to describe text editing operations in a word processing
application, (2) commands for a “message decoder” program, (3) content words used to describe
common objects, (4) superordinate terms chosen to describe classified advertisement items, and (5)
keywords for cooking recipes.
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The semantic mapping problem has received little attention in the speech research
community. The problem is often regarded to be a “human factors” problem, not a
technical one. Regardless of what sort of problem it is, any speech understanding
system designer must nonetheless confront the problem in order to implement a sys-
tem. The following sections summarize current approaches to overcome the semantic

mapping problem.

6.3.1 The Intuitive Design Approach

Perhaps the simplest approach is to assign word-to-meaning or phrase-to-meaning
mappings based on the personal intuitions of the interface designer. The problem,
as Furnas has demonstrated, is that few users will actually agree with the designer’s
choice of vocabulary and semantic mappings. Without guidance, the user will attempt

to speak naturally and the interface will fail.

6.3.2 Explicitly Structured Interfaces

Many system designers address the problems of the intuitive design approach dis-
cussed above by introducing explicit interaction cues to constrain what the user will
say. For example, the user might be presented with a voice menu of legal words and
their meanings at each junction of a dialog. Such interfaces generally work, but are
tedious to use. The user must learn the rules of the interface: what to say, and how
and when to say it. Such restrictions result in highly rigid interfaces with a scripted
feel. Over time a user may adapt to the interface and become an efficient user, but

the potential for natural communication is not realized.

6.3.3 The Brute Force Approach

A third approach is to collect massive amounts of data of people performing a specific

task. This data can be used to train statistical word-to-action and phrase-to-action
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mappings. This approach has been taken by DARPA? sponsored research in two task
domains, the Resource Management (RM), and the Airline Travel Information System
(ATIS) task. Similar data sets have also been collected in Europe, for example, for
the task of rail reservations. Systems built using such training databases have proven
to be successful in practice (e.g., [127, 12]).

This approach has two major drawbacks. First, it only works for domains in which
input utterances are typically long and contain many words. In such utterances the
chance of semantic ambiguity is reduced. For example in the ATIS task, a person is
unlikely to issue a one or two word command while reserving a flight (unless answering
a directed question). In contrast, many command and control tasks elicit short utter-
ances which are highly ambiguous [39]. For such domains, collecting large amounts of
data will not help since the semantic mappings of different users will conflict, making
it impossible to train a single average user model.

A second drawback is the high cost in creating a large corpus of sample inter-
actions. The ATIS and RM tasks were monumental efforts which have not been
replicated for other domains because of the enormous costs involved. Without a
framework for migrating systems to new domains, the brute force approach is too

expensive for widespread use.

6.4 Adaptive Interfaces

People overcome surface and semantic variations by adapting to their communication
partners [21]. Speech interfaces must contain similar adaptive capabilities if we expect
robust and natural spoken interactions with machines. Furnas et al.’s studies motivate
the need for spoken language interfaces with adaptive capabilities. The vocabulary
of a speech interface should not be preprogrammed. Instead, it should learn to reflect

the language usage patterns of each individual user. In a review of speech and text

?The United States Defense Advanced Research Projects Agency.
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HCI techniques, Hayes and Reddy suggest that it would be highly desirable to build
an interface which could adapt to the “idiosyncrasies of individual users” [52, page
240].

To address the problems of acoustic and semantic variability, we may frame spoken
HCI as a learning problem. The interface should acquire the acoustic models * and
sound-to-meaning mappings for each user. Ideally, the interface will efficiently and
naturally learn the language patterns of individual users through continuous and
natural interactions. The CELL model provides a learning engine for such interfaces
since CELL simultaneously addresses problems of acoustic and semantic learning.

A great deal of effort in speech recognition and understanding research has focused
on the problems of large vocabularies and speaker independence. Adaptive interfaces
shift the emphasis to problems of selecting appropriate vocabularies and acquiring
accurate speaker dependent acoustic and semantic models. This emphasis will lead
to personal interfaces which will be in much greater demand than anonymous public
services such as information kiosks and telephone network services [83].

An important issue in the design of adaptive interfaces is to ensure a simple
and intuitive protocol for teaching the system. The failure of the programmable
VCR provides a lesson on the importance of intuitive interfaces *. An ideal adaptive
interface will combine a powerful learning system with a natural teaching interface.
Infants fit this description, and thus a model of infant learning is a natural starting

point for creating an adaptive interface.

3As mentioned above, techniques of speaker adaptation may be used for unsupervised learning
of a person’s acoustic characteristics. These methods are effective but are not considered further in
this chapter. They may be integrated in the future to yield improved results.

41t seems that only young children can actually program VCRs. This suggests that with sufficient
human adaptation even a poorly designed interface may be useful. Our goal is to shift some of this
adaptation into the machine and remove the burden from the user so that even adults can use them.
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6.5 Related Work

On-line machine learning has been applied to create user interfaces which adapt to
users’ individual preferences and patterns of use [24, 68]. Langley divides adaptive
interfaces into two main classes: Informative intefaces help filter information based on
an adaptive model of the user’s interests. Generative interfaces generate autonomous
actions to aid the user. Examples of informative adaptive interfaces include systems
which recommend web pages [86] and music [113]. Generative interfaces have been
applied to domains including automated form filling [54], and meeting scheduling
[32]. Lieberman has developed a graphical editor which learns new procedures by
example [70]. By observing the user as he performs actions, the system learns depen-
dencies between graphical objects and interface operations. These dependencies are

generalized to make future interactions more efficient.

6.6 Incorporating CELL into Human-Computer
Interfaces

The CELL architecture provides a framework for spoken adaptive human-computer
interfaces. We have developed a series of prototypes based on CELL [101, 103, 100,
102, 85])°. In these interfaces, CELL receives linguistic input from a microphone, and
contextual input from one or more devices (Figure 6-1). The contextual channels
carry information about the task being performed. CELL searches for acoustic units
and contextual categories which have high mutual information.

To understand the concept of adaptive interfaces, consider the task of catalog
browsing. Let’s assume a point-and-click interface exists for browsing and selecting

clothing items by viewing an array of images. Speech input may be used to assist in

SThese interfaces use early versions of the CELL model. Although all versions include the core
functionality of automatic lexical acquisition, they use varying subsets of the CELL components
presented in this thesis.
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Figure 6-1: Adaptive spoken interfaces based on CELL.

the browsing and selection process. An advantage to using speech is that items not
in view may be retrieved. The semantic mapping problem arises in this situation.
Users might express their intentions using widely varying terms. For example, one
user might call a shirt “ugly” and want to avoid similar shirts in the future. Another
user may call the same shirt “funky” and want to purchase it. Even perfect speech
recognition will not solve this problem. Simply knowing the text of what a person
says does not necessarily reveal their intent.

We can embed CELL in this catalog interface. As the user accesses the catalog
with mouse clicks, he may simultaneously express his choices verbally. CELL receives
linguistic input from a microphone, and contextual input from visual representations
of selected images. The visual representations might include descriptions of shape,
color, size, and texture. CELL would learn from on-line interactions. At first, the user
would rely entirely on mouse clicks. Over time, CELL would learn a lexicon tuned
to that user. As lexical items appear in LTM, the user may use speech in addition
to the mouse to access the catalog. The semantic problem would be addressed since
the system would learn appropriate associations between acoustic units and visual

categories.
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Figure 6-2: A player sits in front of a large screen which shows animated graphics.
Overhead cameras are used to track the persons hands, and a head-worn microphone
senses the player’s speech.

We now describe two implemented prototypes of spoken adaptive interfaces.

6.6.1 An Entertainment Application

An early implementation of CELL was incorporated into a multimodal interface for
an interactive game [100]. A player sat in front of 60-inch display screen and wore a
head-mounted microphone (Figure 6-2). The interface used a combination of vision-
based hand tracking and speech input. Two cameras were mounted above the screen
and directed towards the player. The images from both cameras were combined to
recover the three-dimensional position of the player’s hands [4].

The game was entitled “Toco the Toucan” and featured a graphical character
named “Toco”. The object of the game was to create a mate for Toco. There were
six interactive scenes (Figure 6-3). In the first scene the person was asked by a

recorded voice prompt to point to locations on a rainbow and speak the name of
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the color. Pointing gestures were used to provide contextual input for CELL. The
location of the pointing gesture was converted into a RGB value corresponding to the
color of the selected portion of the rainbow. The co-occurring speech was paired with
this context. After several speech and gesture interactions, a lexicon of color terms
was acquired.

In the second scene, the player selects a part from the “Tree of Life”, a fanciful
tree from which feathers, beaks, and eye balls could be selected as parts for the mate-
to-be. In the third scene, the player used speech to specify the color of the object.
The player’s speech was compared with each of the lexical items acquired in Scene 1
and the color associated with the best match was applied to the selected part. The
story line culminates with the creation of Toco’s mate.

The game was demonstrated at Siggraph, an annual large public exhibition [100].
Attendees were invited to participate in the interaction without preparatory instruc-
tions for using the interface. Over the course of 5 days, more than 400 hundred
people successfully completed the interaction. Although formal usability tests were
not conducted, the large number of successful interactions and positive public opinion
indicated that the interface was highly successful. As one indication of the game’s
success, the Los Angeles Times selected it as one of the most “cutting edge” exhibits
out of the hundreds of displays at the gathering [61].

The success of this system illustrates the potential of adaptive interfaces. The
environment was extremely noisy, and there was high variability in how people named
colors®. By naturally incorporating acoustic and semantic adaptation into the story

line, we were able to overcome these problems.

5In many instances, the color region was named differently by different players. In addition to
common color naming disagreements such as blue-green and purple-violet, players often invented
playful adjectives such as devilish red and grasshopper green.
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e . -
Scene 1: User points to three colors in the Scene 2: User selects a part from the "Tree
rainbow and names them (lexical acquisition) of Life" by pointing to the part

- o S
Scene 3: Part is colored by speech using one Scene 4: User must select position for new
of the three lexical items learned in Scene 1 body part using gesture, confirm with speech

Scene 5: A successfully placed part Scene 6: After two more cycles of Scenes 2-5
the mate is complete and Toco looks on in
new-found love

Figure 6-3: Scenes from the “Toco the Toucan” interaction.
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6.6.2 A Real-Time Application of CELL with a Robotic

Interface

The complete implementation of CELL (Chapter 4) was incorporated into a real-
time speech and vision interface embodied in a robotic character (Figure 6-4). Input
consists of continuous multiword spoken utterances and images of objects acquired
from a CCD camera mounted on the robot. The visual system extracts both color
and shape representations of objects which serve as contextual channels for CELL.
To teach the system, a person places an object in front of the robot and describes it.
Using on-line learning, the system builds a lexicon of color and shape terms grounded
in microphone and camera input. Once a lexicon has been acquired, the robot can be
engaged in an object labeling task (i.e., lexical generation), and an object selection
task (i.e., lexical understanding).

The task of learning color and shape terms was chosen for exploratory purposes,

7

and was not aimed at any particular application domain®. Specific application do-

mains are discussed in Section 6.7.

Components of the Robot

The robot is an extension of the active camera system described in Section 4.1.2.
The orientation of the camera is determined by a four degree-of-freedom motorized
armature. The robotic embodiment facilitates several modes of output including

direction of gaze, facial expressions, and spoken output.

Direction of gaze We chose a miniature camera which was embedded in the right
eye ball of the robot. The direction of the camera’s focus is apparent from the
physical orientation of the robot and provides a simple mechanism for estab-

lishing joint attention.

"Acquisition of shape and color terms could be used for the catalog browsing task discussed
earlier.
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Figure 6-4: A robotic embodiment of CELL for real-time interaction.
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Facial Expressions Several servo-controlled facial features are used to convey in-
formation about the internal state of CELL naturally. Movable eyelids which
blink after random time intervals produce a life-like illusion. The eyes are kept
open when a view-set is being gathered. This is necessary since the camera is
mounted beneath the eyelids, and also provides the person with a natural cue
that the system is visually attentive. Feathers were mounted on the head which
move to provide information of the state of the system. They extend to an at-
tentive pose when the audio processing system detects the start of an utterance.
It for some reason the audio processor is not functioning, perhaps due to low
microphone levels, the behaviour of the robot conveys this information natu-
rally. The robot’s beak can also open and close. Its motions are coordinated
with speech output giving the appearance that speech is being generated by the

robot.

Spoken Output A phoneme-based speech synthesizer®

is used to convey internal
representations of speech segments. A Viterbi decoder was used to extract the
most likely phoneme sequence for a given segment of speech (see Section 4.4.1).
This phoneme sequence was resynthesized using the phoneme synthesizer. Natu-

ralness of output is improved by controlling the duration of individual phonemes

based on observed durations in the Viterbi decoding.

Acquiring a Lexicon

The robot has three modes of operation: acquisition, generation, and understanding.
In the acquisition mode, the robot searches for the presence of objects on the viewing
surface. When an object is detected, the system gathers multiple images to build
a view-set of the object. If a spoken utterance is detected while the view-set is

being gathered, an LS-event is generated and processed by CELL. Lexical items are

8We use the TrueTalk speech synthesizer made by Entropic Research Laboratory, Inc. 600 Penn-
sylvania Ave. SE, Suite 202, Washington, DC 20003.
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generated when high mutual information is found between an L-unit (acoustic unit)
and either a shape or color category.

To teach the system, the user might place a cup in front of the robot and say,
“Here’s my coffee cup”. To verify that the system has received contextualized spoken
input, it “parrots” back the user’s speech based on the recognized phoneme sequence
(see Section 6.6.2). This provides a natural feedback mechanism for the user to
understand the nature of internal representations being created by the system.

The system acquires word order statistics (Section 3.3.4) for the simple case of
learning the order of shape and color terms in adjacent positions without intervening
words. Lexical items are assigned to either the shape or color class depending on
their contextual grounding. The system tracks the distribution of color-shape and
shape-color terms for input utterances. In experiments, the system learned that color

terms precedes shape terms in English.

Object Description using an Acquired Lexicon

Once lexical items are acquired, the system can generate spoken descriptions of ob-
jects. In this mode, the robot searches for objects on the viewing surface. When an
object is detected, the system builds a view-set of the object and compares it to each
lexical item in LTM. The L-prototype of the best matching item is used to generate
a spoken response. The spoken output may describe either shape or color depending
on the contextual grounding of the best match.

To use word order statistics, a second generation mode finds the best matching
LTM item for the color and shape of the object. The system generates speech for
both aspects of the object. The order of concatenation is determined by the acquired
word order statistics. When presented with a tennis ball, the robot would say “yellow

ball” when it had already learned the words “yellow” and “ball”.
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Speech Understanding using an Acquired Lexicon

When in the speech understanding mode, the system waits for the user to name
objects in terms of shape and color’. The input utterance is matched to existing
speech models in LTM. A simple grammar allows either single words or word pairs
to be recognized. The transition probabilities between word pairs is determined by
the acquired word order statistics.

In a second step, the system finds all objects on the viewing surface and com-
pares each to the visual models of the recognized lexical item(s). In a forced choice,
it selects the best match and returns the robot’s gaze to that object. To provide
additional feedback, the selected object is used to index back into LTM and generate
a spoken description. This feedback leads to revealing behaviours when an incorrect
or incomplete lexicon has been acquired. The nature of the errors provides the user

with guidance for subsequent training interactions.

6.7 Application Domains

Adaptive spoken interfaces may be applied to a variety of domains for both human-
machine communication and computer-mediated human-human communication. Adap-
tive spoken interfaces are suitable for tasks with small to mid-sized vocabularies and
large expected individual variations in word choice and pronunciation. Many com-
mand and control tasks fit these characteristics. A moderate sized vocabulary which
is adapted to a user’s acoustic and semantic characteristics may facilitate robust

voice-activated control. Several application areas are identified below.

Entertainment Current video game environments do not utilize spoken input. Our
experiences suggest that spoken input leads to compelling and enjoyable inter-
actions [100]. Synthetic characters which can learn to communicate with human

players using speech holds potential for innovative forms of entertainment.

°The input utterance is assumed to contain only lexical items in LTM.
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Education Spoken adaptive interfaces may be used as tools in constructionist learn-
ing [84]. Constructionism emphasizes that learning is an active process. Rather
than explicitly teaching a set of rules which govern a concept, we can make sys-
tems which enable active discovery of the same ideas. Computational models of
language acquisition may be used to develop systems which enable the learner
to explore ideas about language. For example, using CELL, they might ex-
plore the nature of word-to-meaning mappings, and the concept of word classes
and their relation to the physical world. Such a system provides an alternative

method for learning about grammar.

Assistive Aids Individuals with communication impairments may use an adaptive
interface as a tool for communication. Standard interfaces are often inefficient
for this population given that there are large individual difference in speech
patterns both within and between speakers. Patel and Roy describe a prototype
communication aid for individuals with severe speech impairments based on
CELL [85]. The user creates a custom lexicon which maps their vocalizations
to symbols on a touch pad. Each symbol is linked to a prerecorded word or
phrase such as greetings or requests which can be generated by the system.
Over time the system learns to translate a small set of vocalizations to clearly
articulated words and phrases. Such a device may be used to communicate with

unfamiliar listeners who might not otherwise understand their speech patterns.

Device Control Speech is useful for controlling devices when a person’s eyes and
hands are busy. For example, when driving a car, it is highly desirable to use
speech to control the audio system, telephone, and climate control. Rather
than force the driver into using a predefined vocabulary, CELL would enable
the driver to easily configure the interface. The existing interface to the devices
could be instrumented, providing contextual input for CELL. To configure the
interface, the driver would speak while performing task with the non-speech

interface. CELL could then acquire a lexicon which connects spoken commands
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to actions. Adaptive spoken control of devices may also find application in other

personal spaces including the office and the home.

6.8 Scalability

A potential disadvantage of adaptive interfaces is prolonged training time. Depending
on the size of vocabulary and complexity of task, lexical acquisition may be imprac-
tically slow. Drivers may be willing to teach their cars a vocabulary of 20-30 words,
but users may not be willing to teach a catalog browser several thousand words.

An underlying assumption of CELL is that learning begins with an empty LTM.
This assumption reflects our interest in modeling the earliest stages of lexical learning.
For practical applications, however, the lexicon may be bootstrapped with a default
set of lexical items. With interactions, the system can remove items which do not fit
the user’s patterns and add new items when needed. In effect, our approach provides
an adaptive layer to existing speech understanding systems. This layer simultaneously
adapts acoustic models and sound-to-meaning mappings.

The default lexicon may be built using conventional means: collect data from a
large number of users and generate models which best represent the population. This
lexicon will then become personalized over time as an individual interacts with the
system.

An exciting alternative is for communities of users connected over a network to
share data as a way to produce a default lexicon. Automatic lexical acquisition
from communities of networked users may lead to robust systems in a decentralized
manner. Such collaborative methods have been shown to be a powerful alternative
to centralized control in the context of creating the Linux operating system, a large
scale software development [95]. This method is particularly attractive for developing

multilingual systems from the ground up.
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Conclusions

7.1 Contributions

In this thesis we presented a model of early lexical acquisition which captures structure
between channels of sensory grounded input. Specific contributions of this thesis

include:

e A joint solution to three important problems of early lexical learning: (1) Lin-
guistic unit segmentation and discovery, (2) Semantic category formation, and

(3) Cross-situational inference of word-to-semantic mappings.

e The first implemented model of early stages of language acquisition which is
fully grounded in raw sensory input (CELL). Integrating techniques from speech
processing and recognition, computer vision, and machine learning, we have
implemented a real-time system which successfully demonstrates on-line lexical

learning from natural audio-visual input.

o The first successful evaluation of a model of lexical acquisition using raw infant-
directed speech and visual input. The model successfully acquired a lexicon of
visually grounded words from the speech of six caregivers. When compared to

an acoustic-only model, CELL performed significantly better on measures of

157
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speech segmentation, word discovery, and word-to-semantics mappings.

o A new distance metric for discovering recurrent segments of speech from sets
of continuously spoken utterances. A dynamic programming search operates
on arrays of phoneme probabilities to locate acoustically similar segments of

speech.

e A new framework for adaptive spoken human-computer interfaces has been
developed. Interfaces interactively adapt acoustic and semantic models for in-
dividual users. The approach holds promise in a variety of application domains
including device command and control, entertainment, assistive technology, and

multilingual systems.

The CELL model simultaneously discovers linguistic unit boundaries, perceptually
grounded semantic categories, and word-to-meaning mappings. This is an important
shift from the common assumption that segmentation of the acoustic stream occurs
prior to word-to-semantics learning. We have demonstrated that both can happen
together, and that in fact, knowledge about one helps accelerate learning about the

other.

7.2 Future Directions

Recent advances in perceptual computing enable researchers to apply a new set of
tools to age-old questions concerning the nature of language acquisition. This thesis
represents a first step in this direction. The work in this thesis has raised many new
questions which may be explored in future studies. Some of the most interesting of

these directions include:

Robust Sensory Processing The acoustic and visual sensory processors presented
in Chapter 4 are stable in environments with low background noise. An impor-

tant area for future study will be to incorporate robust processing methods into
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the CELL architecture. We believe this will require new methods for low level
representations of signals, and also higher level models of attention which focus

learning on appropriate aspects of the environment.

Expanded Visual Semantic Domains The current implementation of CELL can
only learn words which refer to shapes and colors. The semantic domains may
be expanded to include reference to spatial relations between objects, people,

motions of objects and people.

Additional Input Modalities Infants born blind acquire language in very similar
ways to sighted infants [66]. Semantics are grounded not only in vision, but also
touch, proprioception, and non-speech auditory signals. Input channels derived
from these sensors may be added for richer semantic categories and to broaden

the application domains.

Beyond Sensory Grounding Some early words learned by infants do not seem to
be grounded in sensory input alone. For example, common words such as good
and no are learned by young infants. To ground such words, we need to model
the internal affective and motivational states of the language learner. Certain
words are more easily related to their effect on internal state rather than on the
large and possibly infinite set of contexts which may cause the same internal

state.

Beyond Associations The core CELL model builds associations between words and
perceptual categories. Higher level learning mechanisms may be developed to
model structure between associations. These higher level structures need not be
tied directly to the perceptual system, but can operate on abstractions derived

from cross-channel structure.

Linguistic Structure Syntax is a crucial aspect of language. Dog bites man and

Man bites dog are two very different stories. Syntax provides a set of rules
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for mapping words to conceptual structures based on the order in which words
occur. The nature of the early lexicon and the definition of word classes is
intimately related to processes of syntax learning. Many new insights may be

gained by studying syntax acquisition in a sensory grounded framework.

Learning Speech Sounds of a Language Infants learn the phonetic structure of
a language before they produce their first words [64]. They learn to make dis-
tinctions of only the speech sounds which affect the meaning of words in their
language. CELL does not account for this pre-lexical stage of learning. Various
methods of unsupervised clustering may be applied to model this problem in
a computational framework with raw acoustic data. An interesting possibility
is that early lexical learning interacts with the acquisition of a language’s pho-
netic structure. Over time, speech contrasts which have no effect on semantic

mappings are discarded.

Multilingual Systems Speech understanding technologies have been developed for
under 20 of the 3000 active languages of the world. The cost for developing
technology for a new language is prohibitively high. A large amount of accu-
rately transcribed speech, and a lexicon of the language must be available before
a new system may be developed [110]. Interfaces which can acquire models of
a language automatically present an alternative approach to supporting new
languages. Just as an individual user can transfer knowledge of their particu-
lar language usage patterns to CELL, a community of networked users could

transfer knowledge of a new language to an extended version of CELL.

7.3 Concluding Remarks

An important theme which runs through the work of this thesis is the interplay
between human intelligence and artificial intelligence. On one hand, computational

models help us understand complex human behaviors. On the other, insights about
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human behaviour enable us to build more intelligent machines.

One might ask whether this thesis, broadly classified, is a contribution to the field
of cognitive science or artificial intelligence. The answer is both. We have gained
new insights into how an infant might leverage structure across multiple channels of
sensory input to learn early words. We have also gained insights on how to build
adaptive systems which learn the word-to-meaning mappings of individual users from
natural interactions.

Computational models are powerful tools for understanding the behaviour of com-
plex systems. Often a model is proposed and hotly debated, but difficult to test.
Computational techniques including perceptual computing, pattern recognition and
analysis, and machine learning provide a rich set of tools for building and testing
complex models with realistic input. A model which behaviorally matches the abil-
ities of an infant does not imply that we have actually uncovered how infants solve
the problem. A model which is implemented and successfully evaluated with realistic
data does, however, provide an existence proof that it is at least plausible.

Understanding human intelligence can conversely shed light on problems of cre-
ating artificially intelligent systems. This is not to say that the only way to Al is
to understand humans. We have built airplanes which share little in common with
birds, and chess playing machines which share as little with their human counterparts.
But these examples notwithstanding, humans are an existence proof of many abili-
ties which we cannot observe and study elsewhere. Studying and modeling human
intelligence is a path to achieving machine intelligence. Moreover, if our goal is to
communicate with these systems, it is important to understand human communica-
tion and model it in these systems. Otherwise, we may end up with alien intelligences
which cannot be related to in any humanly discernible way.

In an era of unbounded growth in information technologies, cognitive science and
artificial intelligence are sure to become two sides of the same coin. Exciting new

discoveries are waiting to be made at the intersection of these rich areas of study!
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