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Abstract

This thesis presents BurstMapper, a system for detecting and characterizing bursts
of tweets generated by multiple sources in order to understand interactions between
Twitter users and the role of exogenous events (not directly observable on Twitter)
in driving tweets. The first stage of the system finds temporal clusters, or bursts of
tweets. The second stage characterizes bursts along two dimensions, semantic coher-
ence and causal influence. Semantic coherence measures the semantic relatedness of
the tweets in a burst to each other based on a deep neural network derived embedding
of tweet contents. Causal influence measures the potential causal interaction between
Twitter users using the Hawkes process model.

We introduce an annotated corpus of 7,220 tweets produced by five leading candi-
dates in the 2016 U.S. presidential election. Evaluating the system on the annotated
corpus shows that with a precision of 75%, tweets caused clearly by specific exogenous
events (or responsive tweets hereafter) are detected by the burst detector components
of our system. Furthermore, experiments show that the linear combination of seman-
tic coherence and causal influence are predictive of the presence of responsive tweets in
a burst, with the F1-score of 0.76. Examining bursts along the two dimensions reveals
that (i) the measures are positively correlated with each other (corr=0.33, p<0.001),
(ii) the measures allow us to understand how candidates tend to respond differently
to exogenous events, e.g., by attacking opponents or making plan announcements,
and (iii) the measures can be used to describe the influence dynamics between can-
didates over time. Plotting the bursts from a corpus of 1,470 Twitter accounts (the
five leading candidates and the users followed by them) shows visual evidence that
some user groups (e.g., campaign staffs, journalists, etc.) have a higher levels of se-
mantic coherence and causal interactions. These experiments suggest that the bursts
detected by our system provide a useful level of abstraction that summarizes tweet
content, providing a solution for coping with massive amount of data on Twitter.

Thesis Supervisor: Deb Roy
Title: Associate Professor, Program in Media Arts and Sciences
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Chapter 1

Introduction

1.1 Motivation

In recent years, the micro-blogging site Twitter1 has become a major social media

platform for hundreds of millions of users. These users tweet about their lives, share

opinions, and discuss issues across a variety of different topics. The open-access and

mutually visible nature [11] of the platform makes it an ideal place for interested

people to explore how different individuals and organizations interact and respond to

social signals.

Developing an understanding for how tweets are generated is non-trivial. Take

the tweets posted by the 2016 U.S. leading presidential candidates as an example. A

naïve way to explain the tweeting events is by fitting a Poisson Process, in which a

candidate tweets without being influenced by other candidates or exogenous events.

Figure 1-1 shows the daily tweet volumes for the candidates, with the fitted constant-

rate Poisson Process. Chi-square test reveals that the fitted Poisson Process variance

significantly underestimates the sample variance of the tweet series. This is also

true when we consider tweets filtered by election topics2 (see Figure 1-2). As an

another challenge, explicit interactions between voices do not occur frequently. In our

example, candidate mentions account only 12% of all topic-filtered tweets. Therefore,

1http://www.twitter.com
2Here we apply the trained election topic classification model as proposed in [51]
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Figure 1-1: Mapping of three presidential candidates’ daily tweeting volume from
July 2015 to April 2016. X-axis is discretized with day as the time unit. The fitted
Poisson Process mean is plotted as the dashed line, with green band being the ±2𝜎
range. Right panel shows the data histogram and fitted Poisson Process’ distribution.

Figure 1-2: Tweet series with the same candidates and time span as in Figure 1-1,
filtered by election topics terrorism and guns. The panels with colored vertical lines
show tweets with explicit mentions of other candidates.

there may be influences not directly observable on Twitter that drive a candidate to

decide when to tweet, and what to tweet about.

What if there was a tool to help us understand the interactions between Twitter

users and the roles of exogenous events (not directly observable on Twitter) in driving

tweets? This was the motivation for developing BurstMapper, a tool for detecting and

characterizing tweet bursts to provide a useful level of abstraction for summarizing

tweet events.
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1.1.1 Bursts in tweets

Before describing our approach, we first explain what a tweet burst is. A burst of

tweets is a temporal cluster with high density of tweeting activities. In the study of

human dynamics, burst is a commonly observed phenomenon in everyday activities

(e.g., E-mailing, web-browsing) [3][48][26]. For a bursty series of events, the distribu-

tion for inter-event arrival time often follows a heavy-tail distribution. We confirm

this characteristic with our candidates tweeting example (𝛼=1.13, reflective of the

observed 𝛼 ≃ 1 for human activities [48])3.

The occurrence of burst is often understood as a result due to the presence of some

exogenous events. Therefore, we have reasons to believe bursts on Twitter capture

significant information on user activities.

1.1.2 Properties of tweet bursts

Understanding the characteristics of a tweet burst can help us describe the roles user

interactions and exogenous events play in driving tweets. To develop intuitions for

characterizing bursts, let us zoom-in Figure 1-2 to examine a week-long series of

tweets, as shown in Figure 1-3. For the tweets on topic terrorism, there is a burst

of tweets right after the Paris shooting incident [17] in November 2015, in which the

candidates expressed similar semantic contents by emphasizing their anti-ISIS stance.

It is noteworthy that Hillary Clinton announced her anti-ISIS policy plan a few days

after the shooting, in contrast to her usual disengagement on the subject. For the

tweets on gun control, whenever Hillary Clinton tweets, notice how Ted Cruz quickly

responds by supporting Second Amendment rights. By observing the coordination in

relative tweet timing, one can speculate potential influence from Clinton to Cruz.

3𝛼 is the parameter for fitting 𝑃 (𝜏) = 𝜏−𝛼 on inter tweet arrival v.s. probability log-log plot,
with log-binning.
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Figure 1-3: Two particular instances: (Top) Terrorism tweets after the Paris shooting
in Nov, 2015. (Bottom) Gun control tweets debate in Oct., 2015.
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1.2 Approach and Contributions

The main objective in this thesis is to develop a system that detects tweet bursts

and analyzes them by their characteristics. We are particularly interested in bursts

in which tweets due to exogenous events occur (hereafter responsive bursts)4. A

successful system should be able to identify many responsive bursts, and the analysis

of burst characteristics should reveal interesting ways a user responds to exogenous

events.

In this thesis, we propose BurstMapper, a system to detect and analyze the

potential drivers to a tweet time series by multiple user sources in terms of tweet

bursts. BurstMapper first applies a topic classifier to generate topic-filtered tweet

series. Next, a burst detection algorithm is used to extract temporal clusters with

high density of tweets. We then characterize bursts along two dimensions of analysis:

semantic coherence that measures the semantic relatedness of tweets in bursts using

a deep neural network derived embedding of tweet contents, Tweet2Vec [54]; causal

influence that measures the potential causal interactions between users by applying

Hawkes Process [25], which infers an influence network based on relative event timing.

BurstMapper provides a new tool to examine how exogenous events play a role

in how a user responds on Twitter. This approach differs from previous works that

use only partial semantic information (e.g., hashtags, URLs) to analyze information

influence on Twitter. Additionally, BurstMapper aims to cope with information over-

load by providing a useful abstraction that summarizes tweet content and potential

user interactions. The framework therefore offers the capability for efficient data ex-

ploration. Lastly, our framework is modular, so we can substitute with better models

of Twitter semantics and temporal causality if needed.

In a nutshell, BurstMapper makes the following contributions:

∙ We design a burst detection algorithm to extract temporal clusters of high

density tweets. Also, to characterize bursts, two measures are designed along
4Tweets due to exogenous events do not occur very often. Based on our annotated corpus, only

8% of the tweets are influenced by other voices, with another 30% of tweets triggered by news events.
It is therefore important to distinguish responsive bursts in order to examine exogenous event-caused
tweets in more detail.
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the dimensions of semantics and potential causal interactions. The two mea-

sures can be linearly combined as features for classifying responsive bursts. To

our knowledge, this is the first work that applies state-of-the-art semantic and

temporal-causal models to characterize tweet bursts.

∙ We create a manually annotated corpus of 7,220 election related tweets by five

leading U.S. presidential candidates from 2015 to 2016, where each tweet is

labeled as whether it is caused by exogenous events or not.

∙ Each component in our system is evaluated on the annotated corpus. Experi-

mental results show improvements over benchmark methods in evaluating burst

quality and responsive burst classification.

∙ Exploratory data analysis is performed on the annotated corpus, and a larger

dataset that includes the candidates and the users followed by them on Twitter.

Analysis reveals how the two measures can help us observe different ways a can-

didate responds to exogenous events. Testing on the larger dataset reveals how

certain groups of users may have a higher level of potentially causal interactions

and semantic coherence. Lastly, a small case study discusses how BurstMap-

per provides a more information-rich level of abstraction for summarizing tweet

content, in comparison to alternatives using only partial semantic information

like hashtags.

1.3 Thesis Overview

Chapter 2 discusses the related research works and explains how this thesis differs

from them. Chapter 3 introduces the BurstMapper system. Chapter 4 describes data

collection, and evaluation results of the system. Chapter 5 demonstrates exploratory

data analyses on two datasets using BurstMapper. Lastly, we conclude by discussing

the implications of our findings, limitations, and future directions.
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Chapter 2

Related Works

This thesis shares connections with research works concerning communication influ-

ence and behavior modeling on Twitter. This chapter briefly explains these works

and discusses their relations to the thesis.

2.1 Communication Influence

Influence is an important notion in communication theory that explains how people

interact. Specifically, several theories of influence include: (i) cognitive dissonance

[18]- one may act to correct the perception of surroundings that become inconsistent

with her prior beliefs, (ii) social judgement theory [27]- a change in attitude is con-

trolled by one’s judgement of social context and the effects the change brings, (iii)

elaboration likelihood model [43]- one’s change of attitude is determined by how she

thinks about the persuasive content communicated by others, and (iv) the theory of

reasoned action [1]- one’s reaction is the dual process of her own attitude and learn-

ing from attitudes of others. Influence is also a major concept in many other social

science domains. In political theory for example, rhetoric, lexical expression, and

interactions can dictate the progression of political discourse [7] or election [29].

In computational linguistics, there has been active interest in underdstanding what

affects one’s word choice in a conversation. Recent works have applied probabilistic

topic modeling to map thematic change in language use; scholarly impact can then
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be measured by observing coordinating shifts in topic distributions between authors

[19]. Another approach analyzes variations in word usage due to the power differ-

ence between individuals [9]. Additionally, a recent work [24] proposes probabilistic

language model that directly considers person-to-person influence.

Notice that the mentioned concepts share a mental model in which influence is

due to both implicit bias and observing others. In our thesis, BurstMapper is inspired

by this mental model. Therefore, we hope the proposed framework can serve as an

alternative tool for data exploration in these fields. Also, this work differentiates from

works in computational linguistics in that this thesis focuses on how content could

stimulate communication events to occur.

2.2 Detecting Bursts on Twitter

Detecting a temporally coherent, or high density region of tweets has close connections

to event detection in data streams, where bursts of tweets correspondingly imply

changes in data’s global latent state [30]. In the context of Twitter platform, event

detection is a well-researched topic. One popular way to detect events is to track use

patterns of popular and informative words [36][8]. Another way is to segment time

where text-based measure for newsworthiness is used to rank potential event segments

[34]. Other works have proposed generative models of text to directly model varying

semantic distribution given time [13].

In this thesis, burst detection is used to extract time regions with unusual in-

tensities of tweeting activity. In particular, BurstMapper deploys a frequency filter

[56], rather than incorporating semantic information. This design choice allows us to

explore a greater variability in the semantic characterization of bursts.

2.3 Modeling Semantic Representation on Twitter

There has been a wealth of research on developing computational methods for mod-

eling tweet contents. Many of these works have been task-driven, where specific
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methods are designed for sentiment classification [40][12][5], syntactic annotation [39],

speech acts classification [53], stance detection [50], among many other use cases.

Typically, these works construct machine learning models [28][55], or novel features

[10][31][44] tailor-made for the given research tasks. These works provide a sample

view of the vibrant, and fast changing research landscape in modeling tweet contents.

Very recently, a line of research emerges for modeling Euclidean embedding for

tweet contents. Inspired by the widely popular Word2Vec model proposed by Mikolov

et al. [37], researchers have started to apply different shallow to deep neural network

architectures to learn the tweet semantic embedding [54][50]. This thesis focuses on

applying the established models that provide an expressive representation of tweet

semantics.

2.4 Modeling Influence and Propagation on Twitter

Since Twitter is an online social platform, an important research question is to under-

stand influence. Many research works focus on the network structure of the following

relations and interactions among users [2][58]. Other works have taken the idea fur-

ther to summarize social context [6], rank users [57], detect rumors [52], etc. Our work

differs by using both content and timing-based influence to provide an understanding

of potential drivers for tweets, which provides a different perspective to influence on

Twitter.

A particular case of influence that involves relative timing of events is information

propagation. Propagation of information consists of a user exposing to information,

and adopting the information based on her social neighbors. The seminal work of

Gomez-Rogriguez et al. [22] models the observed cascades (e.g., retweets, photo

reshares) with an underlying influence network. Subsequent works have extended

[22] by providing more scalable parameter optimizations [15][20][21], using out-of-

network information [38], as well as exploring other factors of influence like burst in

product item popularity [47][60].

Amidst the research progress, Hawkes Process [25] is a recently popularized alter-
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native model. This thesis focuses on Hawkes Process because it models multivariate

discrete time series (and not just series of cascades), which is more general. Re-

searchers have applied the model to explain dependencies among a set of social inter-

action [4][42][61], topic cascades [16], and tweet streams [14][59]. This thesis focuses

on a purely application perspective, where in particular we adopt the discrete-time

Hawkes Process proposed by Linderman et al. [35].

2.5 Modeling Behaviors on Twitter

The news-like [32] and openly accessible nature of Twitter has inspired works to

understand Twitter users on a population level, such as predicting election [46], study

politics [45], inferring health outcomes [41], etc. These works often concerns with

profiling users in terms of their demographic attributes and use of words. This thesis

focuses on tweet bursts and mapping them along the dimensions of semantic and

temporal-causal properties. BurstMapper aims to serve as a general tool for providing

useful levels of abstraction for summarizing tweet content, where the other works aim

to solve case-specific data science problems.
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Chapter 3

Methodology

3.1 Definitions

To start, we first describe the data setting used in the thesis. Assuming the data is

given in the form of a discrete series of tweet events 𝒮 = {𝑒1, ..., 𝑒|𝒮|}. Each tweet event

is generated by a source user account 𝑢 ∈ 𝒰 = {1, ..., |𝒰|}. A tweet 𝑒𝑛 is denoted as a

𝑒𝑛 = (𝑒𝑡𝑛, 𝑒
𝑐
𝑛, 𝑒

𝑧
𝑛, 𝑒

𝑠
𝑛, 𝑒

𝐶
𝑛 , 𝑒

𝑝
𝑛) tuple, with tweet raw data: time 𝑒𝑡𝑛, user identity 𝑒𝑐𝑛, when

the user previously tweeted 𝑒𝑝𝑛, and content 𝐶𝑛; as well as content-derived meta-data:

topic classification 𝑒𝑧𝑛, and categorization of stimulus 𝑒𝑠𝑛.

Additionally, note we can subdivide or filter the original series 𝒮 of tweet events.

First, the tweet time series generated by user 𝑢 is denoted by the superscript 𝒮𝑢.

Second, we use the underscript 𝑧 to denote events filtered by topic 𝑧, so that 𝒮𝑢
𝑧 is

the tweet series by user 𝑢 regarding topic 𝑧. Figure 3-1 illustrates how a raw tweet

time series can be subdivided into multiple tweet series per candidate and by topic.

We also define the discrete time series representation of 𝒮 as 𝜏𝑆. More formally,

𝜏𝑆(𝑖) describes the number of event counts occurring between ∆𝑡 * 𝑖 < 𝑡 ≤ ∆𝑡 * (𝑖+ 1)

for some 𝑖, where ∆𝑡 is the size of discrete time step. All time series operations use

discrete time series representation, with ∆𝑡 = 1 day unless otherwise noted.

A burst ℬ𝑆
𝑡𝑥𝑡𝑦 = {∀𝑒𝑖 ∈ 𝑆 𝑠.𝑡. 𝑒𝑡𝑖 ∈ [𝑡𝑥, 𝑡𝑦]} is defined as a temporal cluster of tweets

in time interval [𝑡𝑥, 𝑡𝑦]. Specifically, a burst is responsive if there exists some tweets

in the burst that are caused by exogenous events, e.g., breaking news or tweets by
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Figure 3-1: An example showing how tweet series 𝒮 is divided into sub-user and
sub-topic streams 𝒮𝑢; 𝒮𝑢

𝑧 . ∆𝑡=1 day.

other users.

3.2 Overall Objective

The main objective in this thesis is to develop a system that detects tweet bursts and

analyze the bursts by their characteristics. Therefore, the first measure of success in

the system is the ability to reliably produce bursts of tweets in which many tweets

are caused by exogenous events. The second measure of success is how well analysis

using the characterizations of tweet bursts can help reveal anything interesting about

how a user responds in the face of exogenous events.

3.3 Overview of BurstMapper

With the objectives in mind, we introduce BurstMapper, a system to identify and

characterize bursts in tweet time series. Figure 3-2 displays the overall structure of

the system. There are several stages to BurstMapper

∙ Topic Filtering : Given tweet series by multiple sources, we filter the series
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into per-topic subbands using a trained topic classifier [51] to provide topic

annotation 𝑒𝑧𝑛.

∙ Burst Detection: Given the topic-filtered series of tweets, a burst detection

algorithm extracts high-density regions of tweet events.

∙ Attribute Mapping of Tweets : The content for each tweet is embedded in a high

dimensional Euclidean space, based upon term-occurrence. This is then reduced

onto a latent semantic feature space by applying the state-of-the-art Tweet2Vec

model [54].

For the topic-filtered series over multiple users 𝑢, Hawkes Process [25] is used

to determine influence from user 𝑢′ to 𝑢 at time 𝑡 by inferring an underlying

influence network based on relative event timing.

∙ Burst Characterization and Data Exploration: Now, each burst can be mapped

along the two dimensions of characterization, semantic coherence and causal

influence, computed based on the semantic and temporal-causal feature map-

ping of tweets. Using the two measure of the tweet bursts, one can design a

classifier that uses the linear combination of the features for responsive burst

classification. Further, examining bursts along the two dimensions can reveal

interesting ways users respond to exogenous events.

For the remainder of this chapter, each component of BurstMapper is explained in

greater detail.

3.4 Topic Categorization

We want to annotate topic category for each tweet in the original tweet series 𝒮. For

this purpose, a multi-class topic classifier is used to label topics for the tweets.

BurstMapper adopts a convolutional neural network based word embedding model

for training tweet topic classifier as suggested in Vijayaraghavan et al. [51]. Figure 3-

3 illustrates the model architecture. It begins by mapping the tweets to n-gram word
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Figure 3-2: The overall pipeline for the proposed framework BurstMapper

Figure 3-3: The schematic of the computational architecture used in Vijayaraghavan
et al. [51] for developing a tweet topic classifier
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Figure 3-4: The schematic burst detection algorithm. The enlarged figure shows how
using the residual signal can filter many tweets that are not due to exogenous events.

embeddings. Afterwards, the n-gram word embedding is passed to a convolutional

neural network for supervised classification, with topic annotation determined by the

highest score in the softmax layer. In this thesis, we use the pre-trained election topic

classifier in [51], with reported F1 score for the topics to be 0.90.

3.5 Burst Detection

The aim of burst detection is to extract temporal clusters of high density tweets.

BurstMapper applies a two-step procedure for detecting bursts:

(1) Computing residual signal- the series 𝑆·
𝑧 filtered by topic is passed through

a high-pass frequency filter. The filter is constructed by first transforming 𝜏𝑆 into
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𝜏𝑆 using Butterworth filter (this removes sporadically occurring events). Next, the

residual signal is computed as 𝑟𝑆 = 𝜏𝑆 − 𝜏𝑆. The values of 𝑟𝑆 are set to 0 if at any

given time 𝑡, 𝑟𝑆(𝑡) is less than some threshold.

(2) Extracting bursts- now, given 𝑟𝑆, we apply a simple greedy algorithm to output

bursts. We slide a time window through 𝑟𝑆, and concatenate timestamps 𝑡 into time

interval [𝑡𝑥, 𝑡𝑦] with 𝑟𝑆(𝑡) > 0 into ℬ𝑆
𝑡𝑥𝑡𝑦 .

Figure 3-4 illustrates the process. Note that the right diagram shows how the

tweets caused by exogenous events can be captured by the residual series. The overall

burst detection algorithm is summarized in Algorithm A-1.

3.6 Attribute Mapping of Tweets

3.6.1 Semantic Mapping

BurstMapper adopts the Tweet2Vec model [54] for mapping the tweet contents onto

a 600-dimensional latent semantic feature space. Tweet2Vec is a recently proposed

model for embedding tweet that achieves state-of-the-art results on measuring seman-

tic similarity [54]. The model learns semantic embedding based on a character-level

CNN-LSTM encoder-decoder architecture. After the model is trained, for any given

tweet 𝑒𝑛 with content 𝑒𝐶𝑛 , we use the encoder portion of Tweet2Vec to produce the

600-dimensional latent semantic embedding features 𝑒𝑠𝑒𝑚𝑛 . Figure 3-5 displays the

architecture.

3.6.2 Temporal-Causal Mapping

For temporal-causal mapping of tweets, we adopt the Hawkes Process model [25].

Hawkes Process is a point process in which the frequency of event occurrence depends

on the event history. It is dictated by the intensity function of time, denoted by 𝜆(𝑡)

as describing the expected event occurrence frequency at time 𝑡. Hawkes Process

corresponds to Poisson Process with varying-rate in discrete time domain.

For a tweet series 𝑆𝑢
𝑧 by user 𝑢 on topic 𝑧, the corresponding intensity function of
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Figure 3-5: The schematic of the computational architecture used in Vosoughi et al.
[54] for developing Tweet2Vec, vector embedding of tweet content.

time, 𝜆𝑢(𝑡), that describes user 𝑢’s frequency of tweets, is:

𝜆𝑢(𝑡) =

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒⏞ ⏟ 
𝜇𝑢 +

𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒⏞  ⏟  ∑︁
𝑡𝑖<𝑡,𝑒𝑐𝑖=𝑢′

𝛼𝑢′𝑢𝜑(𝑡|𝑡𝑖) (3.1)

𝜇𝑢 is user 𝑢’s tweeting frequency, independent of other users.
∑︀

𝛼𝑢′𝑢𝜑(𝑡|𝑡𝑖) accounts

the historical influence of other users 𝑢′ on 𝑢’s tweeting frequency, where 𝛼𝑢′𝑢 describes

user-to-user influence from 𝑢′ to 𝑢. 𝜑(𝑡|𝑡𝑖) is a time-decaying weight function to

discount influence over time. For convenience, define 𝜆𝑢′𝑢(𝑡) =
∑︀

𝑡𝑖<𝑡,𝑒𝑐𝑖=𝑢′ 𝛼𝑢′𝑢𝜑(𝑡|𝑡𝑖).

Note that Hawkes Process is a form of Generalized Linear Model, and the parameters

𝛼𝑢′𝑢 correspond to regression-based Granger Causality [23]. See [25][35] for details.

In this thesis, BurstMapper applies the discrete-time Hawkes Process [35].

To fit a Hawkes Process model for 𝑆𝑧, jointly consider 𝜆𝑢(𝑡) for all users 𝑢 that

corresponds to tweeting frequency for series 𝑆𝑢
𝑧 . One can learn the model parameters

by MLE learning on data log-likelihood.
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To account the dynamic nature of tweet time series, Hawkes Process is fitted

multiple times on a sliding time window 𝑊 (length 𝑊𝑙) through time. For each tweet

𝑒𝑛, we have its corresponding causal influence mapping 𝑒𝑐𝑎𝑢𝑛 :

𝑒𝑐𝑎𝑢𝑛 =
1

𝑊𝑙

∑︁
𝑡:𝑡∈𝑊

∑︁
𝑢′

𝜆𝑢′𝑒𝑐𝑛(𝑡) (3.2)

essentially accounting user influence averaged over all time windows where 𝑡 ∈ 𝑊 .

3.7 Burst Characterization and Data Exploration

3.7.1 Burst Characterization

Given the extracted bursts, and the semantic and temporal-causal mapping of the

tweets, we now compute the two measures of bursts characteristics.

Semantic Coherence

The first measure is semantic coherence. The intuition is that if users participate in

similar sub-topic discussion, the pairwise semantic similarity among tweets should be

high. Additionally, if many people participate in the same sub-topic, then it is likely

to have wider variability in content expression. Specifically, for burst ℬ𝑆𝑧
𝑡𝑥𝑡𝑦 , we have:

𝑆𝐶ℬ𝑆𝑧
𝑡𝑥𝑡𝑦

=
1

𝑍
* 𝐴𝑣𝑔(𝑚𝑚𝑚) * 𝐸𝑛𝑡(𝑚𝑚𝑚)

𝑤ℎ𝑒𝑟𝑒 𝑚𝑚𝑚 = [𝑒−|𝑒𝑠𝑒𝑚𝑗 −𝑒𝑠𝑒𝑚𝑖 |𝐹 , 𝑗 ∈ 𝑘𝑁𝑁(𝑖) ∀𝑒𝑖 ∈ 𝑆 𝑠.𝑡. 𝑒𝑡𝑖 ∈ [𝑡𝑥, 𝑡𝑦]]

(3.3)

where 𝑍 is the normalizing constant. Basically, for each tweet 𝑒𝑖 in the burst, we

first compute the average of the semantic distances between 𝑒𝑖 and its top-k nearest

neighbors (which are tweets by other users). This results in an array, 𝑚𝑚𝑚. To compute

semantic coherence, the average (𝐴𝑣𝑔) and entropy (𝐸𝑛𝑡) of 𝑚𝑚𝑚 are computed.
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Causal Influence

Causal influence aims to measure temporal-causal activity level within a burst. Using

the temporal-causal mapping of the tweets, we have:

𝐶𝐼ℬ𝑆𝑧
𝑡𝑥𝑡𝑦

=
1

𝑍
* 𝐴𝑣𝑔(𝑔𝑔𝑔)

𝑤ℎ𝑒𝑟𝑒 𝑔𝑔𝑔 = [𝑒𝑐𝑎𝑢𝑖 * 𝜑(𝑒𝑡𝑖 − 𝑒𝑝𝑖 ) ∀𝑒𝑖 ∈ 𝑆 𝑠.𝑡. 𝑒𝑡𝑖 ∈ [𝑡𝑥, 𝑡𝑦]]

(3.4)

The basic intuition is that 𝑒𝑐𝑎𝑢𝑖 computes the level of potential causal influence of

users 𝑢′ on the tweet 𝑒𝑖. 𝜑(𝑒𝑡𝑖 − 𝑒𝑝𝑖 ) computes the wait time between tweet 𝑒𝑖 and

when the user last tweeted.

Applying the Two Measures for Characterizing Bursts

In the later chapters, we will show that by linearly combining the two measures for

a burst, one can develop a classifier for identifying responsive tweet bursts. Also, we

will show that mapping the bursts along the two dimensions can reveal interesting

ways different users generally respond to exogenous events.

3.7.2 Querying from the Bursts

As the system churns raw tweet series and outputs the detected bursts that are

mapped along the two measures, we also want to be able to search the bursts accord-

ing to some queries of interest. Naïve query pattern matching may fail to retrieve

semantically and temporally similar tweets that do not contain the query terms. We

apply a simple two-step procedure. First, we extract a set of seed tweets based on

those with matching query terms. Second, we apply an exemplar-based clustering

algorithm [33] using the seed tweets as examples. The similarity between pairs of

events for clustering algorithm is computed as

𝑠𝑖𝑚(𝑒1, 𝑒2) = 𝑒−(𝛽*|𝑒𝑠𝑒𝑚1 −𝑒𝑠𝑒𝑚2 |𝐹+(1−𝛽)*|𝑒𝑐𝑎𝑢1 −𝑒𝑐𝑎𝑢2 |𝐹 ) (3.5)
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Figure 3-6: A graphical explanation of how the two proposed burst characters mea-
sures are computed given the tweets and their corresponding attributes in a burst.
(Left) Computation of semantic coherence; (Right) Computation of causal influence.

. After the cluster IDs are assigned, instances that are far away from the assigned

cluster centroids will be dropped. In the end, the process returns bursts that contain

tweets closest to the center of the assigned cluster id. This process is described in

Algorithm A-2. Figure 3-7 displays the procedure visually, as well as sample results

based on two queries ("Sandy Hook" for the Sanders remark controversy; "Belgium"

for the terror attack). Notice how the returned contents are semantically relevant to

the query term.
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Figure 3-7: (Left) The schematic of the process to query tweet events based on the
two measures; (Right) Two examples of returned tweets using the event-based queries.
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Chapter 4

Evaluations

4.1 Datasets Description

To evaluate BurstMapper, we focus on tweets relevant to the 2016 U.S. presidential

election. We map each tweet to one of 22 election topics (excluding the ’Others’

category, see Table 4-1, Appendix B explains the definition for each topic in more

details), based on the pre-trained model used in [51].

Racial Issues Justice Income Inequality
Budget/Taxation Campaign Finance Abortion
LGBT Issues Terrorism Veterans
Economy Drugs Guns
Jobs/Employment Ethics Foreign Policy/National Security
Immigration Surveillance/Privacy Health Care
Environment/Energy Financial Regulation Trade
Education

Table 4.1: List of Topics

Two datasets are used for evaluation experiments. The first corpus, named Five-

Candidates, provides annotated data based on historical tweets by five U.S. leading

presidential candidates1 for the 2016 election. The second dataset, called FiveCandi-

datesExpanded, is obtained by considering a larger set of users of both the candidates

and the accounts followed by them on Twitter.

1Candidates: Hillary Clinton, Bernie Sanders, Ted Cruz, John Kasich, and Donald Trump. The
list is selected based on the candidates that were still running in April, 2016.
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4.1.1 Detailed Description of Datasets

FiveCandidates

In order to collect the tweets, we use GNIP’s2 Historical Power Track to obtain the

five candidates’ tweet history. We are able to obtain tweets from May 2nd, 2015 to

May 2nd, 2016, totaling 29,016 tweets. After passing through topic categorization

funnel that filters tweets in the ’Others’ category3, we are left with 7,220 tweets,

comprising of 25% of all tweets. Figure 4-1 (Left) shows the tweet count distribution.

FiveCandidatesExpanded

To collect the tweets for the second dataset, we use the Twitter Public API to obtain

users that the five candidates follow. We apply a profile-based examination to filter

accounts that may potentially be celebrities (those with number of followers more

than 500,000). The historical tweets by the new set of users are extracted from Jan

1st, 2016 to May 2nd, 2016. We further filter users with less than 3 tweets related

to any of the 22 topics. The preprocessing steps result in a total of 1,470 users with

117,648 tweets after applying topic categorization filter.

4.1.2 Label Annotation

The FiveCandidates dataset additionally undergoes a manual labeling process to clas-

sify whether a tweet is caused by some exogenous events. We resort to Amazon

Mechanical Turk to have online workers to do the labeling. Each tweet can be cat-

egorized as: (i) Response (tweet influenced by tweets of other voices), (ii) External

(tweet influenced by breaking news events), (iii) Internal (tweet not due to exogenous

events), and (iv) Error (tweet where topic categorization errs). Figure 4-1 (Right)

shows the resulting proportion of tweet categories, with the worker agreement of 0.70

2GNIP(http://gnip.com) is a service provider (acquired by Twitter) for social media data inges-
tion. It has a "Historical Power Track" that enables search-back-in-time capabilities to Twitter’s
historical tweets.

3There are 21796 ’Others’ tweets, in which the candidates elaborate on personality/credibility,
polls, campaign events, etc. An example: ’RT @FoxNews: .@tedcruz: "#SuperTuesday revealed
pretty powerfully that the only candidate who has a path to beating @realDonaldTrump is me.’
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Figure 4-1: Left: Count of events for each of 22 topics. Right: the labeled proportion
determined by manually labeling.

(3+1 AMT/dedicated workers per tweet)4.

For the purpose of the experiments, the Response and External categories both

account for the type of tweets caused by exogenous events. Note the relatively low

proportion of External and Response tweets. It is therefore understandable that

correctly identifying all tweets caused by exogenous events would be difficult.

4.2 Evaluating Burst Detector

The first evaluation tests how well the burst detector (BurstDetector) is able to

produce bursts with reasonable quality. We want the time regions extracted by the

bursts to include a high proportion of tweets caused by exogenous events (a.k.a.

responsive tweets). Since the time region due to each burst is a collection of discrete

timestamps, the evaluation metrics is computed as: (i) Precision- Prob(time stamps in

the bursts of responsive tweets | time stamps of all bursts), and (ii) Recall- Prob(time

stamps in the bursts of responsive tweets | all time stamps of responsive tweets).

To compare against the proposed method, two competing baselines are used. The

4To control for the subjective nature of online workers (their decision might be biased by their
view of the election), we invited a dedicated worker who is knowledgeable of the election background,
and gave him a few hours training with detailed instructions. We provided him an annotated corpus
of 30 tweets (labeled by the author), in which he was able to answer with over 85% accuracy. We
weighted his answers with 2 votes.
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Figure 4-2: Left: Precision of correctly identify the timestamp containing externally
stimulated tweets. Right: Recall plot.

first baseline (Sigmoid) applies a thresholded sigmoid activation to the tweet volume

time series. The transformed series is passed to a greedy grouping procedure for

producing bursts. The second baseline (Kleinberg)[30] is a commonly used method

that captures burst as state transitions describing the tweet time series.

Figure 4-2 shows the results. The result shows that while naïve baselines such

as Sigmoid has high recall, in exchange, the precision drops significantly. Klein-

berg is not comparable in performance due to the model assumption that the events

are homogeneous. On Twitter, tweets are due to a complex set of influence. The

assumption behind Kleinberg’s detection method wouldn’t suit this dataset well.

4.3 Evaluating Measures for Burst Characterization

The next phase of evaluation applies the measures to classify whether a burst is

responsive (for such bursts, let the default minimum number of responsive tweets

within a burst be 1). The goal of this evaluation is to test whether the proposed

measures for characterizing burst are in fact informative.

To get some inspiration, we run a logistic regression test to see how semantic

coherence and causal influence measures, as well as feature interactions, are significant

in characterizing bursts. For the regression test, the response variable holds the value
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Temporal-Causal Semantic Interactions
𝑒𝑐𝑎𝑢𝑖 𝐴𝑣𝑔(𝑚𝑚𝑚) 𝑒𝑐𝑎𝑢𝑖 * 𝐴𝑣𝑔(𝑚𝑚𝑚)

𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) 𝐸𝑛𝑡(𝑚𝑚𝑚) 𝑒𝑐𝑎𝑢𝑖 * 𝐸𝑛𝑡(𝑚𝑚𝑚)
𝐶𝐼 𝑆𝐶 𝑒𝑐𝑎𝑢𝑖 * 𝑆𝐶

𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝐴𝑣𝑔(𝑚𝑚𝑚)

𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝐸𝑛𝑡(𝑚𝑚𝑚)

𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝑆𝐶
𝐶𝐼 * 𝐴𝑣𝑔(𝑚𝑚𝑚)
𝐶𝐼 * 𝐸𝑛𝑡(𝑚𝑚𝑚)
𝐶𝐼 * 𝑆𝐶

Table 4.2: A list of features used in regression analysis.

of 1 if the datum is a responsive burst, and 0 otherwise. A test is performed on each

topic-filtered series 𝑆𝑧 (for a list of variables, see Table 4-2). Result shows that each

feature, as well as the feature interaction across categories, show certain amount of

significance for fitting the logit model (see Appendix D for more details).

Method Precision Recall F1-Score
Random 0.574 1.0 0.678
Causal Interaction Only 0.664 0.755 0.702
Semantic Only 0.777 0.698 0.734
Joint Features 0.774 0.754 0.761

Table 4.3: Overall performance burst classification over 22 election topics

With the developed intuition, the next test aims to construct a responsive burst

classifier to see how can the measures be practically applied. The classifier model

being used is the standard Gradient Boosted Tree Classification5 trained on the entire

corpus. For the features, the components for each measure, shown in Table 4.2, are

linearly combined as part of the feature vector. The feature vector also includes a

binary vector of topic category ID.

There are 1,030 detected bursts, of which 574 are labeled responsive. A model

is trained on each election topic, and evaluated with a 5-fold cross validation. The

results are summarized in Table 4-3, where we also display the naïve result by ran-

domly guessing 1. When employing features associated with both semantic coherence

and causal influence, the performance provides non-trivial improvement over random

5Hyperparameters are tuned to be: estimator number-50, sub-sample rate-0.5, max depth-3
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Figure 4-3: The receiver-operating characteristics (ROC) curve of the classifier on
responsive burst classification task.

baseline, as well as using features associated with only a single measure (8%/3%

improvement in F1-score).

To better understand the performance of the binary classifier, Figure 4-3 also

shows the overall receiver-operating characteristics (ROC) curve that shows the per-

formance of a classifier as the discrimination threshold is varied. This plot can help

us to understand the trade-offs between false-positive(False Positives/(False Posi-

tives+True Negatives)) and true-positive (True Positives/(True Positives+True Neg-

atives)) rates. Depending on the application and how sensitive one is to getting false

positive errors, the classification threshold can be changed accordingly. For example,

at a tolerance of 24% false positives, the system can achieve almost 90% precision.

Remark The burst detector/classifier extracts 1000 bursts from the 29,000 tweets

in the FiveCandidates corpus. This is a data reduction of 1000/29000, or 30-fold.

Furthermore, the system selects about ∼66% of those 1000 bursts, e.g. 660 bursts.

This provides a data reduction of 660/29000 , or 44-fold. To summarize, this method

of "coping with information overload" involves: first, an aggregation from tweets to

voice/topic-conditioned bursts; second, a filter for whether a burst is responsive.
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Chapter 5

Data Explorations

In this chapter, we want to examine the datasets in more detail to see how using

the two measures to analyze burst can help reveal interesting ways users respond to

exogenous events. In particular, three case studies are presented:

∙ We examine FiveCandidates corpus in greater detail. The detected bursts are

mapped along the semantic coherence and causal influence measures to explore

how exogenous events drive each presidential candidate to tweet differently.

∙ Data exploration is further tested on the FiveCandidatesExpanded dataset. Here

we examine if the measures can reveal how certain groups of users may have a

higher level of semantic coherence and potential causal interactions.

∙ The last case study discusses how BurstMapper delivers useful findings not pro-

vided by analyzing tweets with only partial semantic information like hashtags,

URLs, etc.

5.1 Deeper Dive in FiveCandidates

Given the extracted bursts, a natural next step is to see how the bursts are charac-

terized along the two dimensions, semantic coherence and causal influence. We focus

particularly on candidate-level analysis to understand how a candidate becomes re-

sponsive to exogenous events.
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For each burst, we compute the semantic coherence and causal influence measures.

Specifically, the measures are computed with respect to the tweets by the particular

candidate within a burst. We plot all bursts on a semantic coherence by causal

influence plane. The motivation is that some bursts are not necessarily both highly

semantically coherent and temporally causal, and it is thus interesting to explore

under what situations might bursts not have high values for both measures1. The

results are plotted in Figure 5-1.

We first examine the region with high semantic coherence and high causal influence

measures for a burst. Comparing the bursts between Hillary Clinton and Bernie

Sanders, observe how Sanders’ bursts are mostly about addressing and attacking his

fellow candidates. On the other hand, Clinton focuses more on addressing supporters

and announcing policy plan when major breaking news events occur.

Upon closer inspections on Sanders’ tweets, he has been relatively vocal on topics

where other candidates tweet less frequently about (e.g., financial regulation, worker

inequality, etc). Also, many of his tweets are not burst-related, but rather part of

frequent promotions of his own ideology. However, it turns out Sanders becomes tem-

porally responsive and semantically coherent on battleground topics to attack fellow

candidates. Therefore, in terms of responsiveness to exogenous events, Sanders is

actually more responsive than Clinton, where in contrast Clinton’s tweets are consid-

erably more composed and planned.

Now take a closer view at Clinton’s tweets. When Clinton is temporally respon-

sive and semantically coherent, she is usually responding to some important news

events or controversial issues. One can observe that Clinton takes advantage of the

opportunities to make speeches or plan announcements. Since these announcements

take time to prepare, they often make Clinton slightly lag behind her competitors.

To summarize, analyzing along the semantic coherence and causal influence measures

can reveal different ways the candidates respond to exogenous events. We find that

mapping the bursts along the two dimensions also tell us how other candidates re-

1Temporal-causality measures if relative tweet timing between voices follows a consistent pattern.
It is possible to have a burst not having strong temporal-causality between voices, but still be
’responsive’ (e.g., a terror attack, which happens only a few times in a year, is such an example).
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Figure 5-1: Mapping the bursts onto semantic coherence-causal influence plane with
respect to each presidential candidate. Non-responsive bursts are also plotted as
comparison.

49



Figure 5-2: Heatmap of Sanders’ tweeting activity in terms of the burst measures.

spond to exogenous events as well. Lastly, it is interesting to point out that the two

dimensions are positively correlated to each other (with correlation coefficient of 0.33,

p < 0.001). This suggests that as the candidates try to be more semantically coher-

ent, it is likely that such semantic similarity is due to potential causal interactions

between candidates.

Now we explore another way to examine bursts in terms of the two measures by

plotting the measures over time with a heatmap. Figure 5-2 displays such heatmap

for Sanders over the 22 election topics. In the heatmap, the color bands (red, or-

ange, blue) imply (high-high, high-low, low-high) semantic coherence-causal influence

measure pairs in terms of the measure value. Note Sanders typically becomes more

semantically coherent and temporally responsive later in the election campaign. Also,

in the topics Sanders engages less on, he tends to become responsive when important

news events occur (e.g., Paris and Belgium terror attacks). These observations re-

flect a progression in social media strategy: as the election process got more heated,
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Figure 5-3: Mapping information influence networks over time for election topic ter-
rorism. Top panel shows the tweet time series of daily tweet volume, divided into
time regions. Bottom panel shows the inferred information influence network in each
region. See Table 5.1 for descriptions of news events in each region.

Sanders could not focus solely on his own narrative without engaging on topics that

other candidates enjoy strong presence in.

Lastly, we explore how the semantic and temporal-causal information can be used

to derive a network of information influence between candidates. Figure 5-3 displays

the tweet time series filtered by the topic terrorism. The time series is divided into

nine segments describing major events relevant to the topic (Table 5.1 provides a

detailed description of the events occurring in each segment). The user networks

shown in the bottom panel describe the inferred information influence between user

𝑢′ and 𝑢, defined by

𝐼𝑢′,𝑢 =
1

|{𝑒𝑖 ∈ ℬ|𝑒𝑐𝑖 = 𝑢}|
∑︁

𝑒𝑖∈ℬ,𝑒𝑐𝑖=𝑢

∑︁
𝑒𝑗∈ℬ,𝑒𝑡𝑗<𝑒𝑡𝑖,𝑒

𝑐
𝑗=𝑢′

𝛾𝜆𝑒𝑐𝑗𝑒
𝑐
𝑖
(𝑒𝑡𝑖) + (1 − 𝛾)𝑒−|𝑒𝑠𝑒𝑚𝑖 −𝑒𝑠𝑒𝑚𝑗 |𝐹

, where ℬ spans a set of bursts within a time region (𝛾 is determined empirically as

0.75). In this experiment, information influence is determined by temporal-causality

due to relative tweet timing, as well as how one conforms semantically to previously

posted contents by other users. Take regions (iv) and (v) for example. The major

news event in region (iv) is the Paris terror attack. Not only do we observe a surge
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Region Description

(i) The first GOP Debate, Cruz is particularly active on Iran Deal and
anti-ISIS stance.

(ii) 9-11 Anniversary
(iii) Kasich and Cruz responding to the Russian Airline crash incident.

(iv)

Paris shooting: each candidate responds within a day or two; Cruz is
the first vocal candidate; Kasich makes several speeches, interviews,
and press releases; Trump becomes responsive by attacking Obama;
Clinton finally responds with a policy plan announcement.

(v) Clinton continues to be engaged in the topic; Trump attacks more on
Democrats.

(vi)
DNC Debate with discussions on anti-terrorism, as well as responding
to Trump’s controversial remarks; other GOP candidates also respond
to the Democratic Debate

(vii) February GOP Debate, not as heated debate.
(viii) GOP Debate, Trump not engaging.
(ix) Brussels attack: candidates elevate engagements on the topic.
Table 5.1: Detailed description of events in each region specified in Figure 5-3.

of information flow between users, notice the thick edges from Kasich to Clinton and

Trump. It turns out that Kasich made an important press statement on anti-ISIS

plan. Clinton and Trump both actively responded, with Clinton releasing a policy

plan as well. In region (v), notice how Trump is trying to rob the narrative from

Kasich and Clinton by elevating his anti-ISIS stance. In addition, he starts to attack

Muslim, President Obama and Clinton in an attempt to get media attention.

5.2 Exploring the FiveCandidatesExpanded Dataset

After demonstrating how BurstMapper can be used to explore tweet bursts for a

small set of users, one follow-up question is: is it possible to apply this framework

to a larger set of users? Since the dataset now becomes potentially too large to

create a dataset with labeled ground-truth, it would be ideal if our system can still

provide a useful level of abstraction that summarize tweet content. To address the

questions, we test on the FiveCandidatesExpanded dataset. In particular, for each of

the five candidates, we focus on the subset of the 1,470 users who are followed by the

candidate on Twitter. Additionally, we categorize the users as either the candidate
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Figure 5-4: For each tweet series filtered per candidate group, map the bursts with
the semantic/causal measures with respect to each type of voice group.

herself, campaign staffs or supporters, or journalists. Hawkes Process model training

is done on the subsets of users.

Similar to what was done in the FiveCandidates dataset, we map the bursts along

the two characteristic dimensions, with respect to each user category. The result is

shown in Figure 5-4. For Clinton, observe that campaign staffs and supporters are in

general highly semantically coherent and temporally responsive in comparison to the

journalists. This is evident in the actual tweets, where the campaign staffs are actively

stating supports for Clinton over various election issues. In contrast, for a candidate

like Kasich, the relative temporal-responsiveness for journalists is higher than his

supporters. To explain this difference, a quick look into the set of voices reveals that

Kasich tends to follow many journalists who are also well connected to each other

(with an average degree of 25.2). For Sanders, who also follows many journalists,

has a similar trend for journalists, while being slightly more semantically coherent.

Interestingly enough, the journalists are also well connected (with an average degree

of 40.0). By looking purely at contents and tweet timing, we can already discover

some non-trivial aspects in the data.

We can also compare how the levels for potential causal interactions and semantic

coherence differ for groups of users within tweet bursts. Figure 5-5 shows the average

semantic distance and temporal-causal mapping 𝑒𝑐𝑎𝑢𝑛 for each tweet 𝑒𝑛 relative to start

of the burst for candidates Clinton, Sanders, and Kasich. For the journalists followed
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Figure 5-5: Mapping the within-burst variability using the burst measures with re-
spect to series filtered per candidate group. Left/Right panel: semantic/causal mea-
sure; X-axis: time past since the burst first initiated.

by Kasich, the tweets are generally semantically coherent and temporally-responsive

throughout a burst. As with Clinton, the journalists are semantically coherent in

the early phase of a burst, but notice there is a small bump at the end of a burst,

suggesting a "lagged" behavior for the journalists to respond. In short, taking the

perspective of a within-burst view of the tweets can also reveal some descriptive

response patterns of the users.

5.3 BurstMapper v.s. Traditional Approaches

We further elaborates how our system contrasts from using partial semantic informa-

tion for analysis as in many previous works.

Referring again to the FiveCandidatesExpanded dataset. This case study focuses

on Hillary Clinton and the accounts she follows on Twitter. Consider analyzing

tweets using only popular hashtags. We find that popular hashtag occurrence do
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Figure 5-6: Mapping of bursts relevant to topic Guns. Those related to the incident
of Sandy Hook controversy are pointed out. Right shows the tweets by journalists
and campaign staffs.

not necessarily correlate with semantic coherence2. Take the election topic Guns for

example. Many of the popular hashtags (e.g., #IamWithHer, #StopGunViolence) are

not very informative of the possible exogenous events that may influence the users to

tweet.

#DemDebate #IamWithHer #DemTownHall
#StopGunViolence #gunviolence #HillaryinNH

Table 5.2: List of Popular Hashtags in the topic Guns for voices Clinton follow.

Suppose we want to understand how different users respond to gun-related news

events. Let’s map the bursts along the semantic coherence and causal influence

dimensions as in the previous sections. One can observe bursts associated with cam-

paign staffs are more responsive in terms of semantically coherence and causal in-

fluence. Suppose one wants to examine the recent controversy in Sanders’ remark

regarding Sandy Hook court hearing [49]. Mapping the bursts shows that the jour-

nalists are not very actively engaged in the sub-topic. More evidence can be found in

the actual tweets: the campaign staffs and supporters are openly skeptical on Bernie

Sanders, whereas the journalists are not as interested in this news event. Therefore,
2In fact, hashtags are often sparse in these topic-filtered series, and several topics show zero to

negative Pearson correlation.
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by using a more complete information of the semantics as well as potential causal in-

teractions, BurstMapper delivers a more expressive tool to perform data exploration

on tweets.
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Chapter 6

Conclusion

This thesis proposes the BurstMapper system to identify and characterize tweet bursts

to analyze the roles exogenous events play in driving tweets. The system is evalu-

ated on an annotated corpus, with each component showing reasonably good results.

BurstMapper is further demonstrated to be able to characterize bursts in ways help-

ing interested individuals to understand how different users respond differently in the

face of exogenous events. The system is shown to provide informative results even

in larger-scale datasets. We believe the proposed methodology can bring forth a new

way for analyzing tweet communications.

More General Use of BurstMapper

While the evaluations are done specifically on election-related tweets, expanding

BurstMapper to different tweet topics should be a straightforward change of topic

classification model. In fact, the model architecture in [51] can be directly applied to

data in the new topic domain with appropriate training data.

Limitation and Future Work

The proposed system is not without limitations. While the system seems promising to

apply to different topic domains, it is not clear if the residual-based burst detection

would work very well when facing an even larger-scale tweet series. It seems that
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concepts such as Dirichlet Hawkes Process [14] or models that consider latent state

spaces with content generation should be able to tackle data with higher complexity

data. A natural next step is to try to consider using a point process generative model

to improve the currently proposed burst detection algorithm.

It is also not yet clear to what extent can Tweet2Vec model be generalized. A

more detailed experiment is warranted to see how do finer-grained tweet expressions

map to the latent semantic embedding space. Having a more detailed understanding

of the model can be helpful to enhance the current framework to deal with semantic

similarity with respect to forms of expressions (e.g., language formality, allusion,

sarcasm).

Lastly, while Hawkes Process can acts as a proxy to measure temporal-causality

between pairs of voices, it does not strictly follow the Granger causality by blocking

out potential confounding factors. Therefore, certain degree of noise is inevitable.

Also, in terms of computation, naïve Hawkes Process doesn’t scale with many voices,

as the learning/simulation worst-case complexities are 𝑂(|𝑉 |2𝑇𝑡𝑟𝑎𝑖𝑛)/𝑂(|𝑉 |2𝑇𝑠𝑖𝑚). It

might not scale to millions of voices without special treatment. Knowing that so-

cial network connection is sparse, it is natural to explore how to approximate the

parameter learning by exploiting the sparse network structure.
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Appendix A

Algorithms

Algorithm 1 Burst Detection Algorithm
1: procedure FindBursts(𝜏𝑆·

𝑧
,𝑓𝑐,𝑓𝑐, 𝑤𝑙𝑒𝑛, 𝑏𝑚𝑎𝑥)

2: Given per-topic time series 𝜏𝑆·
𝑧
, frequency threshold 𝑓𝑐, residual cutoff thresh-

old 𝑓𝑐, window length 𝑤𝑙𝑒𝑛, max burst length 𝑏𝑚𝑎𝑥

3: Let 𝑆 ′ = 𝑆·
𝑧

4: Set Butterworth filter 𝐺(𝜔|𝑓𝑐)
5: Compute the transformed signal 𝜏𝑆′ using frequency response 𝐺(𝜔|𝑓𝑐)
6: Compute residual 𝑟𝑆′ = 𝜏𝑆′ − 𝜏𝑆′

7: Set 𝑟𝑆′ [𝑟𝑆′ < 𝑟𝑐] = 0
8: return GreedyGroup(𝑟𝑆′)
9: end procedure

10: function GreedyGroup(𝑟𝑆′ , 𝑤𝑙𝑒𝑛, 𝑏𝑚𝑎𝑥) bursts = [], start position pos = 0,
tmp = []

11: while pos+𝑤𝑙𝑒𝑛 < |𝑟𝑆′| do ◁ Slide window through 𝑟𝑆′

12: if
∑︀

𝑝𝑜𝑠:𝑝𝑜𝑠+𝑤𝑙𝑒𝑛
𝑟𝑆′ > 0 and |𝑡𝑚𝑝| < 𝑏𝑚𝑎𝑥 then

13: 𝑗 = 𝑚𝑎𝑥({𝑘|∀𝑘 ∈ [0, |𝑟𝑆′ |] 𝑠.𝑡. 𝑟𝑆′(𝑡) > 0})
14: tmp = tmp + [pos, pos+j+1]
15: pos += j+1
16: else
17: bursts = bursts + tmp
18: tmp = []
19: end if
20: pos = pos + 1
21: end while
22: return bursts
23: end function
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Algorithm 2 Query from Burst
1: procedure QueryBurst(𝑞, 𝑆, 𝛽, 𝑐) ◁ Query 𝑞, series 𝑆, weight 𝛽, threshold 𝑐
2: Seeds = {𝑒𝑘 ∈ ℬ, 𝑞 ∈ 𝑒𝐶𝑘 } for all bursts ℬ
3: Find cluster assignments 𝒞 by ConvexExemplarClustering [33] with Exem-

plars=Seeds, metric ℳ(𝑒1, 𝑒2): eq (3.5)
4: for all events 𝑒𝑖 in detected bursts do
5: if ℳ(𝑒𝑖, 𝑎𝑟𝑔𝑚𝑖𝑛𝑠ℳ(𝑒𝑖, 𝑠)) < 𝑐, 𝑠 ∈ Exemplars then
6: output += 𝑒𝑖
7: end if
8: end for
9: return output

10: end procedure
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Appendix B

Election Topic Descriptions

According to [51], the election topic definitions are determined by discussing with

experts in the U.S. presidential election. We adopt the list of topics, and provide a

more descriptive explanations based on the annotated corpus.

Topic Description
Racial Issues Contents about racial and gender equality.

Justice Discussions concerning criminal justice, court ruling, or
Supreme Court related.

Income Inequality Discussion on income inequality, poverty issues, and
low-income initiatives.

Budget / Taxation Government budget, federal tax, corporate tax, social
security, IRS, tax break, etc.

Campaign Finance
Source for candidate’s campaign finance- self-funded,
super PACs, special interest groups, big corporation
funding.

Abortion Planned Parenthood and general abortion discussion.
LGBT Issues Specific discussions on LGBT rights.

Terrorism Events/Policies regarding terrorism; issues that the user is
suggesting to be related to terrorism (e.g., radical Islamic).

Veterans Veteran benefits, events about veterans.

Economy Boost economy, small business, Wall Street reform,
middle class.

Drugs Discussion on drug use and drug policy.
Table B.1: Explanation for each of the 22 election topics.
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Topic Description

Guns Second Amendment debate, gun violence, gun rights,
gun safety.

Jobs and Employment Job creation, unemployment, worker rights, workplace
equality, minimum wage.

Ethics Discussion about integrity of the candidate
(e.g., Benghazi hearing).

Foreign Policy/Security Foreign policy, military intervention, national
security, commander-in-chief.

Immigration Immigration policy, refugees, Mexican immigrants,
Mexican border/wall.

Surveillance/ Privacy Patriot’s Act, privacy control by government.
Health Care Health care related discussions.

Environment/Energy EPA, Pollution, climate change, alternative energy,
petroleum/oil/gas industry.

Financial Regulation Wall Street reform, banks reform.

Trade Discussion on trade agreements, protectionism, trading
with China, etc.

Education Discussion on affordable university (student loans),
education system reform etc.

Table B.2: Explanation for each of the 22 election topics (cont’d).
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Appendix C

Data Annotation Details

We described in more detail the data labeling process. Recall that we task the workers

to label each tweet into any of the following categories: (External) a tweet due to a

recent newsworthy event (e.g., breaking news, major campaign events); (Response)

a tweet content-wise influenced by, or triggered to respond to the preceding tweets

by others; (Internal) a tweet not due to specific outside influence (news events or

tweets by others); (Error) content not relevant to the given topic label.

Each labeling instance is given the particular tweet, with content, author, topic

category, tweet time, and when author previously tweeted. Lastly, tweets that precede

in time are also presented.

One difficulty is that it is hard to reliably know if one tweet is causally related

to another tweet. Therefore, we specify a set of rules for the workers to follow.

Additional suggestions are given to reduce false positives. See instruction template

to see for more details the actual cases for each label category. Figure B-1 shows

an actual example, notice some styling was done to highlight the importance of the

tweet he/she is tasked to label. B-2 to B-3 shows the question template.
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Figure C-1: A sample question that each worker is asked to label.

Figure C-2: Question template.

Figure C-3: Question template.
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Appendix D

Regression Analysis Result

This chapter shows the regression analysis result discussed in Chapter 4. For the

experiment, a logistic regression is performed on a set of features computed for each

burst. The endogenous variable is a binary-value variable, saying whether the burst

is responsive or not. For feature coding, see Table C-1.

Feature Code Feature Code
𝑒𝑐𝑎𝑢𝑖 C1 𝐴𝑣𝑔(𝑚𝑚𝑚) S1
𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) C2 𝐸𝑛𝑡(𝑚𝑚𝑚) S2
𝐶𝐼 C3 𝑆𝐶 S3
𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝐴𝑣𝑔(𝑚𝑚𝑚) C2S1 𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝐸𝑛𝑡(𝑚𝑚𝑚) C2S2
𝐶𝐼 * 𝐴𝑣𝑔(𝑚𝑚𝑚) C3S1 𝐶𝐼 * 𝐸𝑛𝑡(𝑚𝑚𝑚) C3S2
Feature Code Feature Code
𝑒𝑐𝑎𝑢𝑖 * 𝐴𝑣𝑔(𝑚𝑚𝑚) C1S1 𝜑(𝑒𝑡𝑖 − 𝑒𝑡𝑗) * 𝑆𝐶 C2S3
𝑒𝑐𝑎𝑢𝑖 * 𝐸𝑛𝑡(𝑚𝑚𝑚) C1S2 𝑒𝑐𝑎𝑢𝑖 * 𝑆𝐶 C1S3
𝐶𝐼 * 𝑆𝐶 C3S3

Table D.1: Feature coding for the features used in regression analysis.

The test is performed on each topic-filtered tweet time series. Table C-2 shows the

significance test for the coefficients for each feature. From the table, one can see that

the interaction of features turn out to be significant in most topics, with individual

semantic and temporal-causal features being significant at times.
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Topic C1 C2 C3 S1 S2 S3 S1C1 S1C2
Racial Issues * * ** ** *
Justice * * ** ** ** **
Income Inequality * * * **
Budget/Taxation * **
Campaign Finance ** ** **
Abortion ** **
LGBT Issues
Terrorism *** ** * **
Veterans * * * ** ** ** *
Economy *
Drugs
Guns * *
Jobs/Employment ** ***
Ethics
Foreign Policy/Nat’l Security * **
Immigration
Surveillance
Health Care * * * *
Environment * * ***
Financial Regulation *** *** *** ***
Trade *** *** *** ***
Education *

Table D.2: Feature significance over 22 election topics.
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Topic S1C3 S2C1 S2C2 S2C3 S3C1 S3C2 S3C3
Racial Issues * *** *** *** *** *** ***
Justice ** *** ** ** *** ** **
Income Inequality *** * ** *** ** ** ***
Budget/Taxation * * * * ** **
Campaign Finance * *** ** ** *** ** **
Abortion ** * ** * *
LGBT Issues
Terrorism *** ** * *** ** ** ***
Veterans * *** ** *** *** ** ***
Economy * ** * * * * **
Drugs
Guns ** *
Jobs/Employment * * * * *** ***
Ethics
Foreign Policy/Security * ** * ** *
Immigration * ** ** ** * * *
Surveillance
Health Care ** ** ** ** ** **
Environment ** ** ** ** * **
Financial Regulation *** *** ***
Trade *** *** *** *** ***
Education * * ** * ** **

Table D.3: Feature significance over 22 election topics (cont’).
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