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Abstract 
 

Collective Artificial Intelligence (CAI) simulates human intelligence from data contributed by many 

humans, mined for inter-related patterns. This thesis applies CAI to social role-playing, introducing an 

end-to-end process for compositing recorded performances from thousands of humans, and simulating 

open-ended interaction from this data. The CAI process combines crowdsourcing, pattern discovery, and 

case-based planning. Content creation is crowdsourced by recording role-players online. Browser-based 

tools allow non-experts to annotate data, organizing content into a hierarchical narrative structure. 

Patterns discovered from data power a novel system combining plan recognition with case-based 

planning. The combination of this process and structure produces a new medium, which exploits a 

massive corpus to realize characters who interact and converse with humans. This medium enables new 

experiences in videogames, and new classes of training simulations, therapeutic applications, and social 

robots. 

While advances in graphics support incredible freedom to interact physically in simulations, 

current approaches to development restrict simulated social interaction to hand-crafted branches that 

do not scale to the thousands of possible patterns of actions and utterances observed in actual human 

interaction. There is a tension between freedom and system comprehension due to two bottlenecks, 

making open-ended social interaction a challenge. First is the authorial effort entailed to cover all 

possible inputs. Second, like other cognitive processes, imagination is a bounded resource. Any 

individual author only has so much imagination. 

The convergence of advances in connectivity, storage, and processing power is bringing people 

together in ways never before possible, amplifying the imagination of individuals by harnessing the 

creativity and productivity of the crowd, revolutionizing how we create media, and what media we can 

create. By embracing data-driven approaches, and capitalizing on the creativity of the crowd, authoring 

bottlenecks can be overcome, taking a step toward realizing a medium that robustly supports player 

choice. Doing so requires rethinking both technology and division of labor in media production. 

As a proof of concept, a CAI system has been evaluated by recording over 10,000 performances 

in The Restaurant Game, automating an AI-controlled waitress who interacts in the world, and 

converses with a human via text or speech. Quantitative results demonstrate CAI supports significantly 

open-ended interaction with humans, while focus groups reveal factors for improving engagement.  
 

Thesis Supervisor: Deb K. Roy 

Title: Associate Professor of Media Arts and Sciences 



4 

 



 

Collective Artificial Intelligence: 

Simulated Role-Playing from Crowdsourced Data 
 

by 
 

Jeffrey David Orkin 
 

Submitted to the Program in Media Arts and Sciences,  

School of Architecture and Planning  

in partial fulfillment of the requirements for the degrees of  

 

Doctor of Philosophy 
 

at the 
 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
 

February 2013 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Deb K. Roy 

Associate Professor of Media Arts and Sciences 

MIT Media Lab 



 

6 

 



 

 

Collective Artificial Intelligence: 

Simulated Role-Playing from Crowdsourced Data 
 

by 
 

Jeffrey David Orkin 
 

Submitted to the Program in Media Arts and Sciences,  

School of Architecture and Planning  

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 
 

at the 
 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
 

February 2013 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Nick Montfort 

Associate Professor of Digital Media 

Massachusetts Institute of Technology 

 



 

8 

 

 

 



 

 

 

Collective Artificial Intelligence: 

Simulated Role-Playing from Crowdsourced Data 
 

by 
 

Jeffrey David Orkin 
 

Submitted to the Program in Media Arts and Sciences,  

School of Architecture and Planning  

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 
 

at the 
 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
 

February 2013 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Mark O. Riedl 

Assistant Professor 

Georgia Institute of Technology 

 



 

10 

 

 



 

11 

 

Acknowledgements 

 

The PhD is a long journey, with twists, turns, ups, and downs, and I am grateful for the many people who 

have offered encouragement, support, advice, and inspiration along the way.  
 

I want to thank my committee, Deb Roy, Nick Montfort, and Mark Riedl, for insights that helped shape 

both the development and framing of this work. Deb has been my advisor for 7.5 years, and has inspired 

me to think big, and led by example through the many ambitious projects he juggles, spanning a 

multitude of research areas. Everyone who works with Deb benefits from his talent for clearly 

communicating big ideas. Nick’s participation in both my General Exams and thesis has opened my eyes 

to the broader landscape of interactive storytelling, and helped me look at my work through the lens of 

narrative theory. My thesis has benefited greatly from Mark’s depth of knowledge about AI for 

interactive storytelling, and I have been inspired by Mark’s own work in narrative planning. I also want 

to thank Candy Sidner for her participation in my General Exams, and Gabe Newell for participating in 

the thesis proposal process. 
 

The Media Lab has given me incredible freedom to pursue this work, and I am inspired everyday by all of 

the creativity, and original thinking that goes on here. I want to thank my research group, Cognitive 

Machines, for many discussions over the years. In particular, I am grateful to Tynan Smith and Hilke 

Reckman for fruitful collaborations, and I learned a tremendous amount from my overlap with Peter 

Gorniak and Michael Fleischman. I have benefitted by exploring aspects of this work in courses taught by 

Cynthia Breazeal, Henry Leiberman, and Roz Picard, and collaborating with the Personal Robots Group 

on Mars Escape.  
 

The Singapore-MIT GAMBIT Game Lab gave me a second home to pursue my research, and supported 

some of this work financially. I learned a great deal from, and greatly enjoyed working with, the TenXion 

and Improviso teams. I especially want to thank Andrew Grant for his leadership on Improviso, and Philip 

Tan for his interest and support for this research since the very beginning, and for fostering an engaged 

community around games and game development at MIT. 
 

Pursuing this research was literally not possible without the cooperation of thousands of people, who 

volunteered to play my games. I want to thank these players, and I want to thank my oDesk team who 

spent hundreds of hours analyzing gameplay data. In particular, I want to thank Sarah Laeuchli for deftly 

tackling a wide range of tasks, and Clester Satinitigan and Waheed Anwar for sticking with the project 

until the very end. 
 

The support and encouragement of peers in the game industry, academic games research, and beyond 

meant the world to me as I endured the ups and downs of research. There are many people I want to 

thank for participating in the research, discussing the work, or giving me opportunities to present 

various stages of development (in alphabetical order): Bruce Blumberg, Vadim Bulitko, Alex 

Champandard, Kevin Dill, Ben Houge, Damian Isla, Eric Jacopin, Ian Lamont, Dave Mark, Michael Mateas, 

Brad Pendelton, Jeff Pobst, Chuck Rich, Ben Sawyer, Kevin Stephens, Nathan Sturtevant, Aaron Thibault, 

Paul Tozour, Aaron Walsh, Noah Wardrip-Fruin. 
 

Finally, I want to thank my family. My parents, Susan and Fred, have always offered enthusiasm and 

encouragement for pursuing higher-education, and intellectual challenges, even when starting a PhD ten 

years after undergrad, as well as financial support and free babysitting. Most of all, I need to thank my 

wife, Melissa, who dropped everything to move across the country for me to study at the Media Lab, 

and throughout has been there for me as a sounding board, cheerleader, editor, voice of reason, and 

best friend, giving my life much needed balance (with help from little Vivian).  



 

12 

 

 

 

 



 

13 

 

Contents 
 

1 Introduction .................................................................... 21 

1.1 Challenges in Natural Language Understanding ........................................................... 23 

1.2 The Authoring Problem ................................................................................................. 24 

1.3 Interactive Storytelling in the Petabyte Age ................................................................. 25 

1.4 Collective Artificial Intelligence and Narrative Structure ............................................. 26 

1.5 Thesis Overview ............................................................................................................ 29 

2 Related Work .................................................................. 31 

2.1 Natural Language Interaction in Interactive Stories ..................................................... 31 

2.1.1 Natural Language Understanding in Façade ............................................................. 32 

2.1.2 Natural Language Understanding in Other Systems ................................................ 33 

2.1.3 Natural Language Generation in Videogames .......................................................... 35 

2.2 Crowdsourced Imagination ........................................................................................... 35 

2.2.1 Crowdsourced Natural Language Understanding ..................................................... 35 

2.2.2 Crowdsourced Common Sense ................................................................................. 37 

2.2.3 Crowdsourced Creativity .......................................................................................... 38 

2.3 Coherence, Tension, and Affinity .................................................................................. 39 

2.3.1 Structural Coherence ................................................................................................ 40 

2.3.2 Coherence of Affinity ................................................................................................ 41 

2.3.3 Managing Tension ..................................................................................................... 42 

2.4 Narrative Structure ....................................................................................................... 43 

2.4.1 Temporal Action Sequences ..................................................................................... 43 

2.4.2 Interleaving Actions and Words ................................................................................ 43 

2.4.3 Language Games and Events .................................................................................... 44 

2.4.4 Causality and Structure ............................................................................................. 45 

2.5 Case-Based Planning ..................................................................................................... 46 

2.5.1 Case-Based Reasoning and Planning ........................................................................ 47 

2.5.2 Case-Based Common Sense Reasoning .................................................................... 48 

2.5.3 Case-Based Planning in Games ................................................................................. 49 

2.5.4 Case-Based Planning in Storytelling .......................................................................... 51 

3 Crowdsourced Content Creation ...................................... 53 

3.1 The Restaurant Game ................................................................................................... 54 

3.1.1 Implementation and Data Logging ........................................................................... 58 

3.1.2 Player Statistics ......................................................................................................... 61 

3.1.3 Corpus Statistics ........................................................................................................ 64 

3.2 Other Data Sets ............................................................................................................. 67 

3.2.1 Mars Escape .............................................................................................................. 67 

3.2.2 Improviso ................................................................................................................... 68 

3.3 Lessons Learned About Game-based Data Collection .................................................. 73 

3.3.1 Platform Selection and Timing .................................................................................. 73 



 

14 

 

3.3.2 Design Decisions ....................................................................................................... 74 

3.3.3 Recruiting and Incentivizing Players ......................................................................... 75 

3.3.4 Hackers and Malicious Attacks ................................................................................. 78 

4 Automatic Pattern Discovery ........................................... 81 

4.1 Learning Recurring Sequences of Actions and Words .................................................. 81 

4.1.1 Learning an Action Lexicon ....................................................................................... 81 

4.1.2 Learning a Dialogue Library ...................................................................................... 83 

4.1.3 Learning N-gram Models of Actions and Words ....................................................... 83 

4.2 Generating Social Behavior with N-Gram Models ........................................................ 87 

4.2.1 Planning, Replays, Critics, and N-Grams ................................................................... 87 

4.2.2 Evaluation with the BLEU Score ................................................................................ 89 

4.2.3 Discussion of the Strengths and Weaknesses of Generation with N-Grams ............ 90 

4.3 Toward Learning Deep Semantics and Higher-Level Structure .................................... 93 

4.3.1 Dialogue Act Classification ........................................................................................ 93 

4.3.2 Learning Other Semantics ......................................................................................... 95 

4.4 Limitations and Opportunities for Statistical Approaches in CAI ................................. 96 

5 Human-Machine Collaborative Pattern Discovery ........... 99 

5.1 Tagging with the Event Annotation Tool (EAT) ............................................................. 99 

5.1.1 Tagging Events ........................................................................................................ 101 

5.1.2 Tagging Long-term Dependencies .......................................................................... 104 

5.1.3 Other Tags ............................................................................................................... 105 

5.2 Learning Structure from Annotated Data ................................................................... 105 

5.2.1 Manual Semantic Clustering of Utterances ............................................................ 105 

5.2.2 Learning the Event Dictionary and Event Log Index ............................................... 107 

5.3 The Runtime Data-Driven Planning Architecture (RUN) ............................................. 109 

5.3.1 A Motivating Example ............................................................................................. 110 

5.3.2 Integrating Planning with the Game Engine ........................................................... 111 

5.3.3 Plan Recognition ..................................................................................................... 112 

5.3.4 Case-Based Planning ............................................................................................... 115 

5.3.5 Domain Knowledge ................................................................................................. 117 

5.3.6 High-Level Goals & Directability ............................................................................. 118 

5.4 Human Interaction ...................................................................................................... 119 

5.5 Best Practices .............................................................................................................. 126 

6 Evaluation ..................................................................... 127 

6.1 Quantitative Evaluation .............................................................................................. 127 

6.1.1 Experimental Setup ................................................................................................. 127 

6.1.2 Results ..................................................................................................................... 129 

6.1.3 Discussion................................................................................................................ 135 

6.1.4 Other Metrics .......................................................................................................... 138 

6.1.5 Comparison to N-Gram Models .............................................................................. 139 

6.2 Qualitative Evaluation ................................................................................................. 140 

6.2.1 Experimental Setup ................................................................................................. 141 



 

15 

 

6.2.2 Visualizing Interactivity in The Restaurant Game and Façade ............................... 141 

6.2.3 Observations About Engagement and Replay Value .............................................. 144 

6.2.4 Observations About Variety and Coherence .......................................................... 146 

6.2.5 Observations About Main Characters and Agency ................................................. 146 

6.2.6 Observations About Natural Language Understanding .......................................... 148 

6.2.7 Discussion................................................................................................................ 150 

7 Conclusion ..................................................................... 155 

7.1 Contributions .............................................................................................................. 155 

7.2 Responding to the Critics ............................................................................................ 157 

7.3 Next Steps ................................................................................................................... 159 

7.3.1 Capturing and Generating Strong Narratives ......................................................... 159 

7.3.2 Improving Personality Coherence........................................................................... 159 

7.3.3 Scaling Up ................................................................................................................ 160 

7.3.4 Development, Tuning, and Debugging ................................................................... 161 

7.4 Future Work ................................................................................................................ 162 

7.4.1 New Data Sources ................................................................................................... 162 

7.4.2 Decision Support in the Real World ........................................................................ 162 

7.4.3 Simulating Real-World Role-Playing Scenarios ....................................................... 163 

7.4.4 Improvisational Interactions between Heterogeneous NPCs ................................ 163 

7.5 Final Thoughts ............................................................................................................. 164 

Appendix A: Event Tagging Tutorial .................................... 165 

Appendix B: Script to Generate Event Log Index ................. 175 

Appendix C: Configuration for Goals and Critics .................. 177 

Bibliography ....................................................................... 179 

 

 

 



 

16 

 



 

17 

 

List of Figures 

Figure 1-1: Space representing tension between player freedom & system comprehension. .................. 22 

Figure 1-2: The theory of narrative structure for interactive stories, supported by CAI. ........................... 27 

Figure 1-3: Interface for human interaction. .............................................................................................. 28 

 

Figure 3-1: Screenshot from The Restaurant Game (from the waitress's perspective). ............................ 54 

Figure 3-2: Objectives given to Waitress. ................................................................................................... 55 

Figure 3-3: Objectives given to Customer. .................................................................................................. 55 

Figure 3-4: User interface for object interaction. ....................................................................................... 56 

Figure 3-5: Screenshot of stacking cherry cheesecakes and climbing on the roof, emailed by a player. .. 57 

Figure 3-6: Sample log file. .......................................................................................................................... 59 

Figure 3-7: Log file transformed into a human-readable transcript. .......................................................... 60 

Figure 3-8: Where players heard about The Restaurant Game. ................................................................. 61 

Figure 3-9: Number of two-player games completed per week. ................................................................ 62 

Figure 3-10: Comparison of traffic to project web page to two-player games actually completed. .......... 62 

Figure 3-11: Google analytics geographic demographics of project web page traffic. .............................. 63 

Figure 3-12: Growth of Action Lexicon as games are observed over time. ................................................ 65 

Figure 3-13: Histogram of number of games each clustered action was observed in. .............................. 65 

Figure 3-14: Growth of vocabulary as games are observed over time. ...................................................... 66 

Figure 3-15: Histogram of number of games each word was observed in. ................................................ 66 

Figure 3-16: Screenshot from Mars Escape (left) and a photo of the actual Nexi robot (right). ................ 67 

Figure 3-17: Screenshot of Improviso. Agent Smith, Dr. Stein, and an alien inside the Area 51 lab. ......... 69 

Figure 3-18: Transcript from an actual online two-player session of Improviso. ....................................... 72 

Figure 3-19: Specific scene directions given to each player in Improviso. ................................................. 75 

Figure 3-20: Post-game survey in The Restaurant Game asks players to describe each other. ................. 77 

Figure 3-21: Swedish hackers mod The Restaurant Game. ........................................................................ 79 

 

Figure 4-1: Action sequences observed in 5,000 games, unfiltered (left), filtered with bigrams (right). .. 85 

Figure 4-2: Scatter plot of correlation between n-gram likelihood estimates and human ratings. ........... 86 

Figure 4-3: Architecture for a data-driven agent. ....................................................................................... 87 

Figure 4-4: Comparing BLEU score histograms for 100 games. .................................................................. 90 

Figure 4-5: Agent interaction with highest BLEU score, with commentary of issues on right. .................. 92 

 

Figure 5-1: Screenshot of the Event Annotation Tool (EAT), before applying any tags. .......................... 100 

Figure 5-2: Timeline before applying any tags. ......................................................................................... 102 

Figure 5-3: Same timeline as Figure 5-2, after tagging low-level events. ................................................. 102 

Figure 5-4: Same timeline as Figure 5-3, after tagging high-level events. ................................................ 102 

Figure 5-5: Interface for tagging long-term dependencies. ...................................................................... 104 

Figure 5-6: Manually clustering utterances using Windows Explorer. ..................................................... 106 

Figure 5-7: Fragment of manually constructed ontology of concepts, with human labels at leaves. ...... 107 

Figure 5-8: Four different sequences to represent C_GETS_SEATED in the Event Dictionary. ................ 108 

Figure 5-9: Diagram of the RUN planning architecture. ........................................................................... 109 

Figure 5-10: The customer's mental model after responding to "What can I do for you?" ..................... 110 

Figure 5-11: Label for event beginning at node 5 is revised as new information arrives. ........................ 114 

Figure 5-12: Intelligent interface compensates for challenges in natural language understanding. ....... 119 



 

18 

 

Figure 5-13: Transcript from actual interaction between human customer and NPC waitress. .............. 121 

Figure 5-14: Transcript from interaction between human customer and waitress directed to be rude. 122 

Figure 5-15: Transcript from interaction between human customer and waitress directed to upsell. ... 123 

Figure 5-16: Top 10 dialogue options found for player inputs. ................................................................ 124 

 

Figure 6-1: Comparison of percentages of successful interactions between conditions. ........................ 136 

Figure 6-2: Likelihood of selecting dialogue option rank N or less. .......................................................... 137 

Figure 6-3: Percentage of words and utterances recognized, with increase in logs processed. .............. 138 

Figure 6-4: Branch points observed in 18 games of The Restaurant Game (left) and Façade (right). ..... 142 

Figure 6-5: Number of unique observations after N games: action pairs (left), player actions (right). ... 143 

Figure 6-6: Percentage of player actions, compared to NPC actions. ...................................................... 143 

 



 

19 

 

List of Tables 
 
Table 3-1: Action lexicon statistics from 10,027 games. ............................................................................ 64 

Table 3-2: Vocabulary statistics from 10,027 games. ................................................................................. 64 

Table 3-3: Scene descriptions given to players of Improviso. ..................................................................... 70 

 

Table 4-1: Descriptions of Sensors. ............................................................................................................. 88 

Table 4-2: Descriptions of Goals. ................................................................................................................ 88 

Table 4-3: Descriptions of Critics. ............................................................................................................... 89 

Table 4-4:  Label distributions and classification accuracy, precision (Pr), and recall (Re). ....................... 94 

 

Table 5-1: Event labels. ............................................................................................................................. 103 

Table 5-2: Description of Goals. ................................................................................................................ 115 

Table 5-3: Description of Critics. ............................................................................................................... 116 

 

Table 6-1: Raw data for the Text + Context condition. ............................................................................. 130 

Table 6-2: Raw data for the Speech + Context condition. ........................................................................ 131 

Table 6-3: Raw data for the Speech-Only condition. ................................................................................ 132 

Table 6-4: Raw data for the Context-Only condition. ............................................................................... 133 

Table 6-5: Mean selection rank and standard deviation for each condition. ........................................... 134 

Table 6-6: t-statistics for independent groups t-test between mean ranks. ............................................ 134 

Table 6-7: Percentage of options flagged as relevant for each condition. ............................................... 134 

Table 6-8: t-statistics for two sample t-test between percentages of relevant options. ......................... 134 

Table 6-9: Percentage of successful interactions for each condition. ...................................................... 135 

Table 6-10: t-statistics for two sample t-test between percentages of successful interactions. ............. 135 

Table 6-11: Comparing four methods for populating dialogue options. .................................................. 137 

Table 6-12: Utterances in five human-NPC games, never observed in 10,027 recorded games. ............ 139 

Table 6-13: Comparison of dialogue option quality from annotation- and n-gram-driven systems. ....... 140 

Table 6-14: Comparison of game lengths and variety of actions observed. ............................................ 142 

 



 

20 

 

 



 

21 

 

1 Introduction 
 

We are witnessing an unprecedented convergence of advances in processing power, interconnectivity, 

cheap data storage, high fidelity rendering, physics simulations, and natural language technologies. The 

combination of these technological innovations lays the foundation for new mediums of 

communication, allowing us to tell stories in ways never before possible. Each new communication 

medium changes both what stories can be told, and how stories can be told. As recounted by Marie-

Laure Ryan (2006), Walter Ong describes how narrative evolved with the introduction of writing: 
 

The enormous impact of writing technology on thought, and, by extension, on narrative, can be 

captured in one brief formula: a permanent inscription serves as prosthetic memory. In oral 

cultures, narrative was used as a mnemonic device for the transmission of knowledge; its 

memorization was facilitated by prosodic features, fixed formulae, and standardized images; and 

the limitations of memory were compensated by a relatively free episodic structure which 

allowed, within reasonable limits, permutation of its units. The development of manuscript 

writing transformed this open epic structure into tightly knotted dramatic plot.... With its 

organization of events into an exposition, complication, crisis, and resolution, its symmetrical, 

carefully controlled rise and fall of tension (known as the Freytag triangle), and its climactic 

reversal of situation at the apex of the triangle, the dramatic plot exploits the significance of the 

sequential ordering of events to an extent that would not be possible in oral improvisation. 

 

Technological advances in the 20th century have made possible new interactive mediums for 

storytelling, where the listener becomes the player, playing an active role in the story being told. Unlike 

static mediums (e.g. books, films), where there is a clear distinction between the storyteller and 

audience, the player of an interactive story is both an author and audience member of a dynamic 

experience that varies in response to player input, and the experience can unfold differently with 

subsequence replays of the same story. If writing serves as prosthetic memory, an interactive medium 

serves as prosthetic imagination, as the player explores the space of possible story variations, and the 

medium responds with consequences imagined and encoded by human authors. 

Videogames are one application of interactive storytelling. Dan Houser, co-founder of Rockstar Games, 

expresses the unique opportunities for interactive storytelling mediums when he says, "Books tell you 

something, movies show you something, games let you do something."1 With the incredible advances in 

rendering and physics simulation, the emphasis in commercial games has been on doing things 

physically. In Rockstar's titles, gameplay is dominated by combat and car crashes. Prescripted storylines 

with a relatively small number of discrete branches are punctuated with open-ended combat. 

 

The alternative is do things with words. This idea dates back to discussions in the philosophy of language 

from the 1950s (Austin 1955) -- language is a form of action which can affect the world, just as physical 

action can. The implication is that players can affect the simulated world and the story through social 

role-playing interactions with Non-Player Characters (NPCs). Interleaved fluidly with physical interaction, 

open-ended dialogue with NPCs can help an interactive storytelling medium reach its full potential, 

dynamically adapting in satisfying ways to everything the player says and does. However, Natural 

                                                           

1
 "Q. and A.: Rockstar's Dan Houser on Grand Theft Auto V," The New York Times, November 9, 2012. 
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Language Understanding (NLU) is a hard problem due to the incredible diversity of things people say, 

and ways they can say them.  

 

There is a tension between player freedom and system comprehension, which can be represented as 

the two-dimensional feature space illustrated in Figure 1-1. The Holy Grail exists in the top-right corner, 

where players have complete freedom, and the system can understand everything they say or do. 

Existing implementations of interactive stories reside closer to one axis or the other. For example, 

commercial videogames like Mass Effect 3 (BioWare 2012) limit social interaction to multiple choice 

dialogue options, which restricts player freedom, while ensuring the system should comprehend choices 

the player makes. The experimental game Façade (discussed in more detail in Section 1.1) provides 

much more freedom at the cost of some system comprehension. Façade allows players to type open-

ended dialogue input, and the system will understand words and phrases that were anticipated by 

designers, in the current context.  

 

 

Figure 1-1: Space representing tension between player freedom & system comprehension. 

 

There are two bottlenecks that make it difficult to simultaneously maximize both freedom and 

comprehension. The first bottleneck is the authorial effort it entails to adequately cover the space of 

possible natural language inputs. The second is the fact that imagination, like other cognitive processes, 

is a bounded resource. Any one individual author only has so much imagination. This thesis sets out to 

prove that due to recent shifts in the operating environment of storytellers, it is possible to stake out a 

new place in this 2D space closer to the Holy Grail, combining the freedom of Façade’s open-ended 

input with the assurance of comprehension provided by multiple choice interaction. Overcoming the 

tension between freedom and comprehension requires a medium that can exploit an enormous pool of 

content to support recognizing and responding to a wider range of interactions than any team of 
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designers could imagine and encode by hand, as well as new approaches for authoring and structuring 

this content. 

 

The contribution of this thesis is an end-to-end process which applies Collective Artificial Intelligence 

(CAI) to the problem of open-ended simulated social role-playing. Interaction with NPCs is simulated 

from composited performances recorded from thousands of human role-players.  The CAI process 

combines crowdsourcing, pattern discovery, and case-based planning. Content creation is crowdsourced 

by recording role players online. Browser-based tools allow non-experts anywhere in the world to 

annotate data, organizing content into a hierarchical narrative structure. Patterns discovered from this 

meta-data power a novel planning system, which combines plan recognition with case-based planning. 

The combination of the CAI process and narrative structure produces a new medium for interactively 

telling stories, which can exploit a massive corpus of content to overcome the tension between freedom 

and comprehension, supporting NPCs who can interact and converse with humans. 

 

As a proof of concept, this medium is used to automate NPCs who can play roles and interact with 

human players in a virtual restaurant simulation. However, it is conceivable that the same medium could 

be useful for other purposes; for example, as an imagination amplification tool for an author writing a 

novel, to interactively brainstorm potential consequences of character actions. The approach presented 

here reorganizes the division of labor in content creation, and democratizes the authoring process by 

including non-programmers in both the data collection and data interpretation processes. At runtime, 

NPCs compare recent observations to previously recorded games, to select contextually relevant actions 

and utterances from a database of annotated game logs, containing over 1,000 possible actions, and 

over 18,000 utterances. This medium has the potential to enable new experiences in videogames, as 

well as new classes of training simulations, educational software, therapeutic applications, and social 

robots. 

 

 

1.1 Challenges in Natural Language Understanding 

 

Some of the earliest videogames were entirely text-based (e.g. Zork, 1980). Games described the world 

in text, and players typed text to take action in the world. Simple parsers at the time had a minimal 

vocabulary, and only understood the simplest syntax, but this was a first step toward the ambitious goal 

of understanding open-ended natural language input. As graphics improved, natural language 

interaction has taken a back seat, and the state-of-the-art has not advanced beyond the same hand-

crafted, multiple choice dialogue trees introduced in the adventure games of the 1980s. 

 

One notable exception to this trend is the experimental interactive drama Façade (Mateas & Stern 

2005). Façade accepts open-ended typed natural language input, and has unique design that allows the 

game to mask understanding failures in a way that feels natural and contextually appropriate. The 

player is invited for drinks to the apartment of Grace and Tripp, two self-absorbed NPCs apparently 

having marital problems. Confronted with this awkward scenario, the player tries to converse with the 

NPCs, to defuse (or optionally exacerbate) the situation. When the system cannot understand the input, 

Grace and Tripp proceed to continue arguing, ignoring the player plausibly in the heat of the moment. 

 

Façade's approach to Natural Language Understanding (NLU) is inspiring and extremely well executed, 

but is not a general solution applicable to all games. The majority of games feature the player as the 
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main character, who cannot be ignored. The tried and true dialogue trees give players the assurance 

that everything they say will be understood, at the cost of limited player autonomy, while Façade's 

approach gives the player freedom, at the risk of understanding failures, leading to reduced agency 

when the player is unable to affect the story with his or her words. The ideal solution would provide the 

best of both worlds -- freedom for player expression, with robust understanding of input, to empower 

the player to use words to take action in the word, fluidly combined with physical interaction.  

 

Unfortunately NLU is difficult problem. In order for NPCs to understand the player, they need to be 

provided with a vocabulary of words and phrases with adequate coverage of everything players might 

say. The problem is further complicated if spoken input is desirable, introducing speech recognition 

inaccuracies, or even complete recognition failure. Finally, even if words are recognized perfectly, and 

are covered by the vocabulary, there may be ambiguity in interpretation; the NPC needs to understand 

them in the intended context. NPCs require a comprehensive representation of narrative possibilities 

that captures anything someone might say, or do physically, in a form that explains when to say or do it. 

This leads to the authoring problem. 

 

 

1.2 The Authoring Problem 

 

For any given scenario, there are an enormous number of contextually appropriate things that players 

could express in natural language, and numerous ways to express the same linguistic act with different 

words. In addition, a sufficiently open-ended environment might allow thousands of different physical 

interactions. Current approaches to authoring behavior, based on hand-crafted hierarchical structures 

(e.g. Behavior Trees, Hierarchical Task Networks), do not scale to representing the combinatorial 

explosion introduced by seamlessly interleaving sequences of thousands (or more) possible actions and 

utterances. Yet an NPC who is designed to cooperate and adapt to player choices requires a 

representation at this scale, in order to recognize what the player is trying to say or do, and take 

appropriate actions in response. Furthermore, the imagination of a team of designers to anticipate 

player behavior is finite, and the task of encoding behavior is labor intensive, requiring technical skills. 

 

In some sense, game developers are encountering the same authoring bottleneck that A.I. researchers 

recognized years ago, as recounted by Roger Schank (1999): 
 

Not as much has happened in AI as one might have hoped. …. The major reason for this is really 

one of content. …. We simply were not able to even begin to acquire the content of [human] 

memory. …. Someone has to get a computer to know what a human knows about using a toaster 

or playing baseball. …. The real issue was the acquisition of the mundane knowledge that people 

take for granted. 

 

An ongoing discussion among professional game developers has questioned whether the authoring 

problem could be addressed with the equivalent of the Photoshop of AI2 -- an accessible tool, combined 

with a representationally clean separation between the structure and style of AI content. The intuition 

                                                           

2
 Chris Hecker introduced the Photoshop of A.I. in the lecture "Structure vs Style", Game Developers Conference, 

2009. 
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being that graphics has benefited handsomely by having the triangle as the core structural building 

block, which can be stylized by texturing through tools like Photoshop, accessible to non-programmers. 

Many have concluded that there will never be a Photoshop of AI, because behavior is a complex 

branching structure, inseparable from the simulation engine on which it runs, requiring the participation 

of a programmer, or a procedurally literate designer.3 This thesis considers the Photoshop of AI from a 

different perspective, rethinking where the source material comes from. Rather than hand-crafting 

behavior and dialogue from a blank page, the authoring process begins by recording thousands of 

human performances. Though simulation from this content does require a programmer to implement a 

domain model (see Chapter 5), anyone can record examples of desired behavior, democratizing the 

creative process, and enabling a content creation pipeline that scales to support efficiently authoring 

massive amounts of content. From this perspective, a recorded narrative (human performance) is the 

core structural unit, stylized by blending and sequencing with other recorded narratives. Graphics has 

dramatically improved by scaling scene rendering from hundreds, to thousands, to millions of triangles. 

Employing recorded narratives as the core building block, NPC behavior and dialogue, and the 

interactive stories that emerge from their interactions, can scale in a similar way. 

 

1.3 Interactive Storytelling in the Petabyte Age 

 

The availability of nearly unlimited, affordable data storage and processing has ushered in the Petabyte 

Age. Big Data is revolutionizing how we approach everything from science (e.g. genome sequencing, 

drug discovery), to business (e.g. retail analytics, collaborative filtering), to politics (e.g. the Obama 

campaign's Narwahl). Incredible advances in Natural Language Processing (NLP) technologies have come 

about as a result of Big Data, enabling powerful search engines, automated language translation, and 

cloud-based speech recognition. These advances in NLP impact our everyday lives at home and at work, 

but they have yet to play a major role in how we make games, how we tell stories in games, and what 

stories can be told.  

 

For example, when Microsoft introduced the Kinect 3D camera and speech recognition technology in 

2009, it was hailed by the press as “absolutely ground breaking and revolutionary technology that ... will 

change the gaming and AI industry forever.”4 Kinect was unveiled with an inspiring demonstration of a 

virtual boy named Milo who players could speak to, and even hand objects by holding them up to the 

screen. The reality of how Kinect has been used in commercial products for NPC interaction has been 

less ambitious. For example, the blockbuster role-playing game Mass Effect 3 enables the player to 

speak to NPCs by reading predefined dialogue options from the screen. Given the challenges detailed in 

Sections 1.1 and 1.2, it is understandable why progress toward more open-ended interaction has been 

slow. 

 

This thesis introduces a game called The Restaurant Game (TRG) in which NPCs have been authored and 

automated through a data-driven process, to interact and converse with human players through open-

                                                           

3
 This conclusion is reflected by Michael Mateas in "Revisiting the Photoshop of A.I. Debate", UCSC, February 1, 

2012.  

4
 theTechnologyBlog.net, June 6, 2009. 
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ended natural language input. Inspired by the success of the How May I Help You project at AT&T (Gorin 

et al. 1997), where a system was trained to automatically route calls based on data recorded from 

10,000 human-human customer service inquiries, TRG was deployed online to record over 10,000 

performances of dining in a virtual restaurant, dramatized by anonymous pairs of human customers and 

waitresses. 

 

The transition from hand-crafted to data-driven interaction impacts how interactive stories are 

authored, represented, and generated at runtime. Rather than constructing a tree or graph of 

possibilities, the narrative is represented as a database of recorded gameplay instances, stored with 

associated meta-data describing recurring patterns of behavior at an abstract level. The human's role in 

the authoring process involves tagging patterns in the data to specify how fragments of behavior relate 

to one another, and which fragments are desirable to replay at runtime. At runtime, the AI engine 

searches for contextually relevant fragments of behavior to play at any given moment, based on 

observed patterns of behavior. The philosophy behind this data-driven approach is that in order to scale 

to the density of content required to robustly support open-ended interaction, the future AI engine will 

look more like a search engine than a finite state machine. 

 

There are two different, yet complementary, revolutions evolving, related to pattern discovery in large 

data sets, and this thesis explores both in connection with automating NPCs from recorded human 

performances. First, availability of large data sets increasingly makes statistical recurrence analysis and 

machine learning algorithms more practical, effective, and applicable for automatically discovering 

patterns in data. Second, the ease of sharing data with people online has led to new ways to leverage 

human intelligence in interpreting data through crowdsourcing, outsourcing, and human computation. 

Both approaches have benefits and drawbacks, evaluated quantitatively and qualitatively when applied 

to the TRG data set. 

 

1.4 Collective Artificial Intelligence and Narrative Structure 

 

Realizing a new medium for interactive storytelling from composited performances of human role 

players requires also introducing a new production process, and associated theory of narrative 

structure. This thesis introduces a production process which applies Collective Artificial Intelligence 

(CAI). The term Collective Artificial Intelligence is derived from Collective Intelligence -- the idea that a 

large number of ordinary people can make better decisions than a small number of experts. CAI refers to 

a similar idea, that a large number of ordinary people can create better models of narrative possibilities 

than a small number of expert programmers and/or designers. The an end-to-end CAI process for 

automating role-playing NPCs from recorded human performances relies on a theory of narrative 

structure for interactive stories illustrated in Figure 1-2.  

 

In the theory of narrative structure associated with CAI, a narrative is composed of a sequence of 

actions. Each action may be executed by a different actor, indicated by the red and blue outlines (e.g. 

red is a waitress, and blue is a customer), and may be a physical action or an utterance, indicated by 

quotation marks. These actions are drawn from a large pool of all possible actions. Because actions are 

sequenced dynamically, additional structure is required to ensure the delivery of a coherent narrative. 

Actions are grouped into events (e.g. getting seated, ordering food, paying the bill). Events are grouped 

into higher level events (e.g. beginning dining, having a meal, concluding dining), forming an event 

hierarchy. High-level events are grouped into an overarching scenario (e.g. restaurant dining).  
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Arrows indicate long-term dependencies, which may point forwards or backwards. Forward 

dependencies indicate causal chains (e.g. the customer ordering pie causes the waitress to bring a pie 

from the kitchen). Arrows pointing backwards in time indicate references (e.g. a waitress asking about 

the customer’s satisfaction with a steak served earlier). 

 

 

 
Figure 1-2: The theory of narrative structure for interactive stories, supported by CAI. 

 

Each action may have an associated attitude, affinity modulation, and/or tension modulation. The 

attitude associated with an action indicates a bias in when to use this action, and how it should be 

interpreted (e.g. saying something in a polite, rude, or flirtatious way). Affinity modulation affects how 

the feelings of one actor change with respect to another as the result of some action. Actions can 

optionally modulate tension, in order to ensure delivery of a compelling narrative, possibly adhering to a 

desired dramatic arc. The work presented in this thesis implements the core of this theory, including 

actions, events, dependencies, and attitudes, but does not yet implement affinity or tension. 

 

The CAI process combines crowdsourcing, pattern discovery, and case-based planning, to drive the 

behavior and dialogue of NPCs who interact with humans in a shared virtual environment, conversing 

via typed text or speech. The process can be summarized with these three steps: 
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1) Record many performances of desired behavior. 

2) Discover patterns in recorded behavior. 

3) Replay fragments of recorded games at runtime. 

 

In this development process, content creation is crowdsourced by recording thousands of human 

performances, which are mined for patterns representing elements of narrative structure (e.g. events, 

dependencies). Patterns guide a novel runtime architecture which combines plan recognition with case-

based planning to replay fragments of recorded games at runtime. Initial work explored automatically 

discovering patterns in data. Ultimately, patterns were discovered through a human-machine 

collaborative process, where human annotated recorded performances with meta-data representing 

narrative structure, from which patterns were extracted. Browser-based tools allowed hiring people 

anywhere in the world to annotate transcripts of recorded human performances. The implemented 

system is called EAT & RUN, where EAT is an acronym for the Event Annotation Tool, and RUN refers to 

the runtime planning architecture. 

 

 

 
Figure 1-3: Interface for human interaction. 

 

Humans interact with this system through an interface that accepts open-ended natural language input 

(typed or speech), and dynamically generates contextually relevant dialogue options, as semantically 

similar as possible to the human input (Figure 1-3). The human input may be a complete or partial 

utterance. Dialogue options are generated by searching for the intersection between utterances in the 

data that have similar words to the input, and utterances that are contextually appropriate. When 

speech recognition fails, or words in the input are out of the recognized vocabulary, dialogue options 

can be generated by context alone. Contextual generation and filtering of dialogue options is made 
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possible by re-running the same planning system that automates NPCs, from the perspective of the 

player. An agent associated with the player essentially asks, “If I was an NPC, what would I say?” 

 

1.5 Thesis Overview 

 

This thesis introduces a medium for interactive storytelling, and an underlying narrative structure and 

CAI process for authoring content in this medium. As a proof of concept, a CAI system has been 

implemented to generate a simulation from data collected from TRG. TRG has recorded 10,027 

performances of a customer interacting with a waitress, which have been tagged by people hired online 

from the Philippines, India, Pakistan, and the U.S., using browser-based tools. Patterns discovered from 

these tags power an AI-controlled waitress who can interact and converse with a human customer. 

 

In order to quantitatively evaluate how well the system supports open-ended storytelling, humans 

interacted with NPC waitresses, using the system to both automate the NPCs, and dynamically generate 

dialogue options for the players in response to speech input. The results show that the contextually 

aware data-driven system was able to provide the desired dialogue input 28% more often than a system 

relying on speech recognition alone. A comparison of player satisfaction with dialogue options 

generated from the CAI approach versus options generated based on statistical models learned from an 

unsupervised system show a dramatic improvement. An additional qualitative study conducted with 

focus groups, comparing TRG to existing games, revealed both strengths of the system, and areas to 

focus on for future work. Players commented on the unusual amount of freedom given in TRG, and 

reported the player was able to influence the interaction with open-ended dialogue input. However, 

without any goals beyond dining at a restaurant, the experience was not as engaging as the other 

games. In addition, players reported the waitress's personality felt incoherent as her attitude, and even 

her name, fluctuated as the system replayed fragments of different games. This weakness has been 

addressed more recently by partitioning the data according to recognizable attitudes (e.g. polite, rude, 

flirtatious), however this only enforces static attitudes. A system has not yet been implemented to 

dynamically modulate attitude based on affinity toward other characters, determined by observing 

interactions, which remains for future work. 

 

CAI is an unfamiliar development process, introducing new challenges for designer control, and 

debugging. The trade-offs for efficiently integrating massive amounts of content are that tagging errors 

and inconsistencies may exist throughout the database, and fully testing all possible interaction paths is 

not possible. Future work will focus on tools for preemptively detecting likely tagging errors, searching 

the database for similar instances, and seamlessly integrating debugging and authoring tools to facilitate 

correcting the tags. Additional effort will also be devoted to formalizing the representation of domain 

knowledge, to be more structured, modular, and reusable, thus decreasing the reliance on programmer 

intervention. Finally, running the system with additional datasets from other games is required to 

evaluate generalization beyond restaurant interactions. 

 

The rest of the thesis is organized into the following chapters: 

2. Related Work situates this project within the history of related efforts in Natural Language 

Processing, crowdsourcing, cognitive science, AI, and interactive storytelling. 
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3. Crowdsourced Content Creation provides details about how data was collected, examples of what 

the data looks like, and statistics that characterize the TRG data set. Additional data sets are 

presented, from games re-using the TRG codebase to collect data about human-robot 

interaction (Mars Escape), and dramatic improvisation on the set of a science fiction film set 

(Improviso). 

4. Automatic Pattern Discovery reports on efforts to simulate NPC-NPC interactions driven by statistical 

models learned from an unsupervised system. Approaches explored include learning n-gram 

models of language and action, classifying dialogue acts with SVMs and HMMs, iteratively 

clustering events with Affinity Propagation and PLWAP sequence mining, and learning concept 

labels through correlation. 

5. Human-Machine Collaborative Pattern Discovery details the implementation of EAT & RUN, and the 

online data annotation process. An overview of EAT covers annotation of events, dependencies, 

attitudes, and domain-specific knowledge, as well as clustering of utterances, and construction 

of an ontology of concepts. Coverage of RUN includes plan recognition, case-based planning, 

goals, critics, and domain knowledge. The interface for human interaction is presented, along 

with transcripts of actual play sessions. This chapter concludes with best practices for applying 

the CAI process. 

6. Evaluation includes a quantitative and qualitative evaluation of an implementation of CAI applied to 

TRG. The quantitative study explores support for speech interaction, and finds that combining 

speech recognition with inferred context leads to a system that generates satisfactory dialogue 

options 28% more often than a system that relies solely on recognized speech. The qualitative 

study uses focus groups to compare the gameplay experiences of TRG, Façade, and Skyrim. 

Focus group discussions reveal that players do find TRG to be more open-ended than other 

games, and more supportive of using language as action. However, players also commented 

about the lack of explicit goals in TRG, and issues with coherence of personality, which 

negatively affected engagement. 

7. Conclusion presents contributions, responses to criticism, next steps, and future directions. 

Contributions include the CAI process, evidence of the value of data-driven interaction, interface 

for natural language interaction, and data sets from TRG and Improviso. Discussion of common 

criticism of CAI responds to concerns about scaling up, reliance on data collection, crafted 

versus data-driven experiences, production practicalities, and coherence. Next steps include 

capturing and generating strong narratives, improving coherence, scaling up, and improving 

infrastructure. Future work will focus on new data sources, applications to decision support, 

training, and therapy, and heterogeneous NPC-NPC interactions. 



 

31 

 

2 Related Work 
 

This work is motivated by a desire for new player-directed experiences in interactive stories, with Non-

Player Characters (NPCs) who can communicate with players and adapt to player choices. There is a 

range of narrative possibilities that are difficult, or impossible, to achieve without the ability to use 

language as action (e.g. romance, deception, humor). While much progress has been made in the game 

industry developing cunning opponents with keen spatial awareness, this research works toward socially 

aware dramatic role players, who can support an experience akin to going online with a dedicated 

improv troupe. 

Two significant developments in games-related research debuted shortly before this thesis research 

began, and influenced the direction of this work. The interactive drama Façade (Mateas & Stern 2005) 

demonstrated the possibility of delivering a compelling face-to-face social interaction in a mundane 

everyday environment, combining physical interaction with open-ended natural language. The ESP 

Game (von Ahn & Dabbish 2004) proved that pairing players anonymously online to play a game 

together was a viable means of collecting large quantities of data capturing general world knowledge, 

such as labels for images. In some sense, The Restaurant Game (TRG) can be considered a combination 

of these ideas, pairing people anonymously online to engage dramatic role play, generating data about 

physical and linguistic interaction in an everyday scenario. Recording these human performances is the 

first step of the Collective AI (CAI) process, leading to many questions about how to leverage this data to 

understand a human player, and automate an AI-controlled NPC, who adapts to player choices while 

coherently playing a role, adhering to an overarching narrative. This chapter explores previous work that 

has influenced the answers to these questions. 

 

2.1 Natural Language Interaction in Interactive Stories 

 

While commercial videogames continue to take a conservative approach to natural language 

interaction, relying on prescribed multiple choice dialogue trees, a number of research projects have 

demonstrated the potential for rich, open-ended interaction with language. The motivations for natural 

language interaction range from increased immersion, to co-operation with NPCs, to building more 

effective training systems. This section explores how narrative structure can be exploited to help 

machines understand and generate natural language while interacting with humans. 

 



 

32 

 

2.1.1 Natural Language Understanding in Façade 

 

Façade is a fully realized interactive drama which builds on previous work on the Oz Project (Bates 

1992), combining threads of research related to interactive drama with animated virtual characters (e.g. 

the Woggles), and text-based interactive storytelling (e.g. Robbery Word, Office Politics, The 

Playground). Façade integrates open-ended natural language dialogue interaction into a first-person 

dramatically charged experience in an immersive virtual environment. The similarities between TRG and 

Façade are obvious, as both place the player in an everyday social scenario, rather than requiring the 

player to solve a puzzle or complete a mission, and allow interaction through typed text and mouse-

driven interaction with the world. The interface for TRG is reminiscent of (and inspired by) Façade, 

however, these projects emphasize different aspects of the experience, leading to different approaches 

in how language is understood, and used to take action in the narrative.  

Façade prioritizes delivering a dramatic experience above other interaction goals, making it particularly 

well-suited for supporting natural language interaction, despite the associated challenges. TRG is 

designed to demonstrate a collaborative, player-directed experience, where language can be used 

effectively as action. The developers of Façade ascribe to a philosophy for realizing interactive drama 

which requires a minimum of three characters, where the player is not the main character. The player is 

invited to Grace and Tripp's apartment for cocktails, and over the course of about 15 minutes, witnesses 

the implosion of their marriage, as a heated argument unfolds. The player's typed text input perturbs 

the rapidly intensifying narrative, encouraging the NPCs toward an amiable, or not-so-amiable, 

resolution. The dramatic focus and three-character model enables taking a practical approach to the 

challenge of Natural Language Understanding (NLU), masking understanding failures in a well-executed, 

plausible, contextually appropriate way -- the NPCs continue arguing, ignoring the player in the heat of 

the moment, sometimes pausing to look at the player with a confused facial expression. The ability for 

the player to freely express him/herself at moments that cry out for a response, using open-ended 

natural language input, adds to immersion. However, understanding language is not critical to the 

primary objective of achieving drama, as Grace and Tripp can often move the narrative forward 

regardless of player input. In contrast, there are only two characters in TRG, the customer and waitress, 

and the narrative can only move forward coherently if they understand one another. 

Façade's philosophy of interactive drama impacts architectural decisions, and the underlying narrative 

structure. Narrative is represented as a sequence of dramatic beats (Mateas 2002). Beats are scripted in 

a reactive planning language called ABL, to choreograph the interactions of Grace and Trip for a short 

period of time. Each beat has an associated level of tension, and a drama manager is responsible for 

selecting beats from a bag of beats such that the sequence produces an Aristotelian dramatic arc. One 

beat is active at a time, and the currently active beat is responsible for interpreting player input. The 

beat encodes a mapping from expected words or phrases to dialogue acts, and from dialogue acts to 

NPC responses. In this way, beats provide context for understanding language, however the onus is on 

the designer to anticipate and encode responses for all possible inputs. This issue is exacerbated by the 

fact that Façade is designed to be replayed at least six or seven times before feeling like the content has 

been exhausted, requiring authoring several variations of many beats. Michael Mateas (2002) has stated 

that the authoring burden for implementing Façade's beats was high. Developing the roughly 15 minute 

Façade experience took over five years, and co-developer Stern has estimated that producing a 
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comparable new drama from the existing technology would take about two person-years5. The decision 

to crowdsource content creation by recording players online in TRG was in part a reaction to this 

authoring challenge identified by Façade. Recording thousands of players playing each role relieves the 

designer from having to imagine everything someone might say, and when they might say it.  

TRG borrows from Façade, seamlessly combining an interface that allows typed natural language input 

at any time with a point-and-click interface for interacting with objects. When interacting with an AI-

controlled NPC in TRG, the system responds to human input (typed text or speech) by dynamically 

populating list of dialogue options, intended to be as semantically similar as possible to the human 

input. Where Façade primarily uses natural language input for purposes of immersion, TRG depends on 

language as a form of action. The player in TRG is the main character, in a scenario with only two actors, 

thus dynamically generating dialogue options ensures that the player will be able to effectively use 

words to move the narrative forward. 

 

2.1.2 Natural Language Understanding in Other Systems 

 

There are a number of previous projects which demonstrate how narrative structure can be leveraged 

to understand language, and enable using language as action. TRG shares elements of several such 

projects. The Leaders project (Gordon et al. 2004) represents a narrative as a branching storyline, 

comparable to a choose-your-own-adventure book. Rather than displaying multiple choice options at 

each branch point, open-ended typed text input is mapped to one of the available branches by a Naive-

Bayes classifier (George & Langley 1995). This mapping forms a closed system with open-ended input, 

where the user never strays from predetermined narrative paths. TRG takes a similar approach of 

mapping input to known narrative structure, but makes the mapping transparent. Natural language 

input is used as a query to search for similar utterances observed in the human data, which are then 

filtered by context, and presented as dialogue options. Transparency ensures the player's input is not 

misinterpreted, at the cost of immersion (though one could argue that a system that frequently 

misinterprets input is not very immersive either). The interface can be configured to skip displaying 

options when the input exactly matches a previously recorded utterance. As the size of the corpus of 

human performances grows, the likelihood of an exact match increases, thus while the system is closed, 

there is an aspect of openness that scales with more data. 

A rigid, predefined branching structure (e.g. tree, graph) is a simplistic representation of interactive 

narrative, compared to the fluidity of actual human interaction. Many systems represent narrative more 

flexibly, as a hierarchical plan, composed of goals can be broken down into sub-goals, eventually 

reaching leaf nodes representing primitive actions and utterances. While this still leads to representing a 

narrative as a tree, there may be many possible decompositions of the same task or story, reorganizing 

modular sub-trees to generate different instantiations. This top-down representation can be 

reformulated as a grammar of possible decompositions, which can be exploited to infer structure from 

primitive observations, and predict future observations. For example, if someone enters a restaurant 

and sits down, one can infer that he is beginning a meal, and might ask for a menu or a drink next. 

                                                           

5
 "With this architecture in hand, two trained people could crank out another interactive drama equivalent to 

Façade in less than a year." http://grandtextauto.org/2008/03/18/ep-86-learning-from-facade/#19 
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Two previous projects led by members of the Cognitive Machines research group at MIT (where this 

thesis research was also conducted) have demonstrated how hierarchical plans can be exploited to 

understand speech input. Peter Gorniak (Gorniak & Roy 2005) recorded pairs of players conversing while 

solving a puzzle in a role-playing game, and developed a system that could disambiguate the meaning of 

spoken directives from one player well enough to predict what the other player would do next. 

Ambiguities could exist at the level of speech recognition, utterance context, or reference resolution. 

For example, the system could correctly interpret the ambiguous directive "use the blue one," to refer 

to pulling a specific blue lever in an environment with multiple blue objects, based on the players' 

current progress solving the puzzle. This was accomplished utilizing a probabilistic parser (Early 1970), 

supplied with a hand-crafted grammar of all possible ways to solve the puzzle, to perform plan 

recognition (Kautz & Allen 1986). Plan recognition refers to inferring hierarchical structure (e.g. a 

hierarchical plan, task, event, or narrative) from an observation sequence. The top-down specification of 

puzzle solutions informs the bottom up recognition of spoken words. Similarly, Michael Fleischman 

(Fleischman & Hovy 2006) use a hand-crafted hierarchical task model of an emergency response 

situation to interpret spoken commands by probabilistically mapping input to valid sub-tasks based on 

an observation history. The mapping employs a Baysian noisy channel model from the field of Machine 

Translation (Brown et al. 1993) to estimate the likelihood of an interpreted command given the words 

returned from an off-the-shelf speech recognizer. 

TRG leverages plan recognition based on a hierarchical event dictionary to understand language. This 

dictionary is comparable to a task model, or plan grammar. The approach taken to construct, and infer 

hierarchy from, the dictionary is different from that taken in the above projects, but the motivation to 

exploit context to disambiguate meaning is the same. As part of the CAI process, action sequences 

representing events are mined from thousands of recorded human performances, providing a more 

diverse, nuanced grammar or task model than could be crafted by hand. A case-based, rather than 

probabilistic, approach is taken to inferring a hierarchy from observation sequences. (Case-based 

techniques are discussed further in Section 2.5). This decision is driven by the social, rather than task-

oriented, nature of the TRG data. A restaurant scenario does not work toward a single "win" condition, 

and may contain extraneous interactions that are not required to complete the over-arching scenario. 

For example, the customer's decision to stay for dessert rather than immediately getting the bill is 

arbitrary in TRG, based on the whims of an individual player engaged in dramatic role playing. Thus, as 

long as the inferred hierarchy can be matched at an abstract level to a recorded human game, it is 

considered valid. In a social situation, there is not the same notion of the most likely next move, seen in 

puzzles and regimented military and emergency scenarios.  

The idea that narrative context can help machines understand language goes back the idea of scripts 

introduced in the 1970s, proposed as a solution to enable machines to understand written stories. Roger 

Schank (Schank & Abelson 1977) theorized that humans understand stories and infer missing details by 

relying on scripts learned from childhood. Scripts consist of roles for people and objects, entry 

conditions, and a sequence of scenes that capture a chain of events at an abstract level. When we read, 

“John went to a restaurant. He ordered chicken. He left a large tip”, we can infer that he also sat down, 

looked at a menu, ate his chicken, and was pleased with it. Ultimately, Schank's team found it 

intractable to encode every possible narrative path through a restaurant scenario. TRG revisits the idea 

of the restaurant script, trying to learn a rich model of restaurant interaction from thousands of role 

players, rather than encoding it by hand. At the same time, TRG relies on the existence of a cognitive 

restaurant script, to enable anonymously pairing people online as customers and waitresses, with 

minimal training or instructions. 
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2.1.3 Natural Language Generation in Videogames 

 

TRG leverages narrative structure not only to understand linguistic input, but to generate dialogue 

options as well. A similar approach has been implemented in the Disco for Games (D4G) system (Hanson 

& Rich 2010), based on collaborative discourse theory (Lochbaum 1998). In this theory, utterances are a 

form of action, seamlessly interwoven with other types of action, in a hierarchical task model, and a 

focus stack keeps track of which node is currently being expanded. D4G represents the task model as a 

hand-crafted Hierarchical Task Network (Erol et al. 1994). D4G does not accept open-ended natural 

language input, but does allow the player to select an utterance from a list of options at any time, fluidly 

interleaving physical and linguistic actions. Contextually relevant utterances options are generated 

dynamically based on possible decompositions of the node of the task hierarchy currently in focus. TRG 

generates dialogue options by searching for recorded human utterances semantically similar to the 

human input, then leverages the inferred event hierarchy to filter out contextually inappropriate 

options. When the human input cannot be understood (due to speech recognition failure, or out of 

vocabulary words), TRG generates dialogue options purely based on context, similar to D4G. TRG runs 

the same AI system used to automate NPCs, from the perspective of the player, to generate contextually 

relevant options. 

 

 

2.2 Crowdsourced Imagination 

 

The previous section notes that one of the major challenges in developing systems that understand 

natural language is coverage of possible inputs. This is a symptom of the limited imagination of 

individual humans, which can be remedied by harnessing the power of the crowd to amplify the 

imagination of an individual developer, and provide more complete coverage of the input space. The 

benefits of crowdsourcing are not limited to enhanced understanding of language, as the crowd can also 

provide common sense knowledge and enhanced creativity, all of which will be explored in this section. 

 

2.2.1 Crowdsourced Natural Language Understanding 

 

Researchers at Bell Labs illustrated the vocabulary coverage problem by bringing human subjects into 

the lab to apply labels to a collection of images, finding a surprisingly wide variety of words associated 

with each image (Furnas et al. 1987). Collections ranged from images of common objects (e.g. calculator, 

nectarine, Lucille Ball), to images of text editing operations (e.g. insert, delete, replace). Across five 

domains, the study found that in every case two people favored the same term with probability less 

than 0.2. This issue is evident in the TRG data as well. For example, in a 1,000 game subset, there are 

five different words (or spellings) used to refer to the bill: bill, check, cheque, tab, and ticket.  

The ESP Game (von Ahn & Dabbish 2004) combats the vocabulary coverage problem by enticing the 

general public to supply labels for images, through the process of playing a game. Players of the web-
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based ESP Game are paired anonymously online, and shown a sequence of images. Points are scored 

each time both players type the same word for an image. Players may not use words that appear on the 

taboo list for an image, where the taboo list is generated from labels assigned by previous players, thus 

forcing subsequent players to continue expanding the variety of labels associated with each image. The 

quality of the labels was evaluated by human subjects, through an image retrieval task, and manual 

assessment. Human subjects in the manual assessment found that 1.7% of the labels generated by the 

game were inappropriate for the image, based on inspecting the top six labels for 20 images. The image 

retrieval task resulted in 100% precision for images retrieved based on 10 labels randomly selected from 

the corpus. With an observed average rate of 3.89 labels collected per minute by a pair of players, all of 

the images on Google could be labeled in 31 days by 5,000 players of The ESP Game (based on the figure 

of 425,000,000 images in 2004). While the data produced is valuable for applications such as image 

retrieval, the players need not be aware of this end-goal. Players are rewarded with free entertainment, 

a unique social interaction, and the opportunity to advance in online leaderboards. 

The ESP Game demonstrates how a game can be employed to crowdsource vocabulary generation.  A 

more immersive project called Wubble World (Hewlett et al. 2007) has demonstrated how a 3D virtual 

world can be employed to learn words for concepts (e.g. colors, shapes) through interaction with 

human-controlled avatars. However, NPCs in interactive stories need to understand entire utterances, 

not only individual words, exacerbating the problem of coverage. For example, the same previously 

mentioned 1,000 game subset from TRG exhibits 167 different ways to ask for the bill, including “I’m 

ready for my bill,” “where’s the check?” and even utterances that do not directly reference the bill at all, 

such as “Can I pay now?” The How May I Help You project at AT&T (Gorin et al. 1997) demonstrated that 

recording many pairs of people conversing in the same situation is a viable way to capture a diverse, yet 

exploitable sample of different ways to say the same thing. This project recorded 10,000 customer 

service calls to human operators beginning with the prompt "How may I help you?", and automatically 

learned to route calls to appropriate departments. Examples of spontaneous speech inputs handled by 

this system include questions like "Can I reverse the charges on this call?" and "How do I dial direct to 

Tokyo?" Call routing relied on a system that identified salient phrases in the input, which act as reliable 

indicators of utterance meaning. Salient phrases are unigrams, bigrams, or trigrams that have high 

mutual information (Cover & Thomas 1991) with a particular call type. Phrases deemed salient for the 

same call type could be clustered based on surface similarity, merging phrases like "a wrong number" 

and "the wrong number." 

This notion of salient phrases influenced the data-driven approaches described in Chapter 4 to 

understand utterances. The success of the How May I Help You system, based on 10,000 training 

examples, was encouraging, as recording 10,000 performances of restaurant interaction was an 

achievable goal for TRG. However, rather than capturing the response to a single prompt, TRG 

transcripts encompassed 10 minutes or more of spontaneous role-playing. In order to apply insights 

from How May I Help You, each game was segmented into dialogues, bounded by the physical actions 

observed before and after uninterrupted sequences of utterances. The posterior action was assumed to 

give meaning to the dialogue. For instance, the waitress often retrieves a beer from the bar after a 

dialogue in which the customer orders beer. Phrases observed in some minimum number of game logs 

were considered salient, and clustered based on surface similarity. The simple dialogue system, 

described in Section 4.1, generated responses by searching for previously observed utterances with 

matching sets of salient phrases. In order to train the dialogue act classifier described in Section 4.3, 

salient phrases were identified based on mutual information between n-grams and dialogue act types. 

These salient phrases served as linguistic features for the classifier. 
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2.2.2 Crowdsourced Common Sense 

 

The discussion thus far has focused on leveraging the crowd to understand language, however, the 

crowd is equally useful for providing common sense knowledge, and possible narratives. TRG records 

performances of restaurant narratives, from which it is possible to learn common sense about everyday 

physical and linguistic interactions in a restaurant. There are several notable projects, that have come 

before and after TRG, with similar goals of acquiring common sense from the crowd. 

Long before the term crowdsourcing was coined, the Open Mind Common Sense (OMCS) project began 

collecting common sense assertions on the web (Singh 2002). OMCS allows the general public to 

contribute assertions such as "The sun is very hot," and "A coat is used for keeping warm." Since 1999, 

OMCS has collected over a million facts from over 15,000 contributors. A more structured semantic 

network called ConceptNet (Liu & Singh 2004) has been learned from the open-ended English assertions. 

ConceptNet is represented as a directed graph, where nodes are concepts, and edges are assertions that 

related concepts to one another. Similar to ConceptNet, Cyc (Lenat 1995) is an ontology that represents 

common sense knowledge with formal logic, rather than natural language, making authoring knowledge 

more difficult. These common sense knowledge bases have proven useful for a number of research 

projects, but without putting the common sense assertions into some context, it is hard for an NPC to 

leverage this information for purposes of automating interactive storytelling. There have been efforts to 

learn common sense narratives from the OMCS corpus. One such effort, LifeNet (Singh & Williams 

2003), produces temporal graphical models drawing inferences through probabilistic belief updating. 

While this approach is somewhat successful at learning temporal links, due to the noise and diversity of 

the OMCS data, coverage of any specific scenario is sparse. 

More recently, researchers have been able to leverage crowdsourcing platforms like Amazon’s 

Mechanical Turk (AMT) to directly request narratives of specific scenarios, paying small amounts of 

money for each submission. Boyang Li collected step-by-step narratives written in natural language from 

crowd workers, describing everyday scenarios including fast food dining, and a movie date (Li et al. 

2012). Events are not known a priori, and instead generated from the collected narratives through a 

process combining automatic clustering, based on surface similarity and temporal location, with 

crowdsourced validation. Once clustered, the system produces a directed graph of possible narratives 

represented by temporally ordered event sequences, referred to as a script. Compared to TRG, this 

approach has the advantage of generating scripts without first requiring implementing game for data 

collection. In addition, the range of possible narratives are not restricted by limitations or assumptions 

built into a virtual environment. For example, the fast food script includes both dine-in and drive-thru 

paths. However, this approach generates scripts that are more coarsely grained than the narrative 

structure associated with CAI. Li’s fast food script includes events like “place order” and “pay for food,” 

while the TRG data captures the thousands of variations of action and utterance sequences which 

comprise these events, providing the fine grained representation required to automate NPCs. There are 

also limitations related to the coherence of narratives produced from Li’s scripts, as the system is not yet 

capable of detecting mutually exclusive branches (e.g. do not sit at a table after picking up food from the 

drive-thru). The n-gram driven system described in Section 4.1 suffers from similar issues with global 

coherence, ultimately addressed by providing higher level structure through approaches described in 

Chapter 5. 

With a focus on improvisational characters rather than narrative, Brian Magerko collects a different kind 

of common sense data from the crowd (Magerko et al. 2011). Magerko’s work shares the interest of this 

thesis in creating NPCs capable of improvising a scene, along with other human or AI-controlled 
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characters. However, like Li’s work, the scene is not dictated a priori by a preconceived virtual 

environment. Instead, NPCs interact and reason about observed interactions, in an endeavor to reach 

cognitive consensus about which scene they are dramatizing. NPCs rely on a synthetic cognitive system 

designed to model the thought process of a human improv actor, taking actions expected to contribute 

towards a shared mental model of the scene. In an implementation of a game called Party Quirks, NPCs 

execute pantomime animations (similar to charades) in an effort to help a human guess which character 

prototype the NPC is portraying (e.g. ninja, cowboy, pirate). The NPC selects actions based on their 

Degree of Membership (DOM) with attributes associated with the hidden character prototype. Examples 

of actions include BITES_THINGS, and HIDES_BEHIND_THINGS. Attributes are properties like SPEED, 

STEALTH, USES_MAGIC, and FEARLESS. Each action may be a member of multiple attributes, with 

different DOMs, represented as fuzzy ranges of floating point values between 0 and 1. The association of 

attributes to character prototypes is also represented by a floating point [0…1] value. NPCs can exploit 

these values to select actions such that they gradually disambiguate the character prototype, prolonging 

the game for the human partner. Harvesting the values from the crowd for attribute associations and 

DOM ranges not only decreases the authoring burden, but also captures sociocultural common sense 

about how different types of characters should behave.  

This thesis takes a different approach to improvisation, but shares motivations of Magerko’s work to 

realize NPCs who can dynamically collaborate with other actors without top-down control over the 

scene. Though the setting for the scene is predetermined in CAI (e.g. a restaurant), the open-endedness 

of the interaction leads to NPCs faced with ambiguity (“excuse me miss” might begin a new order, or 

initiate a complaint), requiring the ability to form a shared mental model with other actors, in order to 

maintain coherent interaction. CAI takes a case-based, rather than probabilistic, approach to 

disambiguation, as described in Chapter 5, and relies on soft assignments of recognized events, which 

can be revised as more information becomes available with subsequent observations. 

 

2.2.3 Crowdsourced Creativity 

 

Data collected from the crowd can support generation of narrative representations with ample coverage 

of language variation and common sense background knowledge, but can also introduce surprises and 

insights that may not have occurred to an individual or small group of authors. While crowdsourcing 

content creation introduces the risk of generating unwanted or inappropriate material, there is the 

potential to amplify the creative ability of an individual or small group of authors. An increasing number 

of notable experiments with crowdsourced creativity both have emerged, both in and outside of 

academia. For example, Aaron Koblin's theSheepMarket.com hosts 10,000 drawings of sheep created by 

AMT workers, each paid $.02 to draw a sheep facing left. LocalMotors.com crowdsources automobile 

designs, accepting submissions from anyone. Users vote on designs through monthly contests, and the 

company manufactures designs that get enough buzz to suggest the viability of selling 500 cars. Jesse 

Schell's PuzzleClubhouse.com hosts an episodic crowd-designed game, where community members 

submit and vote on game concepts, story ideas, and artwork. A professional development team 

assembles the crowdsourced content into a playable game. The first installment features puzzles 

consisting of frogs with back-mounted lasers.  

More relevant to this thesis research, Reid Swanson's Say Anything project (Swanson & Gordon 2009; 

2012) generates text-based narratives interactively, taking turns with a human author, automatically 

generating subsequent sentences mined from personal blogs. This system takes a simplistic approach to 
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selecting the next sentence, measuring similarity between the user's last input and candidate sentences 

based on a vector space model with term frequency-inverse document frequency (TF-IDF) (Jones 1972) 

feature weights. Later iterations of the system added measures to better ensure coherence, by offering 

the user multiple options for the next sentence, and ranking candidates to maximize coherence based 

on Entity-Grid derived features (Barzilay & Lapata 2005). While the original blog authors are unaware 

that they are participating in this experiment, the data can still be considered crowdsourced, as it is 

collected online from a large pool of individuals. 

Li, Magerko, and Swanson's projects all leverage crowdsourced data that is unconstrained by a 

predetermined virtual environment, but the data captured is not at the granularity required to 

automate the moment-to-moment decisions of an NPC. There are likely potential synergies between 

these projects and CAI, where a first pass of unconstrained crowdsourced content creation could inform 

the design of a virtual environment used to capture fine-grained recorded performances. This process 

could be iterative, expanding the repertoire of possible narratives based on observed interactions during 

data collection. Chapter 5 includes a list of auxiliary events, added to the list of annotated events based 

on unanticipated, yet recurring observations in the data. This list includes events such as asking to speak 

to the manager, stealing appliances, and the customer asking the waitress to join him at the table. 

 

2.3 Coherence, Tension, and Affinity 

 

Crowdsourcing content creation offers a potential solution to the authorial burden highlighted by 

Façade, yet combining fragments of narratives from thousands of individual authors introduces new 

challenges for maintaining coherence, and producing interesting stories. There are several kinds of 

coherence, all of which need to be addressed. Most important is structural coherence, where the 

sequence of events in the narrative is plausible, and makes sense to a human audience. As the 

qualitative evaluation in Chapter 6 demonstrates, assembling narrative fragments into a coherent 

structure, however, can still result in NPCs that appear schizophrenic, if drawn from performances 

inconsistent in attitude or factual information (e.g. names, occupations). Note that this is a different 

kind of schizophrenia than that recognized by Phoebe Sengers (1999), which relates to NPCs oscillating 

between competing goals. Some of these issues can be addressed by partitioning the corpus into 

fragments associated with specific attitudes (accomplished in TRG with the Attitude tag described in 

Chapter 5), and tracking concepts like proper names, for purposes of adapting utterances to conform by 

variable substitution (not yet implemented in TRG). Several existing narrative systems yield insights into 

ensuring structural coherence, and modeling affinity to maintain coherent relationships between 

characters. Finally, a story generation implementation from the past serves as a cautionary tale for 

systems that ensure coherence, while disregarding tension or interest. 
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2.3.1 Structural Coherence 

 

In general, interactive narrative systems ensure structural coherence through an architecture that 

imposes top-down control over possible decompositions of the story. For example, Façade represents 

narrative as a sequence of beats, where each beat consists of a reactive plan that choreographs Grace 

and Tripp, and monitors player input in anticipation of actions and utterances the NPCs can respond to. 

Reactive plans are hand-scripted in ABL, enabling expertly crafted dramatic dialogue, at the cost of 

reduced player agency, when the player’s input was not anticipated (or desired) by the script author. 

Another top-down approach is to represent the entire narrative as a hierarchical plan, decomposable 

into modular chunks that can be reused or reordered to support narrative variation. The Memesis 

system (Young et al. 2004) employs a narrative mediation process to balance narrative coherence with 

player agency. This mediation process can either engage in intervention or accommodation. 

Intervention prevents an action disruptive to the plan from executing (e.g. a gun files to fire, when 

aimed at an indispensable character). Accommodation forces the system to re-plan, to allow a goal to be 

achieved in an alternate way when player actions have interfered with a required plot point (e.g. 

starting a fight with a character intended to be a key ally later on). Re-planning can be computationally 

expensive, and requires alternative content, again leading to an authoring bottleneck. 

Marc Cavazza describes a system that combines top-down character control with bottom-up emergent 

storytelling (Cavazza et al. 2002). Autonomous NPCs are driven by hierarchical plans, and interact 

emergently with other NPCs producing stories. Hand-crafted situated reasoning modules resolve 

conflicts between actual interactions and an NPC's current plan to maintain coherence (e.g. an NPC may 

choose to hide from, or converse with, an NPC encountered earlier than expected, impacting future 

plans). In this system, the player is not an embodied character, but rather a spectator that can 

manipulate objects in the environment to influence the story. 

Like Cavazza's system, CAI combines top-down representation of narrative with bottom up interaction 

between characters. However, CAI is designed to support open-ended, moment-to-moment, face-to-

face interaction between NPCs and human players. CAI does not utilize a centralized narrative planner. 

Instead, each NPC selects actions and utterances through a bottom-up case-based process, drawing 

candidates from the corpus of recorded performances found to have similar observation histories to the 

current interaction (case-based planning is further explored in Section 2.5). A collection of Critic 

processes scrutinize how candidate actions will modify the narrative structure, preventing taking actions 

that will interfere with global coherence. (Section 2.4 further discusses the narrative structure, 

illustrated in Figure 1-2). For example, Critics might ensure that the waitress seats the customer before 

taking his order, brings the correct dishes based on his order, and waits to bring the bill until he has 

finished his last course. One of the Critics evaluates the event structure of the narrative, while another 

critiques long-term dependencies. NPCs employ a Plan Recognizer to infer an event hierarchy from 

observations of new actions and utterances. This event hierarchy conforms to a top-down structure 

dictated by an event dictionary generated from the corpus of recorded performances. An additional 

Critic biases an NPC to adhere to a specified attitude, delivering a more coherent performance by 

reducing oscillation between narrative fragments that convey specific attitudes (e.g. polite, rude, drunk). 
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2.3.2 Coherence of Affinity 

 

Evaluation results in Chapter 6 demonstrate that the CAI approach does deliver a structurally coherent, 

player-directed interactive experience. However, work remains to address coherence with respect to 

affinity between characters over time. Partitioning the corpus by attitude is a step toward modeling 

affinity, but the current implementation lacks a mechanism to dynamically modify the affinity NPCs have 

toward other characters. Commercial role-playing games (RPGs) typically model affinity simplistically, 

adjusting a variable per NPC in response to player actions. Façade adds an interesting twist, tracking the 

affinity that the system believes the player has toward each NPC. When the typed input is understood, 

Façade's drama management system determines whether the input is aligning the player more closely 

with Grace or Tripp, and factors this affinity into the selection of future behaviors for the NPCs. 

A recent experimental interactive narrative, Prom Week (McCoy et al. 2011), takes a more sophisticated 

approach to modeling affinity between characters with a system called Comme il Faut (CiF). Characters 

(high school students, preparing for the prom) are connected through three different fully-connected 

social networks: a relationship network, romance network, and an authenticity network. Nodes in the 

network are characters, and edges indicate how each character feels toward another, with respect to 

friendship, romance, and respect. Actions taken by any character result in social network status updates, 

possibly modifying how others feel toward the acting character. Prom Week is played as a third-person 

simulation (or god game, ala The Sims), allowing a disembodied player to select commands by clicking 

on NPCs. NPCs respond to commands by uttering associated lines of dialogue. Available commands for 

an NPC at a given time are determined by meeting preconditions of potentially thousands of social 

status rules, encoded in formal logic. For example, an NPC can only start a fight with someone if they are 

enemies, and there has been a previous act of provocation. Augmenting TRG with a sophisticated model 

of affinity like CiF could address issues with social incoherence observed in the qualitative evaluation, 

such as the waitress agreeing to date the customer after he stole the cash register. An interesting future 

direction could be an exploration of learning social status rules from a corpus of recorded performances, 

either automatically or based on human annotation of cause-effect relationships between actions and 

affinity. 
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2.3.3 Managing Tension 

 

A story generation system called Tale-Spin (Meehan 1976) employed classical planning techniques to 

dynamically generate narratives based on the goals of characters. While the stories generated were 

coherent, they were not interesting. Marie-Laure Ryan (1991) uses Little Red Riding Hood to illustrate 

why an interactive narrative system should not strive for coherence alone. In a system like Tale-Spin, a 

goal-directed wolf would simply eat the little girl in the woods, next eat the grandmother, and finally get 

killed by the hunters. 

From a practical point of view the plan of the wolf is far superior in the flat version than in the 

actual tale: why should the wolf delay his meal by going first to the grandmother, when he could 

find immediate satisfaction in the woods? This points to an important difference between the 

point of view of the wolf, who is a member of the narrative universe and confronts it from the 

perspective of real life, and the point of view of the author who shapes and contemplates the 

narrative universe from the perspective of art. The goal of the wolf is to solve a practical 

problem, the goal of the author is to create a successful story. The tellability of the story is 

invested in the dramatic encounter of Little Red Riding Hood with the wolf disguised as the 

grandmother, and in the sudden turn leading from the success of the wolf to his undoing by the 

guns of the hunters. The narrative climax is not generated by the preceding events; it is rather 

the preceding events that are generated by the climax. In the authorial perspective, logic 

operates backwards and there are no accidents. Events are created with a foresight which is 

radically foreign to the blind progression of pure simulation. While the purpose of simulation is 

to discover what will happen in a world under specific circumstances, story-generating programs 

should rather pursue the goal of finding out how a world must be set up, so that certain events 

can be made to happen. 

Façade is designed from the outset to deliver an experience that conforms to a dramatic arc. Beats have 

associated levels of tension, and are sequenced such that the interaction reaches a climax. Another 

storytelling system called Mexica includes an associated interestingness value with story content 

(Mexica is discussed further in Section 2.5.4). The TRG corpus consists of performances from thousands 

of people, with varying levels of skill at dramatic improv, who may or may not have delivered compelling 

performances. No mechanism has been implemented yet in CAI to modulate tension. A promising future 

direction would enlist human annotators to tag the tension level of notable actions, utterances, or 

entire events. This meta-data could guide a new Critic to bias NPC action selection toward moves that 

will eventually lead to interactions of the desired level of tension. 

 

 



 

43 

 

2.4 Narrative Structure 

 

The narrative structure associated with CAI (illustrated in Figure 1-2) ensures a coherent interaction, 

representing narrative as a nested hierarchy of events, composed of physical and linguistic actions, 

augmented with long-term dependencies. The elements of this narrative structure are motivated by 

practical considerations, while taking inspiration from theories of narrative, cognitive science, and the 

philosophy of language. 

Definitions of narrative vary widely. Porter Abbott (2002) has written that "as soon as we follow a 

subject with a verb, there is a good chance we are engaged in narrative discourse," giving a minimalist 

example of narrative, "I fell down." Gerald Prince (1987) defines narrative as the representation of real 

or fictional events and situations in a time sequence. In order to operationalize a theory of narrative, 

and implement an interactive narrative system, a more detailed definition is required that can answer 

questions about the granularity and composition of events, and the role of causality. 

 

2.4.1 Temporal Action Sequences 

 

At the lowest level, CAI represents narrative as a sequence of actions, with no notion of causality. 

Elizabeth Bates (1979) observed that humans have a unique ability to learn action sequences, even 

when there is no understood causal connection. "We accept many cultural activities without questioning 

how or why they work." She gives an example of a daughter removing a bone from a roast before 

putting it in the oven, as she had learned growing up watching her mother, only to learn from her 

mother years later, "in my oven that was the only way I could fit the damn thing in." Bates notes that 

the ability to pick up large numbers of arbitrary relationships without analyzing or understanding reason 

for the relationship can be viewed as more rather than less human. She cites evidence that even 

creatures as simple minded as rats are driven to seek out causality. Rats associate nausea with food 

stimuli, even when separated up to 24 hours, with lots of stimuli in between. 

 

2.4.2 Interleaving Actions and Words 

 

Action sequences in CAI consist of an arbitrary mix of utterances and actions, fluidly intermixed as a 

common currency. The idea that language is a form of action, which can affect the world, often 

interchangeable with physical action, comes from John Austin's ideas (1955), which lead to Speech Act 

theory, later expanded by John Searle (1969). While other philosophers focused on determining truth 

conditions of statements, Austin recognized that some language serves a purpose other than to assert 

truth or falsehood. These speech acts, referred to by Austin as illocutionary acts, include asking 

questions, making promises, and giving directives for others to carry out. The dialogue act classifier 

described in Section 4.3 includes a Speech Act label as component of the triple that represents an 

utterance, along with components for content and referent. For example, the utterance "I'll have a pint" 

can be represented as the triple {DIRECTIVE, BRING, BEER}. Ultimately, the evaluated implementation of 

CAI relies on semantically clustering utterances by hand, into thousands of folders, to capture fine-

grained nuance between meanings hard to capture in a finite set of labels, themselves described in 
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natural language. For instance, subtle nuance is important when automating NPCs who need to 

understand the difference between when to say "would you like a drink," versus "would you like to start 

with a drink." Saying the latter after serving food items would be perceived as a bug. 

Treating actions and utterances as a common currency enables integrating social interaction as part of 

planning, to complete tasks (referred to as events in CAI). Lev Vygotsky (1978) observed that humans 

learn at an early age to use language as a tool to manipulate their environment, providing a new form of 

building blocks around which behavior in reorganized in the mind. 

The most significant moment in the course of intellectual development, which gives birth to the 

purely human forms of practical and abstract intelligence, occurs when speech and practical 

activity, two previously completely independent lines of development, converge. As soon as 

speech and the use of signs are incorporated into any action, the action becomes transformed 

and organized along entirely new lines. The specifically human use of tools is thus realized, going 

beyond the more limited use of tools possible among the higher animals. 

Language makes it possible to use other humans as tools, in tasks that are easier with, or impossible 

without, collaboration. In the case of TRG, there are tasks that may be physically possible to accomplish 

alone, but require collaboration due to established social conventions. For example, while a customer is 

capable of retrieving food from the kitchen himself, he will typically place an order, to be fulfilled by the 

waitress, adhering to the rules of socially acceptable behavior in a restaurant (assuming a sit-down 

restaurant, rather than fast food). 

 

2.4.3 Language Games and Events 

 

The plan recognition process in CAI infers an event hierarchy based on the observed sequence of actions 

and utterances (as described in Chapter 5). Utterances are given meaning by the environment of actions 

and utterances that surround them, and give them context. This is a form of scaffolding, like that 

theorized by Jerome Bruner (1977). Bruner describes the process of early language acquisition through 

participating in social interaction games like peek-a-boo. Through repeated interaction, an infant learns 

the social situation, which acts as scaffolding for language. Over time, the child learns to predict actions, 

and is able to swap roles with the caregiver, and eventually substitute redundant language for physical 

action. 

Each type of event in CAI can be treated as a social interaction game, like peek-a-boo, with rules that 

emerge by inspecting hundreds (or thousands) of occurrences of the event. The event dictionary, 

generated from human annotations of events (described in Chapter 5), captures the rules for games like 

ordering food, paying the bill, as well as games like flirting, and exchanging pleasantries (e.g. "How is 

your day going?" "Not bad, yours?"). Ludwig Wittgenstein (1965) discusses isolating patterns of linguistic 

interaction into language games for specific purposes, using context to grounding the meaning of 

utterances. Wittgenstein finds that it is infeasible to try to discretely define the meaning of a word or 

utterance, using a formal representation like logic, or by using language itself to construct a definition.  

We find that what connects all the cases of comparing is a vast number of overlapping 

similarities, and as soon as we see this, we feel no longer compelled to say that there must be 

some one feature in common to them all. What ties the ship to the wharf is a rope, and the rope 

consists of fibers, but it does not get its strength from any fiber which runs through it from one 

end to the other, but from the fact that there is a vast number of fibers overlapping. 



 

45 

 

Illustrating Wittgenstein's point (as well as Furnas' observation from Section 2.2), events in TRG can be 

represented by thousands of different, unique sequences of actions and utterances. Given any pair of 

sequences representing the same event, there may be no overlap. In addition, words and phrases 

observed as building blocks for one event may be used for completely different purposes in other 

events. Marvin Minsky (1974) agrees with Wittgenstein, using the example of trying to represent a 

concrete definition for what a chair is. There are always exceptions -- unique designs that have only one 

leg, or tiny toy chairs. Minsky proposes representing concepts as similarity networks, similar to 

Wittgenstein's metaphor of a fibrous rope, with a vast number of overlaps but no single defining thread. 

We do not want to be committed to an inflexible, inclusion-oriented classification of 

knowledge.... The "crisscross resemblances" of Wittgenstein are then consequences of the local 

connections in our similarity network, which are surely adequate to explain how we can feel as 

though we know what is a chair or a game–yet cannot always define it in a "logical" way as an 

element in some class-hierarchy or by any other kind of compact, formal, declarative rule. 

The event dictionary in CAI looks more like a grammar than a similarity network, but serves the same 

purpose of defining events with a loose collection of exemplar instances, rather than a single formal 

definition. This instance-based approach can be considered case-based, as discussed in the next section, 

and allows an NPC to recognize the same event expressed a wide variety of ways, scalable as the corpus 

grows. Inducing an event dictionary automatically from the TRG corpus is difficult for a number of 

reasons -- many actions and utterances have ambiguous event membership, some actions and 

utterances do not contribute to any event, and multiple players are interacting at once, often engaging 

in multiple events at the same time. For these reasons, the evaluated implementation of CAI relies on 

human annotation of events.  

The success of the human-machine collaborative pattern discovery process for the TRG corpus 

(described in Chapter 5), demonstrates that humans have a shared common sense about what goes on 

in a restaurant, making the task of event discovery easy for humans, despite the aforementioned 

complications which make the task difficult for machines. Annotators may be benefitting from humans' 

natural inclination to parse intentional behavior. Dare Baldwin (2001) has shown that even 10-month-

old infants recognize the initiating and concluding boundaries of intentional events. Infants shown 

videos of everyday activities, such as a woman picking up a towel from a kitchen floor, were found to 

look significantly longer when motion was suspended (by pausing the video) interrupting an event, 

rather than at points where an intention was fulfilled. In both cases, motion is jarringly suspended, and 

the longer looking time indicates greater renewed interest in the more surprisingly placed pause. 

 

2.4.4 Causality and Structure 

 

All of this focus on events, and context, is not to say that causality can be ignored. There are 

certainly instances where numerous structurally sound choices exist for the next utterance or 

action in a story, with respect to the event hierarchy, but few are valid with respect to fulfilling 

long-term dependencies. Causal chains are an integral part of the representation of Schank's 

scripts. Schank's work was intended to help machines understand stories, from incomplete 

accounts of events that a story teller deemed worthy of telling. If someone tells a story about 

getting served a rare burger, and leaving a small tip, the system can rely on known causal chains 

between events in the restaurant script to deduce that dissatisfaction with the burger caused 

the small tip. Schank's system leverages a mechanism called a script applier to fill in the finer-
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grained details surrounding the courser grained events. In this case, the script applier might fill 

in details related to placing an order for a medium burger, prior to receiving a rare burger.  

An interactive storytelling system works in reverse from Schank's story understanding system. 

NPCs execute a sequence of fine-grained actions, and base future decisions on the past 

interaction history. Placing an order begins a causal chain, setting up an expectation to receive 

the ordered item. When the order is not fulfilled as anticipated, this might setup another causal 

chain leading to a small tip. Chapter 5 describes two Critic processes implemented in CAI to 

validate forward and backward dependencies. Validating a backward dependency prevents an 

NPC about asking about a steak that was never served. Validating a forward dependency 

ensures the NPC serves the item that was actually ordered. Dependencies are established 

through a case-based process of matching the observed event history to game logs with similar 

histories in the TRG corpus, where dependencies have been annotated by humans.  

 

 

2.5 Case-Based Planning 

 

Schank's team found the task of encoding scripts by hand, accounting for everything that could possibly 

happen in a restaurant, to be intractable. This experience led Schank to begin thinking about how 

knowledge is acquired, stored, and reorganized in the mind, whether digital or human. Schank theorized 

that most real-world problem solving is based on recalling and adapting past experiences, rather than 

rationalizing from first principles (Schank 1983). Thus, much of the AI research at the time was 

misguided. 

What we should absolutely not do is assume that when people solve problems, they do so using 

rational, explicit knowledge known consciously by them. Real-life problem-solving behavior is 

almost never original. Almost all solutions to novel problems are adaptations of previous 

solutions known to the problem solver. These solutions, the knowledge of those cases, and the 

procedure by which those cases are found, is entirely non-conscious. Nearly all human problem 

solving uses knowledge we are not aware we have. We internalize these cases and suppress the 

conscious reminding. Artificial Intelligence has been severely set back by the illusion of the 

primacy of rational knowledge. This manifests itself in the focus on what I call "artificial problem 

solving". There has been a focus in AI on cryptarithmetic, the Tower of Hanoi problem, the 

missionaries and cannibals problem, chess, go, and theorem proving. These problems are rather 

artificial. Human intelligence evolved over millions of years without ever being tested on them. 

The kinds of problems that human intelligence evolved to handle necessarily relied upon the use 

of prior experience. 

Enabling machines to reason from past experience required a radical detour, changing direction from 

the AI field's focus on semantic representations of knowledge, to episodic representations. Systems 

needed to be designed to solve problems by being reminded of similar situations from the past. As a 

result, Schank's theory of scripts evolved to explain the relationship between generalizable knowledge 

structures representing stereotypical interactions, and specific memories capturing the nuance and 

variety of actual human interaction. 
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I am arguing that a script is a collection of specific memories organized around common points. 

The restaurant script must actually contain particular memories, such as the experience in Legal 

Seafood -- where you pay before food arrives. I do not believe in the script as a kind of semantic 

memory data structure, apart from living, breathing, episodic memories. Elements of episodes 

that are identical are treated as a unit, a script. Subsequent episodes that differ partially from the 

script are attached to the part of a script they relate to. Differing parts of the episode are stored 

in terms of their differences from the script. Such episodes can be found when similar differences 

are encountered during processing. 

Many of Schank's ideas from the 1980s are even more relevant today, in a world where it is increasingly 

easy to record human behavior and dialogue on the web, on mobile devices, and in video games. Large 

corpora of recorded human interaction serve as a collective, synthetic episodic memory, which can be 

leveraged by machines to understand behavior, and plan actions to execute in the world. It is almost 

surprising how well Schank's thoughts about human language and cognition foreshadow the data-driven 

approach taken by CAI. 

Conversations are really a series of remindings of already processed stories. The mind can be 

considered a collection of stories or experiences one has already had. It is almost as if we never 

say anything new. We just find what we have already said and say it again. The story-based 

conception of talking presupposes that everything you might ever want to say has already been 

thought up. This is not as strange as it seems. An adult has views of the world that are expressed 

by ideas he has thought up already and has probably expressed many times.  

 

2.5.1 Case-Based Reasoning and Planning 

 

Schank's students formalized this theory of reminding into an implementable approach to AI called 

Case-Based Reasoning (CBR) (Kolodner 1983), later applied to plan formulation as Case-Based Planning 

(CBP) (Hammond 1990). CBR / CBP consists of four steps:  

(1) Case retrieval:  

       Retrieve cases from a corpus which are similar to the problem one is trying to solve. 
 

(2) Ballpark solution proposal: 

       Propose one or more cases that could be used to solve the problem. 
 

 (3) Adaptation: 

                     Adapt variables of the proposed case(s) to align the problem. 
 

 (4) Critique: 

                     Scrutinize the adapted case(s) to validate whether a solution has been found. 

 

This process is made concrete with a simple example of planning waitress behavior in TRG, following the 

planning process described as part of CAI in Chapter 5. Suppose an NPC waitress needs to respond to a 

customer, who has just said, "Can I get a glass of water to start?" The waitress clusters this utterance 

with others believed to be semantically similar, and infers that the customer is beginning an ORDER 

event. The waitress retrieves cases (in the form of game logs) from the TRG corpus which include an 

ORDER event that begins with an utterance believed to be functionally similar to the customer's input. 

She then proposes candidate game logs that extend or respond to this ordering event. In some of these 
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proposals, the customer orders water, and in others he orders something else to drink (e.g. beer, wine, 

coffee). All proposals are adapted such that the customer orders water, and are passed to a set of Critic 

processes to scrutinize. The process completes once any proposal is validated by all Critics. Imagine that 

the first proposal specifies that the waitress should respond by asking, "Can I see some I.D.?" One of the 

Critics will reject this proposal based on meta-data in the game log that indicates a dependency exists 

between this utterance, and a previous utterance that refers to beer. The next proposal specifies that 

the waitress should say "Sure, that will be right out", which is validated by all of the Critics, and vetted as 

the next action for the waitress to execute. There have been 11 Critics implemented so far, which 

scrutinize proposals from different perspectives, covered in more detail in Chapter 5. 

CBR has proven useful for problems like medical diagnosis, where doctors desire explanations for 

symptoms, but the set of possible explanations cannot be easily enumerated for classification. Kristian 

Hammond demonstrated extending CBR to planning with a CBP system called Chef, which operated in 

the domain of Szechwan Chinese cooking. Based on a user's goals for different tastes, textures, 

ingredients, and type of dish, Chef would formulate a plan specifying the steps for a new recipe. Prior to 

the introduction of CBP, planning systems pursuing multiple goals would formulate plans to satisfy each 

goal independently, then attempt to merge the plans into one. This naive approach can lead to 

problems when steps from one plan conflict with, or undo the progress of, another plan. A CBP system 

can retrieve plans from the past that satisfy as many of the existing goals as possible, rather than 

planning from scratch, and then adapt the proposed plan(s) to try to satisfy remaining goals. In the TRG 

corpus of human-human interactions, it is not uncommon to find fragments of game logs where players 

are engaged in multiple events at once -- for instance, simultaneously clearing a table and taking a 

dessert order, while the customer drinks. In addition to the ability to formulate plans to satisfy multiple 

goals at once, Janet Kolodner has commented on the practical benefits of a more intuitive content 

authoring process: "While it is hard to get experts to tell you all the knowledge they use to solve 

problems, it is easy to get them to recount their war stories." 

The rest of this chapter highlights a number of previous CBR and CBP systems, implemented for 

purposes of simulating social interaction and common sense reasoning, playing videogames, and 

generating stories. Aspects of these systems overlap with CAI – some systems interact with humans in 

real-time, some generate natural language, some extract cases from recorded human player behavior. 

Synthesizing these ideas leads to a new medium for telling stories in everyday social settings, face-to-

face with embodied simulated role-playing characters, based on compositing recorded human 

performances. One factor which sets CAI apart from earlier systems is the scale of the case base -- 

comprised of 1,000 human performances, rather than tens or hundreds -- which impacts architectural 

and implementation decisions.  

 

2.5.2 Case-Based Common Sense Reasoning 

 

Push Singh's Em-One (2005) uses a corpus of narratives to guide the physical and linguistic interaction of 

two NPCs in a virtual environment, who are collaborating in an everyday scenario of assembling a piece 

of furniture together. At a high level, the approach to reasoning in CAI is quite similar to Em-One. Both 

perceive observations from a virtual environment, retrieve cases to respond to observations, and 

critique proposed cases with Critic processes to select a coherent next action. The desire to robustly 

support human-NPC interaction in CAI, as well as NPC-NPC interaction, demands orders of magnitude 
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more content (more cases) than existed in Em-One, leading to significant differences in authoring and 

implementation. 

Cases in Em-One are narratives represented as hand-crafted frames (Minsky 1974), where a frame is a 

data structure representing a stereotypical situation, similar to Schank's scripts. Frames have slots that 

can be filled by other frames, forming a flexible, hierarchical representation. Recording human 

performances in CAI facilitates generating an enormous case base. Though these recorded game logs 

require additional processing to capture the semantics of each interaction, Chapter 5 demonstrates how 

non-experts can efficiently generate this meta-data, while Chapter 4 hints at possibilities to automate 

such processes in the future. In addition, human performances capture the nuances of temporal 

interleaving of behavior that cannot be easily represented in a more rigid hierarchical frame. 

Critics in Em-One are organized into three layers: reactive, deliberative, and reflective. Reactive Critics 

search for narratives which propose actions to respond to observations. Deliberative Critics critique 

proposed actions, validating causal and goal-oriented constraints. Reflective Critics identify and 

circumvent problems observed in traces of decisions from the reactive and deliberative layers, such as 

an NPC caught in a cycle of repeatedly making the same mistake. While this three-layered architecture is 

conceptually clean, CAI combines the deliberative and reflective layers for practical reasons, instead 

sorting Critics to minimize processing of proposals. When iterating over thousands of proposals, it is 

beneficial to quickly discard candidates without first computing structural and causal relationships. For 

example, if the game engine has already reported that an NPC has failed to pick up an object (perhaps 

because someone else picked it up), a reflective Critic should reject proposals to try to pick the object up 

again, before executing any more Critics. Reactive Critics are replaced by interaction goals (described in 

Chapter 5), allowing an NPC to not only propose actions which respond to the most recent observation, 

but to also consider actions which may complete an earlier established causal chain, or move the 

narrative forward toward subsequent events. 

 

2.5.3 Case-Based Planning in Games 

 

Successful applications of CBP to simulation and strategy games in the past have provided valuable 

insights for implementing CAI. However, automating NPCs who can collaboratively play roles in stories 

using linguistic and physical actions is a different problem, requiring a different approach to indexing 

cases. In addition, exploiting a corpus of thousands of cases enables simpler alternatives to online 

learning and adaptation proposed in the past. 

The approach to authoring cases in CAI is most similar to that taken for the Darmok system (Ontanon et 

al. 2007), which employs CBP to automate an opponent in the Real-Time Strategy game (RTS) Wargus. 

Authoring begins by recording traces of human players (though players are competing, rather than 

cooperating). Gameplay traces are then annotated by humans to indicate the goals that each action 

contributes to. A goal may span any number of actions, and each action may contribute to multiple 

goals, at different levels of abstraction, forming a hierarchy. For example, attacking an enemy tower 

may contribute to a DESTROY_TOWER goal, which is a subgoal of WIN_GAME. The way these goal 

annotations are used to extract cases differs from CAI, due to differences between RTS gameplay and 

simulated social role-play. 

Cases in Darmok are extracted from the annotated goals, where each case represents a goal, including 

the action sequence or subgoals taken to accomplish the goal, and a retrieval index indicating where the 
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case is relevant. The index is represented as the state of the world, expressed as a vector of unit counts 

on the map when the goal was initiated in the trace. In contrast, CAI stores each entire recorded 

performance as a case. Rather than segmenting performances to extract events as cases, each event 

instance acts as an index for retrieving a case, leading to many indexes for each performance. In 

addition, performances can be retrieved by additional indexes, generated from supplemental layers of 

meta-data indicating dependencies, attitudes, and domain-specific information. Schank (1995) has 

commented on the importance of indexing on thinking: 

Thinking involves indexing. The more information we are provided with about a situation, the 

more places we can attach it to in memory. A story is useful because it comes with many indices. 

Indices may be locations, attitudes, quandaries, decisions, conclusions, or whatever. The more 

indices we have for a story, the more places it can reside in memory. 

Preserving entire recorded performances allows Critic processes to exploit information at any point in 

the interaction to ensure coherence. This is particularly important in a system that understands and 

generates natural language, because an utterance may refer to something that happened long in the 

past, or establish a causal chain, to be completed long in the future. Planning actions from an uncut 

recording also allows an NPC to continue replaying from the same game log indefinitely, moving fluidly 

from one event to another, or meandering between temporally overlapping events in a plausible, yet 

spontaneous way.  

Darmok has the luxury of indexing cases by a complete yet compact representation of the state of the 

world, due to the relatively small variety of unit types. The state of the world in TRG is more difficult to 

explicitly define, because of the open-ended nature of the game. State depends on things that were said 

by either player, actions taken, how objects were interacted with, as well as the current position and 

orientation of objects. Indexing cases by events is an incomplete, yet practical means of retrieving 

proposals expected to be in the ballpark of what an NPC should do next. With regard to indexing with 

incomplete information, CAI is more similar to a CBP system called Mayor (Fasciano 1996), than Darmok.  

Mayor is a system developed to play the simulation game SimCity. The state of the world in SimCity is 

complex, comprised of many variables which capture the economic, ecological, and social well-being of 

a sprawling city. Each case is indexed by a subset of variables relevant to effects of executing a particular 

case, allowing the CBP system to retrieve proposals within the ballpark of reasonable things to do next, 

given some limited view of the world. Due to reasoning with incomplete information, some plans may 

fail. As a hypothetical example, perhaps adding roads is expected to increase trade and boost the 

economy, but leads to increased pollution that decreases property values. Mayor is equipped with 

mechanisms to learn by diagnosing the cause of failure, employing a dependency network indicating 

how modulating one aspect of the simulation will impact other aspects. For example, increasing traffic 

will increase pollution, while increasing law enforcement will decrease crime. Once the cause of failure 

is identified, a case can be modified to avoid repeating the same mistake in the future. The idea of a 

system that can learn from its own mistakes and adapt is theoretically elegant. In practice, identifying 

the cause of failure, and deducing the correct adaptation, can be difficult, and may require a lot of 

domain knowledge (like Mayor's hand-crafted dependency network). For these reasons, CAI does not 

attempt to learn from failure, and instead takes advantage of its large corpus to replan by simply 

retrieving an alternate case when a plan fails. Reflective Critics mentioned earlier avoid repeating the 

same mistake cyclically. This approach suggests a trade-off between corpus size and system complexity, 

where if there is enough data available, sophisticated learning and adaptation may not be necessary. 
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2.5.4 Case-Based Planning in Storytelling 

 

Mateas (2003) proposed CBP as a potential solution to the content authoring burden experienced 

developing Façade. CBP has been applied to (non-interactive) story generation with varying degrees of 

success, and more recently applied to interactive storytelling. While these implementations rely on a 

corpus of hand-crafted narratives, the approaches to CBP bear resemblance to that implemented for 

CAI, while also including inspiring features worth consideration as extensions to CAI in the future. 

Minstrel (Turner 1994) was an effort to model human creativity, which generated stories significantly 

different from any in the system's memory, while trying to fit the schema for some specified a theme. 

Generation employs a CBP process, adapting episodes from a knowledge base of existing stories in the 

King Arthur domain. For example, Minstrel can adapt an episode about a princess drinking a potion to 

injure herself for a new story that requires a knight to kill himself. The adaptation process relies on 

hand-crafted transformation methods, and can produce stories that humans may find odd (e.g. the 

knight eats a princess), or nonsensical. Noah Wardrip-Fruin (2009) concludes that the problem lies in 

simulating one part of human intelligence, creativity, but not the rest, providing no means to reject 

inappropriate stories. This problem becomes more severe as the size of the corpus grows – the system 

becomes more creative, but has more opportunities for strange adaptations. One of the goals for this 

thesis is to demonstrate how an interactive narrative system can scale up to robustly composite 

thousands of narratives. Minstrel could benefit from including a final critique phase after adapting 

narratives, however these Critics would require domain knowledge about what humans consider normal 

in the King Arthur domain. Reiterating the point made in regards to adaptation and domain knowledge 

in Mayor, there is a tradeoff between corpus size and the complexity of adaptation. While TRG does 

perform some minor adaptations (e.g. swapping associated food items), adaptation is minimized, 

instead relying on a large corpus to find alternative plans. 

Like Minstrel, Mexica (Pérez y Pérez & Sharples 2001) models the human authoring process, 

implemented as an engagement-reflection cycle, which could be described as CBP. Engagement begins 

with an initial action, repeatedly appended with additional actions drawn from a corpus of human-

authored stories, represented as action sequences. Reflection breaks impasses, verifies coherence, and 

ensures interesting stories based on meta-data about the dramatic tension at each moment in the 

supplied stories. Mexica also has a mechanism called a story-world context to track variables like affinity 

between characters to further ensure coherence. An example given of how story-world context could 

influence the direction of the story describes how a princess curing a knight’s injuries might lead to the 

knight rewarding the princess. One of differences between a text-based story, and storytelling with 

embodied characters in a virtual environment, is that the text-based story can pursue multiple narrative 

paths simultaneously, which might intersect in the future. Mexica’s story-world context keeps track of 

which events characters are aware of, influencing actions selected in the future. For instance, if the 

princess was not present when a farmer attempted to kill the knight at the market, her affinity toward 

the farmer will not change. More sophisticated modeling of affinity has been previously mentioned, in 

association with Prom Week. Simulating multiple simultaneous narrative paths adds another dimension 

to modeling coherent affinity, and suggests another potential way to scale up CAI in the future, opening 

new possibilities for interaction.  

The Riu system (Zhu & Ontanon 2010) is another text-based storytelling system that employs CBP, 

differing from Minstrel and Mexica in generating interactive stories. Like the previously mentioned 

systems, Riu relies on a case-based system to draw analogies between the story being generated, and 

those in a corpus of narratives. These analogies lead to continuations of the current story, as well as 
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interaction options for the player. The system can leverage the corpus to imagine the consequences of 

player actions, and interestingly these imaginations may lead the system to prevent taking an action, 

giving an explanation to the player. For example, a player’s choice to play with a stray cat may lead the 

system to extend the story with the player’s inner thoughts, communicating that the player decided not 

to play with cat because it brought back sad memories of a pet lost in the past. In a sense, Riu combines 

the generation of options from the Leaders project with the narrative intervention of Memesis, 

exploiting CBR to explain the intervention. Integrating an inner-voice like this into CAI could add a 

unique twist to embodied face-to-face interaction in a virtual world in the future, filling the player in on 

a backstory through in-game choices, or acting as commentary for a training simulation to facilitate 

understanding within a lesson. 
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3 Crowdsourced Content Creation 
 

Porter Abbot (2002) has described how Leo Tolstoy was allegedly surprised by his own characters: 

  

Tolstoy records that shortly after Vronsky made love to Anna Karenina, to the author's great 

surprise his character began preparing to kill himself. Tolstoy recalled writing on feverishly to find 

out how the scene would end. 

 

One might say that Tolstoy had an unusually active imagination. This chapter describes a new approach 

to content creation, which augments the imagination of an individual author, such that everyone can 

share Tolstoy's experience of being surprised by their own characters. The Collective Artificial 

Intelligence (CAI) process begins by recording thousands of performances of online dramatic role-play 

between humans online. Recording spontaneous, anonymous, improvisational performances online 

produces a data set that covers a space of narrative possibilities that it is unlikely any single human 

author, or even team of human designers, could craft by hand, due to the limits of imagination. 

Compositing this data into an interactive narrative medium, which can be leveraged to generate 

possible next actions and utterances given an observation history, could enable a variety of new ways to 

tell stories -- for example, amplifying the imagination of an individual author, or interactively generating 

a story that adapts to an embodied human role player in a virtual world. This research focuses on the 

later, generating dialogue and behavior for NPCs who play roles in stories, while adapting to the 

behavior of a human player. 

 

A common code base provided the foundation for developing and deploying three different online 

games, yielding three datasets, each exploring different types of interaction. The Restaurant Game 

collects data about interaction in an everyday scenario, Mars Escape records human-robot interactions 

in a puzzle scenario, and players of Improviso dramatize an alien encounter on the set of a low-budget 

science fiction film. Generation from The Restaurant Game data is the primary focus of the thesis, while 

re-using the same system to generate from the other data sets remains for future work. This chapter 

describes these games, and shares lessons learned from data collection process. 
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Figure 3-1: Screenshot from The Restaurant Game (from the waitress's perspective). 

 

3.1 The Restaurant Game 

 

The Restaurant Game (TRG) (Orkin 2007) anonymously pairs people online to role-play as a customer 

and a waitress in a virtual restaurant. Players can type chat text to each other, navigate the 3D 

environment from a first-person perspective, and interact with 47 types of objects through a point-and-

click interface. Minimal instructions are given to the players – the customer is told to have dinner, and 

the waitress is told to earn money, with the expectation that players will bring into the game world their 

socio-cultural knowledge of what goes on real restaurants.  
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Figure 3-2: Objectives given to Waitress. 

 

 
Figure 3-3: Objectives given to Customer. 
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While the goal of the research is to automate NPCs who can interact with humans in a plausible 

restaurant interaction, the game is intentionally open-ended, allowing a wide range of improvisation 

and misbehavior. All objects offer the same set of interaction options:  Goto, PickUp, PutDown, Give, 

LookAt, SitOn, Eat, Use. Thus, players may choose to sit on chairs and eat steak, or alternatively, sit on 

steak and eat chairs. Objects react to actions in different ways; food diminishes from the plate bite by 

bite, while eating chairs results in only a chomping sound effect.  

 

 

 
Figure 3-4: User interface for object interaction. 

 

Surprisingly, about 75% of players demonstrated mostly ordinary restaurant behavior, while the other 

25% engaged in bizarre behavior, such as stacking cherry cheesecakes into a staircase, and climbing onto 

the roof of the restaurant. (Percentages are based on human flagging of “junk” data, described in 

Chapter 5). Capturing atypical behavior is desirable, as it provides examples of how an NPC should 

respond to unexpected events, and ideally leads to an experience that is more robust and open-ended 

than current commercial games provide, supporting players who try to find the boundaries of the 

possibility space. Famed game designer Will Wright (SimCity, The Sims; Maxis 1989; 2000) has 

commented that supporting player misbehavior and exploration is part of good game design. This thesis 

demonstrates how crowdsourcing the content creation process can capture a wide variety of atypical 

behavior.  
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Players obviously enjoy being subversive to some degree.  And so we want to provide that and let them 

know that we’re on their side in that way […].  It’s just another form of a player taking control.  I think for 

most people, their kind of general aesthetic with games is that the more I control this experience, the better 

the game is […] in terms of [finding that] I can choose to go off into an interesting path, and the game will 

support that path.  This animal we’re calling subversion is really just empowering the players to not hit walls 

as often […].  At a fundamental level it’s kind of convergent with what I would call “good game aesthetics.” 

- Will Wright 

 

 

 
Figure 3-5: Screenshot of stacking cherry cheesecakes and climbing on the roof, emailed by a player. 
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3.1.1 Implementation and Data Logging 

 

TRG was built with the Torque Game Engine v3.1 from GarageGames. Art assets (3D models, textures, 

sound effects) were imported from The Sims 2 (Maxis 2004) using SimPE (Ambertation  2004). 

Characters were animated with MilkShape3D (Chumbalum Soft 1996), and the restaurant’s architectural 

structure was modeled in QuARK (the Quake Army Knife) (2001). Players downloaded the game from a 

web page, with versions available for Windows and Mac OSX. 

 

In addition to scripting the user interface and object interactions in TorqueScript, the C++ game engine 

code was modified to support mouse-directed gaze, persistent object manipulation, data logging, 

socket-based communication with external applications, NPC commands, and pathfinding. The first-

person perspective was intended to encourage players to use their bodies and language as they would 

in the real world (as opposed to chat dialogue detached from face-to-face interaction). To that end, the 

engine was modified to animate each player’s head to reflect where they were pointing the camera with 

the mouse. Rather than instantiating and deleting objects as they come in and out of the player’s 

inventory (as games typically do), the engine was modified to make all objects persist, and physically 

attach to the player’s hand when picked up, making it possible to track object positions throughout the 

interaction.  

 

Code was added to log every action, position change, and chat text typed by the human players. Time-

coded observations are logged to a text file, and optionally transmitted to external listening applications 

via sockets. External applications can also send commands to the game engine via sockets, for execution 

by NPCs who navigate and interact in the game world. The systems described in the following Chapters 

utilize this socket communication layer to observe changes to the game world, and send instructions 

indicating what NPCs should do next. 
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[COGLOG] 6061977 EVENT CUSTOMER(Player) ENTERED doorTrigger(RegionTrigger) 
[COGLOG] 6062055 STATECHANGE CUSTOMER(Player) ATPOS=”(321.146 358.792 240.541)” 
[COGLOG] 6063446 EVENT WAITRESS(Player) FACING CUSTOMER(Player) 
[COGLOG] 6063446 STATECHANGE WAITRESS(Player) FORWARDDIR=”(0.989292 -0.145949 0)” 
[COGLOG] 6063446 STATECHANGE WAITRESS(Player) ATPOS=”(314.443 359.182 240.54)” 
[COGLOG] 6063446 SPEECHACT WAITRESS(Player) “welcome” 
[COGLOG] 6066368 EVENT CUSTOMER(Player) FACING WAITRESS(Player) 
[COGLOG] 6066368 STATECHANGE CUSTOMER(Player) FORWARDDIR=”(-0.990476 0.137684 0)” 
[COGLOG] 6066368 STATECHANGE CUSTOMER(Player) ATPOS=”(320.765 358.845 240.541)” 
[COGLOG] 6066368 SPEECHACT CUSTOMER(Player) “hi” 
[COGLOG] 6069039 EVENT WAITRESS(Player) FACING CUSTOMER(Player) 
[COGLOG] 6069039 STATECHANGE WAITRESS(Player) FORWARDDIR=”(0.989292 -0.145949 0)” 
[COGLOG] 6069039 STATECHANGE WAITRESS(Player) ATPOS=”(314.443 359.182 240.54)” 
[COGLOG] 6069039 SPEECHACT WAITRESS(Player) “please have a seat” 
[COGLOG] 6074211 EVENT CUSTOMER(Player) FACING WAITRESS(Player) 
[COGLOG] 6074211 STATECHANGE CUSTOMER(Player) FORWARDDIR=”(-0.894119 0.440718 -0.0794913)” 
[COGLOG] 6074211 STATECHANGE CUSTOMER(Player) ATPOS=”(320.765 358.845 240.541)” 
[COGLOG] 6074211 SPEECHACT CUSTOMER(Player) “where?” 
[COGLOG] 6077489 STATECHANGE CUSTOMER(Player) ATPOS=”(319.976 359.222 240.542)” 
[COGLOG] 6077493 EVENT CUSTOMER(Player) EXITED doorTrigger(RegionTrigger) 
[COGLOG] 6083586 EVENT WAITRESS(Player) FACING CUSTOMER(Player) 
[COGLOG] 6083586 STATECHANGE WAITRESS(Player) FORWARDDIR=”(0.989292 -0.145949 0)” 
[COGLOG] 6083586 STATECHANGE WAITRESS(Player) ATPOS=”(314.443 359.182 240.54)” 
[COGLOG] 6083586 SPEECHACT WAITRESS(Player) “customers choice” 
[COGLOG] 6102211 EVENT WAITRESS(Player) FACING CUSTOMER(Player) 
[COGLOG] 6102211 STATECHANGE WAITRESS(Player) FORWARDDIR=”(0.989292 -0.145949 0)” 
[COGLOG] 6102211 STATECHANGE WAITRESS(Player) ATPOS=”(314.443 359.182 240.54)” 
[COGLOG] 6102211 SPEECHACT WAITRESS(Player) “you choose where you want to sit” 
[COGLOG] 6108927 STATECHANGE CUSTOMER(Player) ATPOS=”(318.712 359.725 240.542)” 
[COGLOG] 6108946 EVENT CUSTOMER(Player) ENTERED podiumTrigger(RegionTrigger) 

. . . 
[COGLOG] 6132664 STATECHANGE CUSTOMER(Player) FORWARDDIR=”(0.345101 0.930914 0.119601)” 
[COGLOG] 6132664 STATECHANGE CUSTOMER(Player) ATPOS=”(314.176 362.945 240.543)” 
[COGLOG] 6132664 SPEECHACT CUSTOMER(Player) “ummmm let’s see” 
[COGLOG] 6135196 STATECHANGE CUSTOMER(Player) ATPOS=”(314.176 362.945 240.543)” 
[COGLOG] 6135352 EVENT CUSTOMER(Player) ENTERED table3Trigger(RegionTrigger) 

. . . 
[COGLOG] 6139930 STATECHANGE CUSTOMER(Player) ATPOS=”(307.938 362.384 240.546)” 
[COGLOG] 6139930 ACTION CUSTOMER(Player) SITON chair6(DBChair) 
[COGLOG] 6139930 STATECHANGE CUSTOMER(Player) SITTINGON=”chair6(DBChair)” 
[COGLOG] 6142821 STATECHANGE WAITRESS(Player) ATPOS=”(314.443 359.182 240.54)” 
[COGLOG] 6142821 STATECHANGE WAITRESS(Player) DEST=”(309.925 360.189 240.632)” 
[COGLOG] 6142821 ACTION WAITRESS(Player) GOTO table3(DBTable) 
[COGLOG] 6142993 EVENT WAITRESS(Player) ENTERED table3Trigger(RegionTrigger) 
[COGLOG] 6143039 STATECHANGE WAITRESS(Player) ATPOS=”(313.318 359.394 240.541)” 
[COGLOG] 6143039 ACTION WAITRESS(Player) PUTDOWN dynamic2753(DBMenu) 
[COGLOG] 6143039 STATECHANGE dynamic2753(DBMenu) ATTACHEDTO=”NULL” 
[COGLOG] 6143039 STATECHANGE dynamic2753(DBMenu) ON=”table3(DBTable)” 
[COGLOG] 6143039 STATECHANGE dynamic2753(DBMenu) ATPOS=”(311.177 360.455 242.635)” 
[COGLOG] 6145123 STATECHANGE CUSTOMER(Player) ATPOS=”(309.952 361.922 240.773)” 
[COGLOG] 6145123 ACTION CUSTOMER(Player) PICKUP dynamic2753(DBMenu) 
[COGLOG] 6145123 STATECHANGE dynamic2753(DBMenu) ON=”NULL” 
[COGLOG] 6145123 STATECHANGE dynamic2753(DBMenu) ATTACHEDTO=”CUSTOMER(Player)” 
[COGLOG] 6147118 ACTION CUSTOMER(Player) LOOKAT dynamic2753(DBMenu) 
[COGLOG] 6147571 EVENT WAITRESS(Player) FACING CUSTOMER(Player) 
[COGLOG] 6147571 STATECHANGE WAITRESS(Player) FORWARDDIR=”(-0.89335 0.291024 -0.342391)” 
[COGLOG] 6147571 STATECHANGE WAITRESS(Player) ATPOS=”(312.704 359.534 240.541)” 
[COGLOG] 6147571 SPEECHACT WAITRESS(Player) “here’s a menu.  Take your time” 

Figure 3-6: Sample log file. 
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6044508                WAITRESS WALKS TO podium 
6044993                WAITRESS PICKSUP Menu 
6058118                CUSTOMER WALKS TO door 
 

6063446   [CONVERSATION BETWEEN WAITRESS AND CUSTOMER] 
6063446   WAITRESS: “welcome” 
6066368   CUSTOMER: “hi” 
6069039   WAITRESS: “please have a seat” 
6074211   CUSTOMER: “where?” 
6083586   WAITRESS: “customers choice” 
6102211   WAITRESS: “you choose where you want to sit” 
 

6108727                CUSTOMER WALKS TO podium 
 

6132664   [CONVERSATION BETWEEN CUSTOMER AND WAITRESS 
6132664   CUSTOMER: “ummmm let’s see” 
 

6135196                CUSTOMER WALKS TO table3 
6139930                CUSTOMER SITSON chair6 
6142821                WAITRESS WALKS TO table3 
6143039                WAITRESS PUTSDOWN Menu ON table3 
6144661                CUSTOMER PICKSUP Menu 
6147118                CUSTOMER LOOKSAT Menu 
 

6147571   [CONVERSATION BETWEEN WAITRESS AND CUSTOMER] 
6147571   WAITRESS: “here’s a menu. Take your time” 
6150633   CUSTOMER: “I’ll have vegetable soup and the nectarine tart” 
 

6200711                WAITRESS WALKS TO counter 
 

6216133   [CONVERSATION BETWEEN WAITRESS AND CHEF] 
6216133   WAITRESS: “one soup please” 
 

6217133                Soup APPEARS ON Counter 
6221461                WAITRESS PICKSUP Soup 
6222149                WAITRESS WALKS TO table3 
6225368                WAITRESS PUTSDOWN Soup ON table3 
6225430                WAITRESS PICKSUP Menu 
6226196                WAITRESS WALKS BETWEEN counter AND table2 
6228086                CUSTOMER EATS Soup 
6242774                WAITRESS PUTSDOWN Menu ON MenuBox 
6242774                Menu DISAPPEARS 
6245743                WAITRESS WALKS TO table3 
 

6301211   [CONVERSATION BETWEEN WAITRESS AND CUSTOMER] 
6301211   WAITRESS: “anything for drink” 
6309711   CUSTOMER: “water” 
6315243   WAITRESS: “coming right up” 
 

6316743                WAITRESS WALKS TO bar 
 

6320508   [CONVERSATION BETWEEN WAITRESS AND BARTENDER] 
6320508   WAITRESS: “one water” 
 

6321508                Water APPEARS ON Bar 
6324633                WAITRESS PICKSUP Water 
6325649                WAITRESS WALKS TO table3 
6328743                WAITRESS PUTSDOWN Water ON table3 

Figure 3-7: Log file transformed into a human-readable transcript. 
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3.1.2 Player Statistics 

 

Servers launched on February 21, 2007, and continued running until September 9, 2010. 10,027 two-

player games were recorded, played by 6,649 unique players (15,965 players logged in, but not all could 

find a partner online at the same time to play with). The table and figures below report statistics about 

the players and games played. Figures 3-9 and 3-10 compare the amount of traffic to the project web 

page to the number of people who actually participated in a two-player game online. The project was 

introduced with a blog post, and word spread to other blogs and news media outlets. Players could 

optionally report where they heard of the project during the registration process. Figure 3-8 illustrates 

the impact of different sources of communication about the project, and Figure 3-11 illustrates 

geographic demographics of traffic to the project web page. 

 

 

Total Players Logged In 15,965   

Players Who Completed Games 6,649   

    

 Mean Median Max 

Game Duration 10.84 min 9.5 min 153.37 min 

Games Played Per Person 3 2 119 

Table 3-1: Gameplay statistics from 10,027 games. 
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Figure 3-8: Where players heard about The Restaurant Game. 
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Games Completed per Week
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Figure 3-9: Number of two-player games completed per week. 

 

Comparison of Web Page Hits to Games Completed per Week
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Figure 3-10: Comparison of traffic to project web page to two-player games actually completed. 
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Figure 3-11: Google analytics geographic demographics of project web page traffic. 
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3.1.3 Corpus Statistics 

 

The tables and figures in this section detail statistics about how many unique actions and words were 

observed in 10,027 log files, and how the vocabulary and action lexicon grow with each additional log 

file. Actions are role-specific and context-sensitive, leading to thousands of potential combinations of 

parameters. For example, the waitress picking up pie from the counter is one action in the lexicon. 

Actions that interact with similar types of objects are clustered, where similarity is determined 

automatically based on observed affordances (e.g. customers interact with food items like steak, 

salmon, and salad in the same way, so food items are clustered, in turn allowing actions associated with 

food items to be clustered). Chapter 4 provides specifics about how log files are processed to learn the 

vocabulary of words and lexicon of physical actions, and how actions are clustered. The figures in this 

section illustrate the enormous diversity in physical interaction and language observed in spontaneous 

human-human interaction. The histograms highlight the sparsity of this data, where the majority of 

actions and words are observed only once in 10,027 games. 

 

 

 Unclustered Clustered  

Size of Action Lexicon 16,622 10,165  

    

 Mean Median Max 

Actions per Game 106.74 95 1,187 

Table 3-1: Action lexicon statistics from 10,027 games. 

 

Size of Vocabulary 36,265 words   

Number of Unique Utterances 198,8845   

    

 Mean Median Max 

Utterances per Game (All) 36.13 29 1,000 
Utterances per Game (Waitress) 18.53 15 547 

Utterances per Game (Customer) 18.36 14 453 

    
Utterance Length (Waitress) 3.78 3 21 

Utterance Length (Customer) 3.58 3 31 

Table 3-2: Vocabulary statistics from 10,027 games. 
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Figure 3-12: Growth of Action Lexicon as games are observed over time. 

 

 
Figure 3-13: Histogram of number of games each clustered action was observed in. 
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Figure 3-14: Growth of vocabulary as games are observed over time. 

 

 
Figure 3-15: Histogram of number of games each word was observed in. 
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3.2 Other Data Sets 

 

TRG is the primary focus of this thesis.  Two other data sets are briefly described, as evidence that the 

implemented platform is generalizable, and as motivation for future directions using the same system 

for data-driven interaction. 

 

3.2.1 Mars Escape 

 

In collaboration with the Personal Robots Group (PRG) at the MIT Media Lab, TRG was adapted to create 

a new game for studying the interaction between a human and a robot on a space station. The goal of 

this project was to transfer behavior learned from the virtual world to a physical robot in the real world. 

Mars Escape (Chernova et al. 2010) is a puzzle-based game, which is task-focused, as compared to TRG 

which captures role-playing demonstrations of social norms, or the dramatic improvisation encouraged 

by Improviso. The robot avatar resembles PRG’s Nexi, a Mobile Dexterous Social (MDS) robot, and the 

puzzle is a virtual recreation of a puzzle physically installed at the Boston Museum of Science. Due to the 

challenges of automating the real robot, the puzzle is fairly simple. Players work together to find and 

move a set of objects before time (measured in oxygen supply) runs out.  

 

    
Figure 3-16: Screenshot from Mars Escape (left) and a photo of the actual Nexi robot (right). 

 

Mars Escape recorded 558 two-player games, and the data was used to automate Nexi. Action 

sequences were extracted from the data using processes described in Chapter 4, and these sequences 

served as input to an existing case-based reasoning system. A study comparing reports from interactions 

in the online game to reports from interacting with the data-driven physical robot at the Museum of 

Science found comparable results when subjects were asked whether the robot performed well at the 

task, behaved rationally, and contributed to the success of the team (Chernova et al. 2011). This study 

was carried out before the implementation of the case-based planning system described in Chapter 5, 

however the Mars Escape puzzle is more constrained, and not as dependent on language as interaction 

in TRG or Improviso; in fact, many players completed the puzzle together without saying anything at all. 
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3.2.2 Improviso 

 

Improviso (GAMBIT 2011) pairs players online as the Director and Lead Actor on the set of a low-budget 

science fiction film. This data collection game explores dramatic improvisation and storytelling, played 

through three short scenes, with up to five characters. While TRG capitalizes on social-cultural common 

sense to capture examples of mundane everyday social interaction, Improviso leverages pop-cultural 

common sense -- shared familiarity with alien encounters drawn from movies, comic books, and video 

games. The project was a collaboration with the Singapore-MIT GAMBIT Game Lab, and started from the 

TRG codebase. GAMBIT provided a team of summer interns (producer, game designer, sound designer, 

tester, three artists, and two programmers) for nine weeks. Beyond the summer session, two 

programmers and a part-time artist continued development for about three months to complete 

features, implement a tutorial, debug, and launch the game online. Improviso debuted at PAX East 2011, 

and servers ran from March, 2011 to April, 2012, recording 877 game logs. 

 

In the first scene, the Lead Actor plays as Ted, a reporter who awakes tied up on a crashed alien 

spaceship, and the Director plays as Agent Smith, a government agent who may or may not be an alien 

in disguise. In subsequence scenes, the Director can toggle between Smith and three other characters – 

Dr. Sarah Stein, K-17 the alien, and a little girl named Katie. Scenes take place inside the spaceship, in 

the Area 51 laboratory, or in the desert exterior. The team chose a whimsical art style resembling a 

school play, with all sets, costumes, and props made of cardboard, as a solution to the production 

problem of modeling a large number of 3D assets. In addition to manipulating objects and typing chat 

text, the Director can spawn special effects (e.g. thunder and lightning, explosions, and alien invasion), 

change the sound track to set the mood, swap masks on characters (e.g. Agent Smith reveals himself to 

actually be an alien), and kill and revive characters. 

 

Though automating characters from the Improviso corpus remains for future work, the development 

and launch of Improviso has produced valuable insights about the design and deployment of data 

collection games. In some respects, Improviso can be viewed as a study in counterintuitive 

consequences – a game that garnered positive press and awards, yet few people played, and embraced 

well-trodden science fiction themes (aliens and government conspiracies), yet confused game players – 

issues that will be explored more deeply in the section 3.3. 
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Figure 3-17: Screenshot of Improviso. Agent Smith, Dr. Stein, and an alien inside the Area 51 lab. 

 

 

 

 

 

 

 

 

 

 

 



 

70 

 

Scene Location Description 

1 Spaceship Agent Smith rescues Ted the reporter from the alien spaceship. 
1 Spaceship Agent Smith interrogates Ted about trespassing at the classified alien crash site. 

1 Spaceship An Alien probes Ted to learn about humans. 

1 Spaceship Ted is convinced Agent Smith is an alien. 

2 Spaceship Ted and Agent Smith search for evidence of alien life. 

2 Area 51 The government examines Ted in Area 51 for evidence of alien contamination. 

2 Spaceship Agent Smith reveals his true alien identity to Ted. 

2 Spaceship Another Agent Smith arrives. Ted tries to kill the imposter. 

2 Area 51 After Ted is transported to Area 51, he reveals himself to actually be an alien! 

2 Spaceship Ted helps Agent Smith rescue other hostages before escaping the ship. 

2 Area 51 Ted persuades Dr. Stein to free a captured alien from Area 51. 

2 Area 51 Ted steals evidence about the government's alien cover up. 

3 Desert Agent Smith calls in the military to exterminate the aliens. 

3 Desert Ted seduces Dr. Stein and convinces her to set him free from Area 51. 

3 Spaceship Agent Smith saves Ted from an alien imposter of Agent Smith. 

3 Spaceship An alien imposter of Agent Smith kills Ted. 

3 Desert The Alien calls in reinforcements to destroy Earth. 

3 Spaceship Ted helps the Alien return home. 

3 Area 51 An Alien breaks out of one of the tanks in Area 51 and wreaks havoc. 

3 Area 51 Smith lets everyone go after Ted convinces him that it was all a misunderstanding. 

Table 3-3: Scene descriptions given to players of Improviso. 
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--------------------------------------------------------------------------------------------------------------------------------------- 

Scene 1/3: Agent Smith interrogates Ted about trespassing at the classified alien crash site. 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

TED said to AGENT SMITH: HELLO! 

TED said to AGENT SMITH: help! 

AGENT SMITH said to TED: Shut up and listen to me! 

TED said to AGENT SMITH: but I'm stuck! 

AGENT SMITH said to TED: You were caught in this crash zone! 

AGENT SMITH said to TED: What are you doing in here! 

TED said to AGENT SMITH: I got lost, then I was attacked! 

AGENT SMITH said to TED: Yes. That was me! 

AGENT SMITH said to TED: And i tied you up! 

AGENT SMITH said to TED: NOW SPEAK UP! Or elseK 

TED said to AGENT SMITH: Did you prob me too? 

AGENT SMITH said to TED: I tied you down for a reason! 

 

The soundtrack has been changed to Scary. 

 

TED said to AGENT SMITH: I was looking for something interesting to report on 

AGENT SMITH said to TED: Now... give me a good reason why i should let you out... 

 

AGENT SMITH picked up the PROBE. 

 

AGENT SMITH said to TED: Or i will use this probe on you! 

TED said to AGENT SMITH: I'm an ex marine and can help fight the aliens 

AGENT SMITH said to TED: Okay; i trust you for now. Lets go. 

 

AGENT SMITH set TED free from the rope 

AGENT SMITH picked up the HANDGUN. 

 

AGENT SMITH said to TED: Pick up that probe and follow up! 

 

TED picked up the PROBE. 

 

--------------------------------------------------------------------------------------------------------------------------------------- 

Scene 2/3: After Ted is transported to Area 51, he reveals himself to actually be an alien! 

--------------------------------------------------------------------------------------------------------------------------------------- 

 

AGENT SMITH said to TED: Now that we got out... 

AGENT SMITH said to TED: You can explain yourself. Better now. 

TED said to AGENT SMITH: Yes, yes I can, I feel much safer here 

DR. STEIN said to TED: Let me just... what is that bump on your forehead?? 

 

DR. STEIN picked up the X-RAY. 

 

TED said to DR. STEIN: oh nothing, you don't need to check it 

DR. STEIN said to TED: You are wrong... let me xray this thing... 

 

The soundtrack has been changed to Exciting. 

DR. STEIN used the X-RAY on TED. 

 

DR. STEIN said to TED: This isnt a normal bump... OH MY GOD! SOMETHING IS MOVING IN THERE 

TED said to AGENT SMITH: OH NO 
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DR. STEIN picked up the TRANQUILIZER GUN. 

TED has put on the K-17 mask. 

 

TED said to DR. STEIN: YOU FOUND OUT! 

DR. STEIN said to AGENT SMITH: OH NO! Its an alien! 

AGENT SMITH said to TED: Drop dead; you skunk! 

TED said to DR. STEIN: MY BROTHEREN WILL BE HERE SOON 

 

AGENT SMITH attacked TED with the HANDGUN. 

TED died 

The soundtrack has been changed to Sad. 

 

AGENT SMITH said to TED: I think we did it... Did we kill it? 

 

DR. STEIN picked up the SURGICAL TOOLS. 

DR. STEIN used the SURGICAL TOOLS on TED. 

 

DR. STEIN said to TED: Its dead. The only proof of life outside there. 

AGENT SMITH said to DR. STEIN: Im sorry. 

 

--------------------------------------------------------------------------------------------------------------------------------------- 

Scene 3/3: An alien imposter of Agent Smith kills the real Ted.  

--------------------------------------------------------------------------------------------------------------------------------------- 

 

AGENT SMITH said to TED: Ted. why are you here? 

TED said to AGENT SMITH: I came to report a crash 

AGENT SMITH said to TED: I know about this crash; I knew about it all the time... 

TED said to AGENT SMITH: so you can help me with my report? 

AGENT SMITH said to TED: Sure. what do you need help with... i can provide some... insights. 

 

AGENT SMITH picked up the GUN. 

 

TED said: This... this egg? what is it? 

AGENT SMITH said to TED: Its my son... 

 

The soundtrack has been changed to Tense. 

AGENT SMITH has put on the K-17 mask. 

 

TED said to AGENT SMITH: what's happening?! 

AGENT SMITH said to TED: The only thing that is left to do now is to seal your hopeless fate... 

TED said to AGENT SMITH: NOOOOOOOO 

 

The soundtrack has been changed to Scary. 

The DIRECTOR started the Lightning special effect. 

 

AGENT SMITH said to TED: Prepare... to die.... 

TED said to AGENT SMITH: you'll regret this! 

 

The DIRECTOR started the Blast-off special effect. 

AGENT SMITH attacked TED with the GUN. 

TED died 

Figure 3-18: Transcript from an actual online two-player session of Improviso. 
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3.3 Lessons Learned About Game-based Data Collection 

 

Online games provide an opportunity to collect enormous amounts of data about human behavior and 

language in context. With each game created, valuable lessons have been learned that could benefit 

designers of future data collection games. 

 

3.3.1 Platform Selection and Timing 

 

Games come into existence at a particular time and place within the larger landscape of technologies, 

trends, and communities for games. Options for target platforms and game engines change over time, 

and this choice has impact on which players, and how many players, a game can reach. One can only 

speculate why TRG attracted over 16,000 players, while Improviso attracted under 1,000. (TRG was 

online longer, but most of the data came in the first year). It is likely that choice of game engine, and 

associated target platforms and method of deployment had some effect on the number players 

reached. 

 

It is possible that there is simply a wider audience for restaurants than aliens, as section 3.3.2 explores, 

but the differences in the gaming landscape between launches in 2007 and 2011 cannot be ignored. This 

period of time has witnessed remarkable disruptions in how, where, and who plays, as games on the 

web and mobile have become viable alternatives to playing games on a console or PC, with much larger 

potential audiences. There was much less competition for recruiting players in 2006, than in 2011 where 

there are many attractive (and free) options vying for players’ time. In addition, many of the free-to-play 

games in 2011 are browser based, written in Adobe Flash and immediately accessible from a web-based 

portal like Kongregate, or have moved off the PC entirely to iOS and Android devices where players are 

increasingly spending their time. 

 

TRG and subsequent games were built with the Torque 3D game engine (Garage Games 2006) from 

GarageGames, which was the most popular and well-supported engine for independent game 

development available in 2006. TGE requires downloading and installing games locally. The decision to 

re-use the TRG codebase for Mars Escape and Improviso was driven by the desire to leverage the 

infrastructure already in place (described in section 3.1.1), which would have been prohibitively time 

consuming to port to a new engine. A web-based or iOS game may have attracted more players for 

these more recent games. On the other hand, the market has become saturated with free, high-quality 

games, thus porting to a new platform would not have necessarily guaranteed more players. As an 

anecdotal data point, UCSC’s experimental game Prom Week has attracted about 14,000 players on 

Kongregate since its launch eight months ago, a similar rate of adoption to TRG, somewhat supporting 

the theory that potential audience has migrated to the web. 
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3.3.2 Design Decisions 

 

The alien encounter premise for Improviso was intended to be more appealing to typical gamers than a 

restaurant interaction, but the game attracted far fewer players. It is hard to argue that the choice of 

restaurant or science fiction theme alone affected the appeal, as there are examples of enormously 

successful commercial games with either theme – The Sims is one of the best selling franchises of all 

time, and numerous hit series feature aliens (e.g. Halo, Resistance, Crysis) (Bungie 2001; Insomniac 

Games 2006; CryTek 2007). The last section suggests that the discrepancy may have been due to the 

choice of platform, but it is equally likely that aspects of the Improviso design were not attractive to 

potential players.  

 

Early play tests of Improviso revealed that the science fiction setting confused players who were 

expecting a different style of gameplay, with one play tester literally commenting, “Cool, it’s paper 

Halo!” While it is undeniable that environments populated with guns and aliens are familiar to gamers, 

they set up expectations for the interaction that did not hold true. Guns in Improviso make noise when 

fired, but leave it up to the players to dramatize the consequence (e.g. “Ow! You shot me!”). Players 

expecting shooter-style gameplay were confused or disappointed, and in general players were often 

unsure what to say and do when playing as a government agent or scientist. For many players, a 

restaurant scenario may be considered safe to dramatize, while science fiction may seem like something 

they could fail at. We addressed confusion, and tried to decrease the intimidation of the setup in three 

ways: 1) We created a detailed tutorial that emphatically encouraged the player to act; 2) the game 

begins with a video of people playing as intended; and 3) each scene begins with details, specific 

directions about what each actor is supposed to do in the scene. Table 3-4 describes the available 

scenes, and figure 3-19 illustrates how players were given specific scene directions. This approach was 

successful in encouraging the desired behavior (see Figure 3-18 for an example transcript of actual 

online gameplay), and positive press with headlines like "GAMBIT Game is Drama School for AI"6 

indicated our message was being communicated as intended. However, it is likely that we also lost 

players without the patience to endure the lengthy tutorial and video. In contrast, a minimal tutorial 

was required for TRG, because people naturally know what to say and do as a customer or waitress with 

minimal instruction and the theme may have led to self-selection of those players interested in engaging 

in social interaction (rather than combat). 

 

                                                           

6
 GAMBIT Game is Drama School for AI, Rock Paper Shotgun, March 18, 2011. 
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Figure 3-19: Specific scene directions given to each player in Improviso. 

 

3.3.3 Recruiting and Incentivizing Players 

 

With the number of alternatives vying for players' attention, it is valid to ask why someone would play 

one of these data collection games. First and foremost, these games need to be enjoyable in their own 

right, offering an experience that people will voluntarily complete at least once, hopefully more, and 

ideally will tell others about. To that end, TRG is intentionally open-ended, leaving players room to 

improvise, encouraging unpredictable memorable interactions, and Improviso goes further in the 

direction of entertainment with special effects, explosions, whimsical artwork, and campy objectives for 

each scene. This design philosophy resulted in experiences recognized as unique by the mainstream and 

gaming press. TRG was announced with a blog post, which attracted the interest of other blogs, and 

eventually media outlets including NPR, New Scientist, The Boston Globe, The Guardian, H+, and SEED 

magazine's design issue. In addition to similar press coverage, Improviso was accepted by the gaming 

community as a legitimate independent game, accepted as an IndieCade 2011 finalist, winning award 

from Bytten.com, and featured as a game of the week on IndieGames.com. 

 

A number of additional tactics were employed for TRG to entice players, but it is impossible to know the 

impact of each. The web page for TRG encouraged players to contribute to science, and promised to 
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include them as game designers in the credits of a future game to be created from the recorded data. 

The idea of contributing to a new game would probably be more motivating if the time between 

contributing data and seeing tangible results was minimized, which can be difficult in the process of 

research. To date the new game created from the data has not yet been released. Each play through of 

TRG concluded with a survey, asking players to describe who they thought the other player was in real 

life -- age, gender, occupation, and what they had for breakfast (see Figure 3-20). The personality profile 

persisted over multiple sessions, averaging the results from each partner, with the intent of encouraging 

replay in order to see the profile evolve. 

 

Louis von Ahn (2006) introduced the term Games with a Purpose (GWAP) to refer to games designed to 

entice humans to complete tasks which generate data useful for solving real world problems that are 

easy for humans but challenging for machines (e.g. image labeling, image segmentation). Players of 

these games do not need to have any awareness that they are contributing data to solve a problem, and 

are primarily motivated by the free entertainment experience, as well as potentially entertaining social 

interaction. Many GWAPs pair players anonymously online, sometimes reinforcing the social aspect with 

leader boards tracking number of games players, and points accrued. The games described here might 

be considered GWAPs, as players are paired anonymously to partake in online social interaction, and 

players' awareness of the ultimate goal of generating an interactive system from this data is not 

required for participation. However, unlike von Ahn's GWAPs, the data produced by TRG requires 

additional interpretation and structuring through the CAI process before it is useful for other tasks.  
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Figure 3-20: Post-game survey in The Restaurant Game asks players to describe each other. 

 

Improviso attempted to facilitate sharing gameplay experiences virally by letting players save the script 

generated from their performance on the film set. Ideally a game about making movies would allow 

players to record a video of interaction. Unfortunately the TGE did not have support for recording video, 

adding such a feature was infeasible with available time and resources. The text-based script, however, 

did prove successful, as players were observed posting scripts to gaming forums to share experiences 

with others. 

 

Achieving critical mass is a challenge for any game that requires two players to be online at once. Until 

that point (if that point is reached at all), it is likely that players logging in at different times, from 

different geographic locations will miss each other, fail to find a partner, and might not ever try to play 

again. 9,316 players of TRG completed the tutorial, logged in, and never found a partner. TRG and 
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Improviso tried to alleviate the problem by allowing the first player online to freely explore the game 

environment until the other player arrived, extending the period of potential overlap with another 

player. More development would be required to entertain players for longer periods of waiting time. An 

AI-controlled NPC might be a solution to entertaining a player until another human arrives, but this is of 

course cyclical logic, as the human data is required to automate the NPC! Perhaps in the future, if the 

system for automating NPCs is already in place, preliminary versions of the NPC could entertain players 

until humans arrive, and data from these human-NPC interactions may even be useful in evaluating the 

quality of the model so far. 

 

3.3.4 Hackers and Malicious Attacks 

 

Any online system is at risk for hacking, or other malicious attacks. In the years that TRG was online, 

there were several incidents. In 2009, members of a forum called FacePunch.com took interest in TRG, 

and managed to launch their own servers. The TGE client and server are actually the same executable, 

configured to run in different ways. Forum members familiar with the TGE figured out how to modify 

the scripts to enable running their own servers, thus valuable player data was getting captured in 

Sweden instead of Cambridge, MA. Fortunately one of the hackers actually sent an email asking for 

permission to continue running servers. Ultimately, the hackers agreed to change the game-type 

specified by their servers, to prevent them from appearing in the list of servers presented to ordinary 

TRG players. Forum members continued playing enthusiastically for about two weeks, as the hackers 

modified the game to allow more players, naked customers, an expanded two-story restaurant, and (of 

course) guns. This was a satisfactory resolution to the situation, but hints at the opportunity to leverage 

the incredible talents of hackers and hobbyists in the future to scale up and expand data collection 

efforts by allowing others to evolve or construct new scenarios, collecting a wider variety of data from 

scenarios that have enthusiastic support from the community.  
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Figure 3-21: Swedish hackers mod The Restaurant Game. 

 

Aside from hacking, at various times TRG servers were besieged with players who discovered the project 

through online forums such as 4chan.com and somethingawful.com, who played in large numbers and 

exhibited a greater tendency toward malicious behavior. Not only does this produce nonsensical data, it 

also repels players who are trying to play the game more seriously, yet are anonymously paired with 

troublemakers. A bad first experience with a malicious player may leave a permanent negative 

impression of the game, leading a player to never try again. For periods of time where analytics of traffic 

to the project download web page showed the overwhelming majority coming from a site like 4chan, 

data was discarded. 

 

Anti-hacking and anti-modding is not in the spirit of this work, which is trying to bring communities 

together online to create new interactive experiences. However, a system left completely vulnerable 

runs the risk of failing to generate data useful for the purpose for which these games were designed. 

The ideal solution strikes a balance between openness and protecting the integrity of the collected data. 

Two measures were taken in the implementation and launch of Improviso to prevent hacking and 

undesirable experiences online, based on experiences running the TRG data collection effort. First, 

Improviso shipped with compiled Torque Scripts, rather than source code for the scripts. While 

unnecessary, because TGE employs a just-in-time compiler for scripts, shipping compiled scripts makes it 

much more difficult for end-users to modify the final product. (Perhaps shipping separate versions with 

compiled and source Torque Scripts, connecting to different servers respectively, would be a more open 

approach). Second, at the end of each game, Improviso asked players whether they would be willing to 

play with the same partner again in the future. This data was stored on the client, and was checked on 
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log-in when searching for servers to join, to ensure that players were not paired online with people who 

they have not enjoyed playing with in the past. The intent was to inconspicuously cluster malicious 

players to play with each other, without them realizing this was happening. This is an alternative to 

banning them outright, which may provoke them to launch an attack on the game servers. In addition, it 

might produce interesting data about atypical play without repelling players who want to play the game 

as directed. While this solution was tested to validate that it works on a technical level, Improviso did 

not attract the critical mass of players necessary to evaluate whether it had the desired effect on the 

community of players. 
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4 Automatic Pattern Discovery 
 

As computer scientists, when presented with a large collection of data, there is a temptation to apply 

machine learning algorithms, in hopes of automatically discovering patterns. This is the thinking that 

motivated the approaches described in this chapter. While a large body of literature exists covering 

robotic Learning from Demonstration (LfD) (Argall et al. 2009), LfD focuses on policy learning for low-

level control systems, and has not yet reached the semantic levels required for automating role-playing 

characters from recorded human performances. The patterns of interest in this work represent 

elements of the narrative structure introduced in Section 1.4, such as dependencies, and events 

composed of fluid combinations of actions and words.  

 

The approaches described in this chapter did yield promising results, however I ultimately went a 

different direction (human-machine collaborative pattern discovery described in Chapter 5) for reasons 

discussed in Section 4.4. This chapter synthesizes previously published work (Orkin 2007; Orkin & Roy 

2009; 2010), as well as related work from collaborators. Aspects of this early work contributed to 

subsequent developments, and may be useful for future work.  

 

 

4.1 Learning Recurring Sequences of Actions and Words 

 

The log files produced by The Restaurant Game (TRG) capture a fluid stream of spontaneous actions, 

state changes, and unrestricted natural language utterances. This stream is not readily understood by a 

machine, thus diluting the stream into a sequence of discrete units (actions and utterances) is a required 

first step toward learning patterns useful for generation. Where possible, actions and utterances are 

clustered to facilitate recognition of recurring patterns in the data. As illustrated in Section 3.1.3, the 

corpus contains almost 200,000 unique utterances, and over 16,000 unique actions (due to a 

combinatorial explosion of variables). The Action Lexicon, Dialogue Library, and n-gram models 

described in this section lay the foundation for data-driven interaction described in Section 4.2. 

 

4.1.1 Learning an Action Lexicon 

 

The Action Lexicon (A-LEX) contains a catalogue of every action observed in any of the 10,027 game logs. 

Actions are context-sensitive and role-dependent, stored in a STRIPS-like format (Fikes & Nilssen 1971). 

For example, the following is an action representing a customer picking up a salad (with one bite taken) 

from a table while sitting in a chair: 

 

 

 

 

 

 



 

82 

 

 ACTION:  PICKUP 

    PARAMETERS: 

       ROLE = CUSTOMER 

       OBJECT = Salad 

    PRECONDITIONS: 

       ACTOR::SITTINGON = Chair 

       OBJECT::ATTACHEDTO = NULL 

       OBJECT::DELETED = FALSE 

       OBJECT::ON = Table 

       OBJECT::SHAPE = Bite1 

    EFFECTS: 

       OBJECT::ATTACHEDTO = CUSTOMER 

       OBJECT::ON = NULL 

 

The lexicon is compiled by parsing each log file, line-by-line, tracking the current state of each object, 

based on STATECHANGE reports. Each time an ACTION is reported in a log, the action is added to the A-

LEX (or the count of an existing action is increased), with pre-conditions determined by the state of the 

associated target object at that time. Action post-conditions are determined by STATECHANGE reports 

that follow the ACTION, which share the same time code.  

 

Many actions are functionally similar, with respect to the role they fill in patterns of interaction with 

other actions and utterances. For example, eating steak at the table and eating salmon at the table 

serve essentially the same purpose. By clustering functionally similar objects, associated actions can also 

be clustered, introducing a shallow hierarchy into the lexicon, which facilitates pattern discovery by 

reducing the size of the lexicon (at the top level of the hierarchy). Objects are clustered through an ad 

hoc  approach, based on the probability of observing each interface action (e.g. pick-up, eat, sit-on, etc.) 

applied to the objects. Interface actions with probabilities above some empirically determined threshold 

are considered to be the affordances of the objects. Objects with the same affordances are clustered, 

and actions associated with these objects with matching parameters, pre-, and post-conditions are 

clustered. Figure 3-11 illustrates the effect clustering has on the growth of the lexicon. This approach to 

clustering works well for objects that are commonly manipulated, and less well for objects such as the 

pot and pan that players seldom touch, and thus do not get clustered. When the variety of objects is 

relatively small (under 100 object types), manually clustering might be preferable. An additional 

alternative would be a human-machine collaborative approach, where automatically clustering objects 

is the first step, which simplifies the task for the human to complete. 
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4.1.2 Learning a Dialogue Library 

 

The Dialogue Library (D-LIB) contains contextually-clustered sequences of utterances observed in 

human-human games. This library allows an NPC to efficiently find an utterance to respond to a 

previously observed action or utterance in some context. The library is constructed by segmenting 

games into dialogues, where a dialogue is an uninterrupted sequence of utterances that follows a 

physical action, and is followed by another physical action. All dialogues that follow the same physical 

action are grouped, assumed to be contextually similar.  

 

Utterances within dialogues are encoded with signatures which identify the salient phrases found 

within. The encoding process begins by identifying salient words and phrases, based on recurrence 

statistics about the number of games in which every sequence (of length one to ten words) is observed. 

Sequences observed above some threshold number of games are considered salient. Sequences are 

clustered if they are longer than two words, and differ by only one word. The signature assigned to an 

utterance is the unordered set of indices corresponding to all salient sequences found within the 

utterance.  The same encoding process can be applied to natural language input at runtime, allowing an 

NPC to efficiently compare input with previously observed utterances. 

 

4.1.3 Learning N-gram Models of Actions and Words 

 

N-gram models refer to a simple statistical modeling technique from the field of Natural Language 

Processing (Jurafsky & Martin 2000). Borrowing this technique, and applying it to both actions and 

words gives a means of estimating the likelihood of a sequence of actions and words, which can be 

useful for an NPC when selecting what action to take next. Section 4.2.1 describes a system that 

employs an n-gram model to guide agent behavior, while Section 4.2.3 discusses the strengths and 

weaknesses of such an approach. 

An n-gram model estimates the likelihood of a sequence of words of length N by counting the frequency 

of this sequence in a training corpus, and dividing by the total number of unique n-grams. Unigrams 

estimate the likelihood of atomic words. Bigrams estimate the likelihood of pairs of words. Trigram 

estimate triplets and so on. The likelihood of an entire sentence can be estimated by iterating over every 

sequence of N words, and multiplying the n-gram probabilities together. For example, estimating the 

likelihood of the sentence “The dog laughs.” with trigrams looks like this: 

P(the, dog, laughs) = P(the | START) 

x P(dog | START, the) 

x P(laughs | the, dog) 

x P(STOP | dog, laughs) 

 

The trigram P(laughs | the, dog) is the probability of seeing “laughs” given that we have already seen 

“the dog.” Enclosing each sentence in START and STOP markers captures the probability of starting or 

ending a sentence with a particular n-gram. In practice, computing the sum of the log probabilities keeps 

the likelihood from going to zero. 
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As illustrated by the figures in Chapter 3, even after 10,000 games, the action lexicon and vocabulary are 

still growing. Incorporating discounting and smoothing techniques counter the effects of data sparsity. 

In order to estimate the likelihood of previously unseen action or word sequences or atoms, true counts 

are discounted using Katz Back-Off smoothing (Jurafsky & Martin 2000), and the missing probability 

mass is distributed among previously unseen n-grams. 

Figure 4-1 graphs all of the action sequences observed in 5,000 recorded games, from the start of the 

game at the top, to the end of the game at the bottom. The graph only includes physical actions, 

because generating a graph including all observed unique utterances would be intractable (though 

utterances can be semantically clustered into courser grained dialogue acts, as is explored in Section 

4.3.1). The left side of the graph is unfiltered, while the right side is filtered with a bigram model to 

emphasize the strongly recurring patterns of behavior. All bigrams with a likelihood below some 

threshold fade into the background, and a simpler structure emerges, representing an automatically 

learned Schank-like "script" of typical restaurant interactions. 
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Figure 4-1: Action sequences observed in 5,000 games, unfiltered (left), filtered with bigrams (right). 



 

86 

 

A study conducted in 2007 (Orkin 2007) demonstrated that estimates of likelihood computed with n-

gram models learned from TRG game logs correlate strongly with human judgment of typical behavior in 

a restaurant. Human subjects rated 300 log files on a 1-7 Likert scale indicating how typical they felt the 

interaction was for expected behavior in a real restaurant. Likelihood for these files were then 

computed with n-gram models trained on 5,000 logs with no overlap with the test set. Separate models 

were learned for actions and words, due to the fact that actions and words exist at different levels of 

abstraction. (Section 4.3.1 takes a step toward a representation of utterances at the correct level of 

abstraction to combine seamlessly with actions). The estimate for each log was computed as an 

interpolation between the estimates from the separate action and linguistic models, with the weights 

determined empirically based on a held-out validation set of 100 log files (0.75 * 4-gram action model + 

0.25 * 2-gram linguistic model). Comparing the likelihood estimates to human judgment resulted in a 

Pearson’s R = 0.576 correlation coefficient, which is strongly significant for 300 games at the p<.01 level. 

This result validates that the data collected was representative of what people actually do in 

restaurants, and that when placed in a familiar environment, players have a tendency to bring behaviors 

from the real world into the virtual. 
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Figure 4-2: Scatter plot of correlation between n-gram likelihood estimates and human ratings. 
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4.2 Generating Social Behavior with N-Gram Models 

 

The first attempt to automate data-driven NPCs combined the data structures described in Section 4.3 

with a replay system, and a proposal-critique system. This section provides an overview of how this 

system works, how it was evaluated, and discusses the successes and failures of this approach. 

 

4.2.1 Planning, Replays, Critics, and N-Grams 

 

Each NPC in the game world is controlled by an agent residing on an external AI server (written in Java), 

networked with the game engine via sockets. This agent receives observations from the game world, 

replans if necessary, selects the next action for the NPC, and sends commands to the game engine for 

execution by the NPC. In this system, a plan refers a game log, which has been compiled into a sequence 

of actions and utterances -- indices into the A-LEX and D-LIB. More accurately, a plan is a pointer into a 

specific point in a compiled game log, which the agent replays by incrementing the pointer and sending 

a command for the NPC to execute the next action or utterance. An agent continues replaying the same 

game log until a Sensor detects a problem. Figure 4-3 depicts the agent architecture. 
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Figure 4-3: Architecture for a data-driven agent. 

 

There are five types of Sensors, which invalidate plans in the event of different failure conditions. Once 

invalidated, the agent searches for the highest priority, relevant Goal to activate. The Goal proposes 

new plans to replay, while Critic processes scrutinize their validity. When a proposal passes all Critics, it 

becomes the currently active plan for execution through the replay system. Sensors and Critics that 
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judge the likelihood of the next action do so by employing a tri-gram model of actions, trained on 5,000 

game logs. Tables 4-1, 4-2, and 4-3 detail the Sensors, Goals, and Critics.  

 

When an agent observes natural language input (an utterance from another agent or a human player), 

GoalRespondToUtterance becomes the highest priority. This Goal employs the D-LIB to search for the 

most similar, previously observed utterance, in the current context, where context is determined by the 

most recently observed physical action. When multiple matching utterances exist, the utterance with 

the best matching history of utterances within the same dialogue is selected. In the event that the 

histories match equally well, ties are broken arbitrarily. Once the agent has established the best 

matching utterance, the proposed response is the utterance or physical action that follows the matching 

utterance in the associated game log. 

 

Sensor Description 

SensorBrokenExpectation 

 

The observed physical action does not match the next action in the 

current plan. 

SensorExpiredExpectation  

 

Too much time has passed while the agent was waiting for some action 

to occur.  
SensorFailedActionExecution 

 

The agent’s action resulted in unexpected state changes, or no change 

at all. 

SensorInterruption 

 

A physical action was observed when an utterance was expected, or 

vice-versa. 

SensorUnlikelyNextAction The action that the agent plans to execute next completes is 

considered unlikely by the n-gram model. 

Table 4-1: Descriptions of Sensors. 

 

Goal Description 

GoalRespondToUtterance 

 

Respond to an utterance directed at the agent by speaking or taking a 

physical action. 

GoalWaitForInteraction 

 

Wait to see what transpires next after the human player speaks to 

someone other than the agent (e.g. the chef or bartender). 

GoalForceDialogueConclusion Execute a physical action to force a dialogue to conclusion, when no 

response can be found. 

GoalInitiatePhysicalAction Initiate physical interaction after the agent has concluded dialogue 

with an utterance. 

GoalInitiateDialogue Initiate dialogue with another player. 

GoalRespondToPhysicalAction Execute a physical action in response to the last observed physical 

action. 
GoalBeginInteraction When all else fails, start over by initiating dialogue contextually 

appropriate, given the last observed physical action. 

Table 4-2: Descriptions of Goals.  
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Critic Description 

CriticUnlikelyNextAction  

 

The next physical action in a plan is unlikely, according to the n-gram 

model, given the previous physical actions in the interaction history for 

the same role.  

 CriticUnmetPrecondition 

 

The next physical action in a plan is impossible given the agent’s belief 

about the current state of the world. For example, the customer 

cannot drink a beverage if no beverage exists. 

 CriticHistoryMisMatch 

 

The physical actions observed since the last dialogue do not match the 

physical actions that precede the next action in the proposed plan. 

CriticRequiredRole 

 

The player who will act or speak next does not match a requirement 

set by the Goal (and communicated via the blackboard). For example, 

after action execution fails, or an expectation expires, the agent should 

immediately try to say or do something else to move the interaction 

forward. In these cases, plans should not be approved that set up 

expectations for the other NPC to act or speak. 

Table 4-3: Descriptions of Critics. 

 

4.2.2 Evaluation with the BLEU Score 

 

It is often unclear how to best evaluate systems that simulate human behavior. The data-driven planning 

system described in this section was quantitatively evaluated by comparing generated agent-agent 

interactions to recorded human-human interactions (Orkin & Roy 2009). The evaluation was based on 

data generated from 100 gameplay sessions, where both roles (customer and waitress) were played by 

autonomous agents, and compared the output to gameplay sessions between two human players.  

The BLEU score (Papineni  et al. 2002) from the field of machine translation was employed as the 

evaluation metric. In the task of machine translation, the machine is asked to translate a sentence from 

one natural language to another (e.g. from French to English). The BLEU score is a modified measure of 

precision between a candidate translation and a corpus of reference sentences, where precision is 

modified by limiting the total count of a word by the maximum number of times that word appears in 

any single reference. Ordinarily, the BLEU score is applied to sentences composed of sequences of 

words. In order to evaluate agent behavior, a sequence of observed physical actions can be considered 

to be a sentence, and can be compared to sentences formed by humans interacting. From this 

perspective, agents in this study can be thought to be translating their interpretation of the restaurant 

scenario, from human demonstrations to agent dramatizations. This metric evaluated behavior purely 

based on physical interactions, because at this point, representing utterances at a compatible level of 

abstraction had not yet been addressed. However, the system driving the NPCs (as described in the 

previous section) oscillates between physical interaction and dialogue surface text matching as the 

replay system encounters actions and utterances. Thus, linguistic interaction indirectly affects the 

evaluation score, as dialogue acts as conductive material providing transitions between consecutive 

physical actions. 

The BLEU score was used to compute the modified trigram precision of an agent-agent game, as 

compared to a corpus of human-human reference games. From a pool of 8,430 completed games, 5,000 
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training games and 3,000 test games were randomly selected. The training games formed the basis of 

the agents’ collective memories, while the test games provided references for computing the BLEU 

score. Figure 4-4 illustrates a comparison between the histograms of sorted BLEU scores computed for 

100 agent, human, and randomly generated games, all compared with the same corpus of 3,000 

reference human games. The mean BLEU scores of human and agent behavior are very close, 0.55 and 

0.6 respectively, with the agent’s mean slightly higher. Variance of human scores is greater, as humans 

are given greater freedom of expression than the Critics allow the agents. Standard deviation of human 

BLEU scores is 0.15, compared to 0.1 for agent scores. Human games score both higher and lower than 

any agent games. Both human and agents consistently score significantly better than the random 

baseline. Random baseline games are constructed by stitching together fragments of randomly selected 

games, until each game contains at least 20 physical actions, and an unlimited number of utterances.  
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Figure 4-4: Comparing BLEU score histograms for 100 games. 

 

4.2.3 Discussion of the Strengths and Weaknesses of Generation with N-Grams 

 

Based on Figure 4-4, it appears as if agents are behaving as coherently as human players, or even better, 

but the BLEU score does not give the complete picture. Figure 4-5 reports interaction in the agent game 

with the highest BLEU score, 0.85. On the surface, the agents are saying and doing what one would 

expect to observe in a restaurant -- significant given the enormous variety of language and interaction 

possible in TRG, as illustrated by the poor performance of the random baseline. Fragments of interaction 

exhibit apparently coherent dialogue and physical behavior. Looking at the big picture, however, a 

human can recognize a number of issues -- customers normally order an entree only once, the waitress 

brings a menu after the customer agreed to the tasting menu and later brings lobster after the customer 

orders salad, the waitress brings the bill after the customer request to order food (again), and the 

waitress enters a loop of ordering many drinks after giving the customer the bill. The BLEU score 
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validates that the system has preserved the texture of human social interaction, in terms of meaningful 

low-level local coherence, while the metric’s limited three symbol perspective is incapable of detecting 

issues in the higher-level intentional structure of the session. Relying only on n-grams and utterance 

surface-similarity produces a system that maintains low-level coherence, but over the long term reveals 

non-sequiturs, cycles, and a general lack of understanding of the intent and content of what is being 

said. One could argue that the BLEU score alone is an inadequate metric for evaluating human 

interaction, and must be complimented by other metrics that capture global coherence. Given the 

simplistic approach to data-driven interaction described thus far, which lacks any notion of higher-level 

structure or long-term dependencies, BLEU is an adequate metric for evaluating the low-level coherence 

produced by the system as implemented.    
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CUSTOMER: "hi"         
WAITRESS: "hello sir"       // Coherent initial dialogue. 
CUSTOMER: "can i get a table ?" 
WAITRESS: "sure, take a seat." 
CUSTOMER: "thanks" 
 

CUSTOMER SITSON chair6(Chair) 
 

WAITRESS: "i recommend the a chef's tasting menu" 
CUSTOMER: "yes please" 
WAITRESS: "Great I'll be right with you." 
 

WAITRESS PICKSUP dyn029(Menu) FROM podium(Podium)    // Non-sequitur bringing 
CUSTOMER STANDSUP FROM chair6(Chair)   // menu after an order  
WAITRESS GIVES dyn029(Menu) TO CUSTOMER   // was placed. 
CUSTOMER SITSON chair6(Chair)      
 

CUSTOMER: "can i get a cobb salad and a glass of red wine?"   // Cycle of ordering again. 
WAITRESS: "lobster please"      // Dependency not tracked. 
 

dyn078(Lobster) APPEARS ON counter3(Counter) 
 

WAITRESS: "water please" 
 

dyn086(Water) APPEARS ON bar(Bar)    // Coherent 
WAITRESS PICKSUP dyn078(Lobster) FROM counter3(Counter) // sequence of 
WAITRESS PUTSDOWN dyn078(Lobster) ON table3(Table)  // serving and eating. 
WAITRESS PICKSUP dyn086(Water) FROM bar(Bar) 
CUSTOMER EATS dyn078(Lobster) 
WAITRESS PUTSDOWN dyn086(Water) ON table3(Table) 
CUSTOMER EATS dyn086(Water) 
 

WAITRESS: "will your guest be joining you soon?"    // Out of context dialogue. 
 

WAITRESS PICKSUP dyn078(Plate) 
WAITRESS PUTSDOWN dyn078(Plate) ON counter4(Counter) 
 

CUSTOMER: "i'm not sure.i'll go ahead and order...    // Cycle starting new order. 
WAITRESS: "Ill get your bill" 
CUSTOMER: "would u like to drink with me" 
 

WAITRESS TOUCHES cash_register(Register)   // Coherent sequence 
dyn216(Bill) APPEARS ON podium(Podium)    // of bringing bill. 
WAITRESS PICKSUP dyn216(Bill) FROM podium(Podium) 
WAITRESS GIVES dyn216(Bill) TO CUSTOMER 
 

WAITRESS: "please pay" 
CUSTOMER: "nicee!" 
WAITRESS: "ok" 
CUSTOMER: "one for me and one for you" 
WAITRESS: "water please" 
 

dyn253(Water) APPEARS ON bar(Bar) 
 

WAITRESS: "beer" 
 

dyn260(Beer) APPEARS ON bar(Bar) 
 

WAITRESS: "water" 
CUSTOMER: "did you know they dont have whiskey ... 
 

dyn268(Water) APPEARS ON bar(Bar) 

Figure 4-5: Agent interaction with highest BLEU score, with commentary of issues on right. 
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Despite the issues identified above, anecdotally speaking, watching these NPCs dynamically interact and 

converse is certainly entertaining, and their responses to one another can often be quite witty. For 

example: 
 

WAITRESS: "smoking or non?" 

CUSTOMER: "WOW, you have a smoking section?" 

CUSTOMER: "I don't smoke, but I will start tonight. take me there!" 

 

and: 

 

WAITRESS: "do you have a reservation?" 

CUSTOMER: "I have personal reservations, but I waive them when it comes to lust" 

 

 

4.3 Toward Learning Deep Semantics and Higher-Level Structure 

 

The previous section describes and evaluates a system that generates human-like social interaction 

based on a naive, simplistic representation of behavior and language. Deficiencies such as cyclical 

behavior, non-sequiturs, and lack of long-term memory highlighted in Section 4.2.3 suggest the need for 

more sophisticated representations that go beyond recurring patterns in surface text and action 

sequences. This section describes explorations into learning representations that capture the meaning 

of utterances, higher-level event structures, and relationships between words and abstract concepts. 

 

4.3.1 Dialogue Act Classification 

 

The simplistic approach of relying on utterance surface-forms (sequences of words) when trying to learn 

patterns of language and behavior is problematic for two reasons: 1) There are many ways to say the 

same thing, sometimes using entirely different words, and 2) Words are at a lower level of abstraction 

than actions, and cannot be combined seamlessly to learn behavioral patterns that interleave linguistic 

and physical actions. Addressing these issues requires clustering utterances semantically, to form 

dialogue acts -- linguistic actions used by players to affect changes in the game world (inspired by 

philosophies of Austin and Searle, as described in Chapter 2), that can co-exist as a common currency 

side-by-side with physical actions, leading to an integrated model of social interaction. This section 

details the implementation and evaluation of a dialogue act classifier, capable of transforming an 

arbitrary sequence of words into a dialogue act triple, which specifies the {speech act, content, and 

referent} of an utterance. The possible labels for elements of a triple are presented in Table 4-4. Note 

that each axis includes a label for OTHER covering a significant percentage of the utterances. One of the 

challenges for classifying dialogue acts from open-ended input is screening out off-topic or nonsensical 

utterances. It may be worthwhile to explore alternative approaches to filtering out these utterances in 

the future, perhaps classifying relevant versus irrelevant utterances in a first pass prior to classifying 

dialogue acts. 
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Speech Act Content Referent 
 Dist. Pr / Re  Dist. Pr / Re  Dist. Pr / Re 

ASSERTION 338 0.6 / 0.5 APOLOGIZE 71 0.8 / 0.9 AGE 19 0.6 / 0.5 

CONFIRMATION 354 0.9 / 0.8 APPROVE 267 0.7 / 0.6 BILL 106 0.9 / 0.9 

DENIAL 90 0.7 / 0.7 BRING 413 0.8 / 0.8 CUSTOMER 5 1.0 / 0.2 

DIRECTIVE 1,217 0.8 / 0.9 COMPLAIN 88 0.4 / 0.1 DIET 8 0.0 / 0.0 

EXPRESSIVE 724 0.8 / 0.8 CONSOLE 11 0.8 / 0.3 FLOWERS 31 1.0 / 0.8 

GREETING 302 0.9 / 0.9 CORRECT 11 0.5 / 0.2 FOOD 1,394 0.9 / 0.9 

OTHER 517 0.5 / 0.4 DESIRE 363 0.8 / 0.8 GEOGRAPHY 51 0.9 / 0.3 

PROMISE 136 0.9 / 0.8 EXCUSEME 25 0.8 / 0.8 MENU 52 0.9 / 0.9 

QUESTION 617 0.8 / 0.9 FAREWELL 110 0.8 / 0.7 MONEY 75 0.8 / 0.6 

   FOLLOW 24 0.9 / 0.8 NAME 24 1.0 / 0.3 

   GIVE 170 0.8 / 0.7 OTHER 651 0.6 / 0.4 

   HELLO 167 0.9 / 0.9 RESTAURANT 20 0.8 / 0.6 

   INFORM 176 0.6 / 0.3 SPECIALS 12 0.9 / 0.6 

   LAUGH 76 0.8 / 0.9 STAFF 22 0.9 / 0.5 

   MOVE 32 0.4 / 0.2 TABLE 37 0.9 / 0.9 

   OTHER 643 0.5 / 0.7 TIME 107 0.9 / 0.7 

   PICKUP 29 0.5 / 0.3 WAITRESS 21 0.8 / 0.7 

   PREPARE 627 0.9 / 0.9    

   REPREMAND 24 0.4 / 0.3    

   SIT 74 0.9 / 0.9    

   STATUS 149 0.7 / 0.4    

   THANK 290 0.9 / 0.9    

   UNDERSTAND 25 0.8 / 0.4    

   YRWELCOME 28 0.8 / 0.8    

CORRECT:  77.3%  CORRECT: 75.3%  CORRECT: 81.1%  

BASELINE:  28.3%  BASELINE: 15.0%  BASELINE: 38.6%  

OVERALL CORRECT:  60.9% OVERALL BASELINE: 14.3%  

Table 4-4:  Label distributions and classification accuracy, precision (Pr), and recall (Re). 

 

The dialogue act classifier is actually composed of three independent Hidden Markov Model (HMM) 

classifiers (Baum & Petrie 1966), one for each axis (speech act, content, and referent). An HMM classifier 

exploits transition probabilities in the temporal patterns that emerge in human dialogue to boost 

classification recognition beyond that of individual utterances. Specifically the SVMhmm classifier 

(Joachims  2008) was employed, which combines a Support Vector Machine (SVM) (Corinna & Vapnik 

1995) for observation classification with an HMM for learning temporal patterns of hidden states. Words 

and contextual features function as observations, and the labels themselves are the hidden states. This 

combination of an SVM and HMM has proven successful for dialogue act classification previously 

(Surendran & Levow 2006). 

 

Training the classifier requires each line of dialogue to be transformed into a vector consisting of 

features derived from the surface text, and contextual features based on the physical situation of the 

speakers. Contextual features include the social role of the speaker (waitress or customer), the posture 
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of the speaker (sitting or standing), who the speaker is facing (one or more of: customer, waitress, 

bartender, chef), and the containing spatial region of the speaker (one or more of the possibly 

overlapping regions: inside-the-restaurant, outside-the-restaurant, entrance, podium, table, counter, 

bar, behind bar, kitchen). The physical state of the players is reported explicitly in the game logs. The 

text-based features primarily consist of indicators for the presence of unigrams, bigrams, and trigrams of 

words observed to be salient for particular labels, as well as a smaller number of indicators for symbols 

and punctuation (‘?’, ‘!’, ‘$’, emoticons, and digits). Salience is computed based on the mutual 

information between n-grams and labels, where mutual information is a measure of statistical 

dependence (Cover & Thomas 1991). Salient indicators of the text-based feature set are customized for 

each axis by computing the mutual information between every label and every unigram, bigram, and 

trigram. The feature set for a classification axis is the compilation of the top 50 unigrams, bigrams, and 

trigrams for each label.  

 

Despite the apparent freedom, players of TRG tend to constrain their dialogue to social conventions 

associated with the mutually understood “scripts” of restaurant interaction. This contributes to strong 

classification results given the challenge of correctly classifying three independent axes capable of 

producing 4,050 unique triples. Table 4-4 presents classification results, evaluated with 10 fold cross 

validation (each fold trained on 90 game logs and tested on 10). For each of the classification axes, 

precision and recall is reported for each label, followed by the percentage classified correctly and a 

comparison baseline. All of the axes perform significantly better than baseline, contributing to 60.9% of 

the utterances being classified entirely correctly – correct on all three axes. 

 

4.3.2 Learning Other Semantics 

 

There are numerous other possible ways to exploit data from TRG to learn aspects of language and 

behavior. As two examples of these possibilities, this section briefly summarizes approaches taken by 

colleagues to automatically learn higher-level event structure (Smith 2011) and words for concepts 

(Reckman et al. 2010). 

 

Smith (2011) applied an iterative, bottom-up clustering and sequence mining approach to discover 

strongly recurring patterns at increasing levels of abstraction, from sequences of words up to abstract 

events composed of actions and utterances. The process begins by clustering words based on their 

linguistic environments (surrounding words) employing the Affinity Propagation algorithm (Frey & Dueck 

2007). Affinity Clustering was chosen because it does not require specification of the number of clusters 

apriori. Once words have been clustered, sequences of words (n-grams) are mined using the Pre-Order 

Linked Web Access Pattern (PLWAP) algorithm (Ezeife et al. 2005). The process is repeated, now 

clustering sequences of words. The process continues, working up to clustering entire utterances, based 

on surrounding actions and utterances, which leads to mining sequences of interleaved actions and 

utterances, representing events. Iterating over the entire process incrementally improves results, as 

previously discovered clusters at higher levels of abstraction provide valuable information about the 

linguistic or behavioral environment, useful for re-clustering at lower levels. This approach proved 

successful in discovering exemplars -- prototypical examples of events one would expect to observe in a 

restaurant interaction. While many subtle variations of behavior and language get discarded due to 

sparse data, automatically discovering exemplars could be a useful way to explore a new dataset in an 

unfamiliar domain. 
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Reckman (Reckman et al. 2010) demonstrated a simple, unsupervised, data-driven approach to learning 

words and phrases for concepts, where concepts are physical objects that players interact with, such as 

different types of food. Dialogues were segmented according to the procedure described in Section 

4.1.2, and a χ
2
 correlation (Manning & Schutze 2000) was computed between each word, and the 

physical object(s) interacted with in the action that followed the last utterance of the dialogue. This 

process was then repeated for bigrams and trigrams. Ultimately this approach was successful at learning 

common words and phrases used to refer to items on the menu (e.g. steak, filet mignon, soup du jour, 

red wine, coffee). It remains for future work to determine if success depends on characteristics of the 

TRG dataset, and how well the approach generalizes to other domains.  

 

 

4.4 Limitations and Opportunities for Statistical Approaches in CAI 

 

While the results presented in this chapter are encouraging, and progress toward automatic pattern 

discovery is being made, ultimately this research changed direction toward a human-machine 

collaborative approach to pattern discovery. By 2010, it became clear that it was not going to be 

possible to automatically learn all of the elements of the narrative structure within the time frame of a 

single PhD. Some of the remaining challenges include disentangling interleaved events that overlap in 

time with other events, recognizing dependencies spanning arbitrary lengths of time, and clustering 

utterances semantically that share no common vocabulary. Some of these problems, such as the latter, 

may not be possible for a machine to solve without human intervention, due to required common sense 

or domain specific knowledge that does not exist in the data itself (though an automatic system may be 

able to mine relevant information from external sources of data on the internet). This section discusses 

arguments in favor and against the continuing pursuit of completely automating the discovery process. 

 

Machine learning (ML) is a controversial topic among professional game developers. While it is widely 

recognized that there is an opportunity to exploit data from players that is increasingly easy to record, 

moving from carefully hand-crafted experiences from designers, to more emergent experiences 

automated by machines raises concerns. The most frequently voiced objections are the lack of designer 

control, and difficulty in debugging and modifying learned behavior7. Designers are not typically well 

versed in ML, thus ill-equipped to tune parameters or tweak feature selection. ML algorithms may learn 

the wrong things, and retraining the algorithms may fix one problem, while introducing a variety of 

undesirable side-effects. Statistical approaches estimate the probability or likelihood of a decision, while 

developers desire control over selecting the correct action for an NPC. Developers rely on certainty, 

while ML algorithms exist in a world of uncertainty. In other words, in order to guarantee an intended 

end-user experience, developers prefer systems that make discrete decisions, which can be debugged 

and definitively corrected if necessary. 

 

In addition to the practical arguments above, there are considerations regarding ML that are more 

closely related to the goals of this thesis. The motivation to collect large amounts of data from human 

players is to create NPCs who's performances capture the nuance and diversity of human behavior and 

                                                           

7
 For example, see Kevin Dill's post on the Game/AI industry developer blog: http://www.ai-

blog.net/archives/000178.html 
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language, and who are able to leverage this data to understand human partners. Examples of nuance 

and variety are inherently sparse -- some of the most interesting ways to say or do something are 

observed only a few times in 10,000 games, or even only once (as illustrated by the histograms in 

Figures 3-13 and 3-15). While collecting more data will alleviate the problem, there will always be a long 

tail, and at some point it may become impractical to continue collecting data in hopes of covering all 

gaps. This desire to capture nuance and variety despite its sparsity led to the human-machine 

collaborative approach described in Chapter 5, where there are humans in the loop, not only creating 

content, but also interpreting data, enabling systems that can exploit demonstrations seen only once in 

10,000 games (or more). 

 

This is not to say that ML has no role in CAI. There are many opportunities for statistical methods to 

improve the authoring and debugging processes. Chapter 5 describes an approach to processing data 

where humans are employed to annotate events, long-term dependencies, and attitudes. This approach 

relies on humans to establish lists of possible labels for the data, as well as exemplars to guide 

annotators. As suggested in Section 4.3.2, unsupervised algorithms can be effective in discovering 

patterns in new data sets from unfamiliar domains, facilitating the process of establishing the set of 

possible labels for the data. Automatically learned patterns can also be exploited to assist a human in 

semi-automating the labor-intensive process of tagging data. Human data annotation is likely to produce 

many errors and inconsistencies, which a statistical system can catch preemptively before interactive 

debugging begins.  

 

In my experience, executing the process described in Chapter 5 to annotate the data, and completing 

the loop to automate a coherent interaction from this meta-data, helped clarify exactly what would be 

useful to learn automatically in the future, hinting that the approaches described in Chapters 4 and 5 

might be more complementary than mutually exclusive, and there is likely potential for a hybrid process 

leveraging strengths of each approach in the future. For example, a small amount of annotated data 

could establish confidence metrics for an automatic system. Where the automatic system lacks 

confidence, it could delegate annotation tasks to humans online. 
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5 Human-Machine Collaborative Pattern Discovery 
 

There are two revolutions occurring simultaneously, related to the increasing availability of processing 

power and storage required to collect, store, and work with large data sets. On the one hand, powerful 

machine learning and data mining algorithms exist to automatically discover patterns in data, as 

explored in the last chapter. On the other hand, realities of today’s connected digital world have 

enabled viable alternatives to clever algorithms. Human Computation (von Ahn & Dabbish 2004) refers 

to an approach in which problems that are difficult for machines but easy for humans (e.g. image 

labeling) can be divided into small manageable tasks, and distributed online for humans to solve. There 

are pros and cons to each approach, and combining them is likely a fruitful direction. While there are 

obvious benefits to a completely automated process, unsupervised machine learning algorithms can be 

difficult to control (especially by non-experts), and their performance degrades in the face of sparse 

data. In contrast, humans can generalize from few examples, bringing to bear background knowledge 

from a lifetime of experience.  

 

This chapter explores a human-machine collaborative approach to pattern discovery, as part of the 

Collective AI (CAI) process. CAI begins by recording thousands of human-human performances in 

multiplayer games. The motivation for recording humans online is to capture the nuance and variety of 

behavior and language, subtleties that wash away statistically due to sparse data. Employing humans to 

interpret data can capture valid examples of interaction that may have only been observed in few 

games, or even only once. Tagged data is automatically mined to discover patterns in the data, and 

these patterns are exploited at runtime to recognize behavior, and retrieve similar cases (recorded game 

logs) to help select the next action. This chapter describes EAT & RUN, an end-to-end process for tagging 

data, mining patterns the data, and exploiting these patterns at runtime to drive interactions with 

humans or other NPCs. EAT is an acronym for the Event Annotation Tool, while RUN (not an acronym) 

refers to the runtime planning architecture.  

 

5.1 Tagging with the Event Annotation Tool (EAT) 

 

The Event Annotation Tool (EAT) is a browser-based data annotation tool. EAT enables hiring non-

experts online to interpret and tag data. Game logs are translated into a human-readable transcript, 

presented to annotators as horizontal timelines of nodes representing actions and utterances. 

Annotators use EAT to tag nodes with several varieties of meta-data: events, event hierarchies, causal 

chains, references, personalities, and domain-specific tags. EAT is written in Adobe Flex and Action 

Script 3, which stores and retrieves data from a  WAMP web server via a PHP script. 

Annotators do not require specialized skills, aside from English fluency. After reading a short web-based 

tutorial (Appendix A), people applied for work by annotating one sample gameplay transcript. Seven 

people were hired to annotate the TRG data via oDesk.com, residing in the Philippines, India, Pakistan, 

and the U.S. It took this team 415 person-hours total to complete annotation of 1,000 logs8, and it cost 

                                                           

8
 The 415 hours covers the most significant tagging effort, but does not include tagging of an auxiliary set of 

additional lower-priority events that were added later, or tagging of personalities and domain-specific tags. 
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about $3,000. Tags were manually spot checked for quality, iterating on corrections with annotators. 

EAT includes an integrated system for leaving notes to taggers for corrections. Iterating to correct their 

own errors helps educate taggers about desired conventions, improving future work, and decreasing 

time required for quality assurance. Work was spread over two months, but seven people working 40 

hours/week could complete 415 hours of work in 1.5 weeks. In the process of annotating, annotators 

are also asked to identify game logs where the human behavior has no resemblance to what people do 

in a restaurant, and manually flag these logs as junk. For example, games where players spend the entire 

game ordering beers, trying to fill the restaurant. 227 logs out of the 1,000 annotated logs were flagged 

as junk by humans (22.7% of the annotated corpus).   

Strictly speaking, this online annotation process is really outsourced, rather than crowdsourced. 

Crowdsourcing refers to dividing a task among large numbers of anonymous workers hired through a 

platform such as Amazon's Mechanical Turk. The work described here can be considered a pilot test of 

what should be possible to crowdsource in the future, based on the quality of work completed by 

people hired online with minimal vetting or training. However, the tasks might be further sub-divided 

for crowdsourcing. For example, each "Human Intelligence Task" might require tagging only one type of 

event, instead of the entire set. In addition, scaling up the number of annotators would require 

automating some of the quality control, by comparing redundant tags from different annotators, and 

comparing a portion of work to gold standard annotations. 

 

 
Figure 5-1: Screenshot of the Event Annotation Tool (EAT), before applying any tags. 
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5.1.1 Tagging Events 

 

Annotators draw boxes around sequences of nodes to tag events, and draw bigger boxes around 

multiple events to tag event hierarchies. Events may contain nodes representing both actions and 

utterances, arbitrarily intermixed. Annotators can move nodes vertically, to separate events that overlap 

in time.  Each node may only be contained by one low-level event. The core set of events for TRG 

includes 31 low-level events (e.g. C_GETS_SEATED, C_ORDERS, C_PAYS_BILL), grouped into five higher-

level events (e.g. BEGIN_DINING, CONCLUDE_DINING, FULFILL_ORDER). Note that the prefixes refer to 

Customer (C_) or Waitress (W_). An auxiliary set of events was added after tagging of the core set was 

completed. A domain expert defines the list of event labels, and provides examples for annotators on a 

web page. See Table 5-1 for the complete list of event labels. Section 4.3.2 suggests the potential to 

automatically discover events in the future, though a human would still be required to associate labels 

with the discovered events. A study of inter-annotator agreement found substantial agreement, on a 

ten game subset, between event annotations of an expert and five novice annotators (mean kappa 0.81) 

(Orkin et al. 2010).  
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Figure 5-2: Timeline before applying any tags. 

 

 

 
Figure 5-3: Same timeline as Figure 5-2, after tagging low-level events. 

 

 

 
Figure 5-4: Same timeline as Figure 5-3, after tagging high-level events. 
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Core Low-Level Events  Auxiliary Low-Level Events 

C_ARRIVES  

C_COMPLAINS_BILL 

C_COMPLAINS_FOOD 

C_COMPLAINS_ORDER 

C_COMPLIMENTS_FOOD 

C_DECLINES_ORDER 

C_DEPARTS 

C_DRINKS 

C_EATS_FOOD 

C_GETS_BILL 

C_GETS_MENU 

C_GETS_SEATED 

C_GETS_UP 

C_ORDERS 

C_PAYS_BILL 

DELAY_ORDER 

DISCUSS_AGE 

DISCUSS_GEOGRAPHY 

DISCUSS_MENU 

DISCUSS_NAMES 

OTHER 

SOCIALIZE 

W_CLEANS_TABLE 

W_DEPOSITS_BILL 

W_FAILS_SERVE 

W_ITEMIZES_BILL 

W_PLACES_MENUS 

W_PREPARES_BILL 

W_RETURNS_MENU 

W_SERVES_DRINK 

W_SERVES_FOOD 

 BITES_PLAYER 

C_ASKS_MANAGER 

C_BITES_DISH 

C_DINES_DASHES 

C_EATS_FLOWERS 

C_EATS_TRASH 

C_GIVES_FLOWERS 

C_PICKSUP_APPLIANCE 

C_SITS_FRIDGE 

C_SITS_STAFF 

C_SITS_TABLE 

C_STEALS_REGISTER 

DISCUSS_BATHROOM 

DISCUSS_DATE_ACCEPT 

DISCUSS_DATE_REJECT 

DISCUSS_GENDER 

DISCUSS_JOIN_ACCEPT 

DISCUSS_JOIN_REJECT 

DISCUSS_OCCUPATION 

W_CALLS_POLICE 

W_COMPLAINS_TIP 

W_DRINKS 

W_DROPS_ITEM 

W_EATS_FOOD 

W_PAYS_BILL 

W_SITS_STAFF 

 

High-Level Events 

BEGIN_DINING 

COMPLETE_ORDER 

CONCLUDE_DINING 

FIX_BILL 

FIX_ORDER 

Table 5-1: Event labels. 
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5.1.2 Tagging Long-term Dependencies 

 

Using the same codebase, the event annotation interface was adapted to support tagging long-term 

dependencies -- forward and backward. Arrows from one node to another tag causal chains (forward) 

and references (backward). Causal chains explain, for example, that the customer asking for steak 

caused the waitress to bring back a steak from the kitchen. Any node may be the source or destination 

of multiple arrows. A reference explains that a waitress who asks “How was your lobster?” is referring to 

the previously served lobster. The number of nodes between the beginning and end of a dependency is 

unconstrained. Someone at the end of the game may refer back to something that happened hundreds 

of actions earlier. For this reason, the interface for tagging dependencies is split-paned, showing the 

same timeline in each pane, allowing the annotator to scroll to different sections of the timeline, and 

see both at once. Figure 5-5 presents a screenshot of tagging a causal chain, where the waitress asks the 

chef for salad and lobster because the customer ordered salad and lobster. 

 

 
Figure 5-5: Interface for tagging long-term dependencies. 
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5.1.3 Other Tags 

 

An arbitrary number of additional types of tags may be applied to a dataset, for use in biasing behavior 

at runtime. Two additional types of tags were applied to the TRG data, attitude tags, and domain-

specific tags identifying utterances that refer to a specific course of the meal (appetizer, entree, or 

dessert). A modified version of the interface for tagging dependencies enables applying one of more 

tags to a node. Attitude tags identify utterances that humans consider to be: polite, rude, flirtatious, or 

drunk. These tags can be exploited by an attitude Critic, which is biased according to parameters 

configured by a designer, to influence next action selection so that an NPC tends to act rude when such 

an utterance exists. Otherwise, the system can fall back on untagged utterances.  

The domain-specific tags provide additional semantic information required by the domain Critic, 

described in Section 5.3.5, to ensure the coherence of NPC dialogue by suppressing utterances related 

to ordering courses which have already been ordered or served. For example, a waitress should not ask 

if the customer wants dessert after he has already eaten a slice of pie. It might seem like the event 

structure should prevent such problems, however the fluid nature of human behavior and language 

leads to examples with a variety of structures -- in some cases customers order one course at a time, 

and in others they order all of their courses at once. There needs to be some means of bookkeeping 

outside of the event structure to keep track of which courses have been ordered or served, which in 

turn factors into selection of future utterances. 

 

5.2 Learning Structure from Annotated Data 

 

Human annotation described in 5.1 provides the building blocks necessary to learn hierarchies of 

discrete patterns representing events. Events, in turn, give context to utterances, facilitating semantic 

clustering by humans. This section describes how utterances are clustered, how a hierarchical Event 

Dictionary (ED) is learned from tagged data, and how the ED is employed to construct the Event Log 

Index (ELI). The ELI is a comprehensive index table which enables efficient retrieval of game logs at 

runtime, for purposes of plan recognition and case-based planning, based on matching discrete patterns 

representing events or event subsequences. Appendix B presents the script used to generate the ELI 

from game logs and annotations, with comments describing the various steps of preprocessing. 

 

5.2.1 Manual Semantic Clustering of Utterances 

 

Events are composed of nodes, where each node may be an action or utterance, intermixed arbitrarily. 

In order to store events as a discrete sequence of tokens, action can be tokenized as ACTIDs (introduced 

in Section 4.1.1), and a compatible representation is required for utterances. Manually grouping 

utterances into semantically meaningful clusters produces linguistic tokens that can serve as a common 

currency for combining with physical actions. This section describes how utterances are encoded, and 

grouped into sets of semantically meaningful clusters called Utterance Sets (U-SETs), stored in an 

Utterance Library (U-LIB). 

Once logs have been annotated, all unique utterances included in events are extracted. Utterances 

perceived to serve the same purpose are dragged into a folder together. An annotator might drag “Hi” 
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and “Hello” into one folder, and “I’m ready for the bill” and “Check please” into another folder. 

Developing a browser-based tool for clustering utterances remains for future work. For the current 

study, I clustered utterances myself, using Windows Explorer as a surrogate user interface. Folders were 

named with the text from utterances, which could be dragged into parent folders to cluster them 

semantically with similar utterances. See Figure 5-6 for an example of clustering different ways of saying 

"hello." It took about two weeks of full-time work to manually group 18,907 utterances into 3,568 

clusters. Manually grouping utterances is an alternative to more traditional dialogue act tagging, 

described in Section 4.3.1. The decision to take this more labor-intensive manual approach was based 

on the fact that manual clustering can be accomplished with minimal training or specialized knowledge, 

and allows for flexible, fine-grained groupings. Training a classifier to apply 3,568 different dialogue act 

labels would be difficult, especially due to the fact that many of these clusters have a small number of 

members, and the distinction between two clusters may be subtle.  

 

 
Figure 5-6: Manually clustering utterances using Windows Explorer. 



 

107 

 

 

Prior to clustering, utterances are encoded as keyword strings, and variables are collapsed based on a 

hand-crafted, domain-specific ontology (e.g. “Can I have steak?” and “Can I have salmon?” merge into 

“Can I have [FOOD]?”). Figure 5-7 illustrates a fragment of the ontology, with hierarchical concepts as 

branches, and labels observed in human utterances at the leaves. Note that leaves include misspellings 

(e.g. "salmon" vs. "slamon"). A keyword is any word observed in at least 25 game logs. All non-keywords 

are omitted from the encoded utterances. Encoded utterances grouped into the same folder form an 

Utterance Set (U-SET), and all U-SETs are stored in an Utterance Library (U-LIB). The U-LIB is 

implemented as a Trie data structure (Fredkin 1960), for efficient retrieval of the U-SET ID for any 

observed utterance. 

 
Figure 5-7: Fragment of manually constructed ontology of concepts, with human labels at leaves. 

 

5.2.2 Learning the Event Dictionary and Event Log Index 

 

The Event Dictionary (ED) contains discrete sequences, representing events, learned from the human 

annotations. Actions and utterances from the text-based logs are transformed into discrete tokens, 

ACTIDs indexing into the A-LEX, and U-SETIDs indexing into the U-LIB. 

Using the A-LEX and U-LIB, logs are compiled into discrete sequences of time-coded ACTID and U-SETIDs. 

Time codes associate annotations with tokens in compiled logs, allowing extraction of each unique event 

pattern. Low-level events are stored in the Event Dictionary (ED) as sequences of ACTIDs and U-SETIDs. 

Higher-level events are stored as sequences of event start points. The annotated 1,000 game subset 
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contains 675 patterns for high-level events, and 9,460 for low-level events, composed of 1,414 unique 

ACTIDs, and 3,568 U-SETIDs representing 18,907 unique utterances. Figure 5-8 illustrates four different 

sequences in the ED to represent the event C_GETS_SEATED. 

 

 

 

 

 

Figure 5-8: Four different sequences to represent C_GETS_SEATED in the Event Dictionary. 

 

The compiled logs and ED are stored in the Event Log Index (ELI), along with a lookup table indicating the 

start points of event instances within log files. This table maps specific event patterns to instances 

within logs, allowing an agent to efficiently find logs that match observation sequences (or 

subsequences) at runtime. The ELI also stores associated meta-data, such as references and causal 

chains. 
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5.3 The Runtime Data-Driven Planning Architecture (RUN) 

 

This section describes how NPCs select actions based on recent observations of interactions in the game 

world. NPCs are driven by a planner, which selects actions and utterances through a process that 

combines plan recognition (Kautz & Allen 1986) with Case-Based Planning (Hammond 1990). Cases refer 

to entire recorded episodes, in the form of annotated game logs. Each NPC observes actions and 

utterances, infers an event hierarchy (plan recognition), proposes games with similar event histories 

(case retrieval), and critiques proposals until one is found with a valid next action. 

 

 

 

Figure 5-9: Diagram of the RUN planning architecture. 

 

Figure 5-9 illustrates a high-level overview of the planning architecture (adapted from the architecture 

in Figure 4-3, with several differences). There is an agent on the CAI server associated with each NPC in 

the game world. Agents have access to Collective Memory, which stores the annotated game logs, as 

well as various data structures generated from these logs. The agent has a set of Sensors which receive 

observations from the game world. Sensors leverage information in Collective Memory to semantically 

cluster actions and utterances. Clustered observations are recorded in the Interaction History on the 

agent's Blackboard. The Plan Recognizer employs the Event Dictionary to infer an Event Hierarchy from 

the Interaction History. Next, the Action Selector selects the next action or utterance through a case-

based planning process. The Plan Proposer retrieves game logs containing event hierarchies similar to 
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that stored on the Blackboard, and passes these proposals to a set of Critic processes. Critics exploit a 

variety of information to scrutinize these proposals, validating those expected to lead to a coherent next 

action. Assuming a proposal is found that gets approved by all Critics, the proposal is stored on the 

Blackboard as the current Plan. Finally, the Actuator executes the next action or utterance in the current 

Plan by sending a command to the game engine. Note that in some situations, the next action or 

utterance in the plan is actually taken by a different NPC, in which case it is considered an expectation, 

and the agent will wait to see if the expected action occurs before some expiration time. 

 

5.3.1 A Motivating Example 

 

This process becomes more clear with a concrete motivating example. Imagine an AI-controlled 

customer needs to respond to a waitress, recently observed to say "What can I do for you?" This is a 

sensible thing to say while working at a restaurant, however it is highly ambiguous. If the customer takes 

a naive approach, and simply searches for game logs that include identical, or similar, utterances, this 

may lead him to respond in a variety of ways: "Table for one please?", "Can I see the menu?", or "I'll 

start with the salad." Either response is equally likely, and the right choice depends on context. 

Context can be formally represented as an event history. The history is hierarchical, and continually 

updated with each observation received since the beginning of the game. Each time the customer 

receives a new observation, he updates a mental model by adding or extending an event. Figure 5-10 

illustrates the customer's mental model, which leads him to ask for salad.  

 

 
Figure 5-10: The customer's mental model after responding to "What can I do for you?" 
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The observation "What can I do for you?" is ambiguous, and could be incorporated into the event 

hierarchy in multiple ways. This utterance could begin a new C_GETS_SEATED, C_GETS_MENU, or 

C_ORDERS event. The customer tries each of these options. 

 

Candidate game logs for each option are retrieved from Collective Memory, and passed to Critic 

processes to scrutinize. The Critics reject the candidates which propose to begin a new C_GETS_SEATED 

or C_GETS_MENU event, because BEGIN_DINING already includes both of these events, and extending 

BEGIN_DINING with either of these will add a duplicate, leading to an incoherent structure. In other 

words, Collective Memory does not contain any examples where someone got seated twice or got the 

menu twice while beginning dining, prior to ordering.  

 

In contrast, based on Collective Memory, beginning a C_ORDERS event after a complete instance of 

BEGIN_DINING is valid. The customer is able to find a game log that begins C_ORDERS with "What can I 

do for you?" (or something clustered with the same U-SETID), and increments the pointer to the next 

action. This next action extends the C_ORDERS event, is validated by the Critics, and sent to the game 

engine for execution.  

 

5.3.2 Integrating Planning with the Game Engine 

 

For each NPC that exists in the world, an associated agent is running on an AI server (implemented in 

Java), networked with the game engine. As the game engine logs players’ actions, resulting state 

changes, and utterances to a file, the engine broadcasts the same data over the network.  The agent 

uses the A-LEX and U-LIB to process incoming data into discrete observations – ACTIDs and U-SETIDs. 

Agents process all observations through the same channel, regardless of whether they are associated 

with another player or the agent itself. Based on these observations, the agent makes decisions about 

what to do next, which are transmitted as commands for the NPC to execute in the game engine. The 

embodied NPC is responsible for all low-level behavior, including pathfinding, animation, and 

manipulating objects (e.g. CAI sends a command to a waitress to pick up a dish, and the NPC in the game 

world actually walks to the dish, and attaches it to her hand). This separation between high-level and 

low-level behavior leads to an arrangement where CAI is agnostic about the implementation of the low-

level AI system for the NPC, thus CAI complements rather than replaces current approaches.  
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5.3.3 Plan Recognition 

 

Plan recognition refers to the process of inferring an event hierarchy from a discrete sequence of 

observations. Sequences of observed actions and utterances are compared to sequences representing 

events in the Event Dictionary (ED), stored in Collective Memory. Low-level events are directly 

constructed from directly observable actions and utterances, while higher-level events are constructed 

from recognized low-level events. Multiple recognized sequences can overlap in time, and each 

sequence may contain gaps between observations.  

In many instances, there is more than one possible event that matches an observed sequence (or 

subsequence). Plan recognition employs a case-based process for disambiguating events, and ensuring 

the inferred event hierarchy is coherent. In fact the same case-based system is employed for both plan 

recognition and next action selection (covered in the next section). The primary difference is that plan 

recognition uses case-based reasoning to explain observations, while action selection uses case-based 

planning to imagine a future observation, and ensure a coherent explanation exists for such an 

imagination. 

As described in Chapter 2, Case-Based Reasoning (CBR) / Case-Based Planning (CBP) involves four steps: 

(1) Case retrieval:  

       Retrieve cases from a corpus which are similar to the problem one is trying to solve. 
 

(2) Ballpark solution proposal: 

       Propose one or more cases that could be used to solve the problem. 
 

 (3) Adaptation: 

                     Adapt variables of the proposed case(s) to align the problem. 
 

 (4) Critique: 

                     Scrutinize the adapted case(s) to validate whether a solution has been found. 

 

Overview: 

The agent tries to understand each new observation (an action or utterance) within the context of what 

it has observed previously. The Plan Recognizer infers how new observations extend the event hierarchy 

recognized so far. Plan recognition involves retrieving cases that can explain the most recent 

observation, in terms of how the observation extends an existing event, or adds a new event to the 

hierarchy. Cases are critiqued them until one can be found that is validated as a coherent explanation. 

 

The application of CBR to CAI treats each entire recorded performance (stored as a game log) as a Case.  

Cases are indexed for retrieval by the events annotated within the game log. Each log may have many 

indices, allowing the agent to propose different entry points for using a particular action from a 

recorded performance to explain an observation. These event instances within the game log are 

referenced from the Event Log Index (ELI). The ELI allows the Plan Recognizer to efficiently retrieve game 

logs that match an observed sequence or subsequence. 
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Case Retrieval: 

The event hierarchy is composed of token sequences representing events, some of which may be 

incomplete. Each token is a previously observed action or utterance, and a sequence is considered 

complete if it exactly matches a pattern in the ED. The agent is driven to try to complete sequences that 

are currently incomplete. Each new observation may (in order of preference):  

(1) Extend an incomplete sequence 

(2) Extend a subsequence of an incomplete sequence 

(3) Start a new sequence 

(4) extend a complete sequence.  

 

Modified sequences that result from these options are referred to as candidate sequences. The Plan 

Recognizer iterates over candidates, and repeats the CBR process until a valid case is found. Each 

candidate sequence is used as the index to retrieve cases, which propose explanations for recent 

observations. 

The ELI is used to retrieve all cases (annotated game logs) which contain an instance of an event that 

matches, or begins with, the candidate sequence. For example, if the agent has observed the sequence: 

WAITRESS:   “What can I do for you?” // U-SETID = 689 

CUSTOMER: “I’ll start with the salad” // U-SETID = 553 

 

All cases will be retrieved that begin with a two-utterance sequence with the U-SETIDs 689, 553. Some 

of these cases will continue extending the event (e.g. the waitress asks “Would you like a drink with 

that?”, or says “That will be right out”), in others, these two utterances form a complete instance of an 

event, and the log moves onto a new event immediately after (e.g. serving the food that was ordered). 

 

Ballpark Solution Proposal: 

One by one, each proposal is applied by truly extending the corresponding sequence in the hierarchy, or 

inserting a new sequence into the hierarchy. Initially, only the low-level event sequence is added or 

extended. Next, higher levels of the hierarchy are modified to match that in the proposal.  For example, 

if the proposal begins a new C_GETS_SEATED event, and this event has the parent BEGIN_DINING in the 

proposed annotated game log, then the corresponding sequence added to the hierarchy in the Plan 

Recognizer also becomes a child of the BEGIN_DINING event. If the BEGIN_DINING event does not exist 

yet, it is created at this point. As the Plan Recognizer modifies the event hierarchy, it is responsible for 

all book-keeping which will allow these modifications to be reversed if the proposal is rejected by the 

Critic processes. 

 

Adaptation: 

Once applied, the sequence can be optionally adapted. CAI supports adaptation, allowing an action or 

utterance to swap an associated concept with another concept at the same level of the ontology 

described in Section 5.2.1. For example, a proposed game log where someone ordered fish can be 

adapted to explain an observed utterance where someone ordered steak. Currently, adaptation is used 



 

114 

 

sparingly in TRG, only applied to utterances for ordering food as just described. The discussion of 

adaptation in Minstrel and Mayor in Chapter 2 illustrates the complexities and potential pitfalls of 

adaptation. For these reasons, this work favors exploiting larger corpora rather than relying on clever 

adaptation. In other words, in many situations it is possible to reduce or eliminate the need for 

adaptation by providing alternate cases in corpora. However, some situations do exist where adaptation 

is necessary. For example, the corpus will never cover all possible ways of ordering food, due to 

combinatorial explosion of dishes and drinks ordered within the same utterance. 

 

Critique: 

The applied (possibly adapted) proposal is next sent to a set of Critic processes, to scrutinize the new or 

modified sequence (and parents). The same Critics are used in plan recognition and case-based planning. 

(Critics are described in detail in Section 5.3.4). A proposal that passes all of the Critics is considered 

valid. If any Critic rejects the proposal, the process repeats by applying the next proposal. If all proposals 

fail, the candidate is rejected, the modification is reversed, and the next candidate is considered if one 

exists. Once a candidate has been validated, the process is complete -- the observation has been 

recognized, and the modified structure of the hierarchy persists. If none of the candidates can be 

validated the observation is discarded as unrecognizable. 

Whenever a sequence is added or extended, it requires an event label. Possible event labels for a 

candidate are determined by matching patterns in the ED. Labels are non-committal, and may be 

disambiguated as new information arrives. In Figure 5-11, the event beginning at node 5 is initially 

labeled as a C_ORDERS event, but later revised to a C_GETS_MENU once more information arrives in a 

subsequent observation. 

 

 

Figure 5-11: Label for event beginning at node 5 is revised as new information arrives. 

 

Once an observation has been recognized, the agent selects the next action by either advancing the 

current plan, or searching for a new plan. A plan is a compiled game log, and the agent continues 

following the same plan as long as new observations continue to match the next token in the log, and 

are validated by the Plan Recognizer. If the observation does not match the next token, or is 

unrecognizable, the plan is invalidated and the agent re-plans, as described in Section 5.3.4. 
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5.3.4 Case-Based Planning 

 

The previous section describes a case-based reasoning process for recognizing observations. This section 

explains how the CBR process is extended to support Case-Based Planning (CBP), where CBP is applied 

to selecting a coherent next action. CBP is an approach for selecting actions to respond to recent 

observations by finding examples of similar observations in the past. As described in Section 5.3.3, the 

application of CBP to CAI treats each entire recorded performance (stored as a game log) as a Case. 

cases are indexed for retrieval by the events annotated within the game log. Each log may have many 

indices, allowing the agent to propose different entry points for replaying from a particular action of a 

recorded performance. 

 

Planning begins by iterating over a set of prioritized interaction Goals. Goals employ a variety of 

strategies to retrieve annotated game logs containing actions expected to move the interaction forward 

coherently. This may mean responding to something someone else has said or done, or pro-actively 

beginning a new event that is contextually appropriate. Using the ELI, Goals retrieve game logs and 

generate proposals – pointers into logs that begin after matching a particular sequence of tokens, or at 

the start of a specified type of event. Seven Goals have been implemented, detailed in Table 5-2. 

Appendix C presents the prioritization of Goals configured for TRG. 

  

 

Goal Description 

GoalCompleteEvent Find logs that contain the most recent incomplete sequence, and 

point to a subsequent token that can extend that sequence. Skip 

tokens that are part of other events. 

 GoalCompleteCausalChain Find logs with events that could complete an initiated, but 

unresolved, causal chain (e.g. W_SERVES_FOOD or W_SERVES_DRINK 

if open orders exist). 
GoalExtendCompletedEvent Find logs that contain the most recently completed sequence, and 

point to the subsequent token that can extend that sequence. Skip 

tokens that are part of other events. 
GoalExtendScenario Find logs with events that could begin a contextually appropriate 

higher-level event. 

GoalExtendStructure 

 

Find logs with events that could extend an incomplete higher-level 

event. 

GoalRespondToCompletedEvent Find logs that contain the most recently completed sequence, and 

point to the subsequent token. 

GoalRespondToSequence 

 

Find logs that contain the most recently extended sequence, and 

point to the subsequent token. 

 Table 5-2: Description of Goals. 

 

For each Goal, the agent iterates over the proposals, and re-runs the Plan Recognizer, treating the 

proposed next action as an imagined observation. Proposals with next actions that cannot be recognized 

are rejected. Remaining proposals must be validated by a set of Critic processes. Critic processes ensure 

future actions maintain coherence, with respect to past observations. Ten Critics have been 

implemented, detailed in Table 5-3. Planning is complete when a proposal is found that is approved by 
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all Critics, or when all Goals have been evaluated, and no valid proposal has been found. In the case of 

failure, the agent repeats the process, iterating the focus of attention backward in time to respond to 

earlier observations.  

 

Critic Description 

CriticAttitude If a desired attitude has been configured, this Critic biases behavior 

toward behavior that has been tagged with the specified attitude 

type. 

CriticCausalChain Prevents executing an action that completes a causal chain in a log 

file, if a corresponding chain has not been established in the currently 

running game, or has already been completed. For example, do not 

serve steak, if a steak was never ordered, or has already been served. 

This Critic relies on tagged Causal Chain meta-data. 

CriticDomain Prevent executing an action for domain-specific reasons. More details 

about domain knowledge in Section 5.3.5. 

 
CriticInvalidatedAction Prevents repeatedly trying to execute an action that the game engine 

reports has failed. 

CriticNoReruns Prevents repeating the exact same utterance from the same game log 

more than once in the same game. 

CriticReference Prevents executing an utterance that refers to something that has 

never been observed in the current game. This Critic relies on tagged 

Reference meta-data. 

CriticRequiredRole Prevents waiting for someone else to execute an expected action. 

After an agent has failed to execute an action, this Critic forces the 

same agent to try to take a different action as soon as possible. 

CriticReservedLog When multiple NPCs are interacting (as opposed to a human-NPC 

interaction), this Critic prevents both agents from locking onto the 

same log file, which would result in a replay rather than a dynamic 

interaction. Each time an agent executes an action, it reserves the 

action to prevent the other agent from selecting it in the future. 

CriticResourceConflict Prevents trying to execute an action that requires a resource already 

in use. For example, a waitress should not plan to pick up a menu if 

there is already a dirty dish in her hand. This critic will encourage her 

to return the dirty dish to the kitchen before pursuing giving the 

customer a menu. 

CriticStaleDialogue Prevents continuing a dialogue many steps later, if the dialogue could 

already be considered complete. This reduces the occurrence of 

utterances that seem to be non-sequiturs. 

CriticStructure Prevents adding low-level events which create invalid structure at 

higher levels of the hierarchy, according to the Event Dictionary. 

 Table 5-3: Description of Critics. 
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Critics can be configured as required or preferred, where preferred Critics can be ignored if no valid 

proposals can be found to satisfy them. For example, if no proposals can be found to satisfy a specified 

attitude type, CriticAttitude can be ignored. In addition, there is a notion of pressure that rises over 

time, and Critics may optionally specify a maximum pressure, above which they are ignored. This 

ensures that an NPC will eventually do something if enough time has passed. Appendix C presents the 

prioritization of Critics configured for TRG. 

 

5.3.5 Domain Knowledge 

 

Critics are domain independent, with one exception -- CriticDomain, a special Critic which can invalidate 

a proposal based on domain-specific information. Each event type may optionally have a hand-encoded 

validation function, which constrains when that type of event may be extended, or introduced into the 

hierarchy. These functions contain arbitrary Java code, and are stored in the Domain Knowledge 

Manager. Hand-crafting domain knowledge, in an otherwise data-driven system, is a concession 

required for two reasons: (1) sparse data, and (2) discrepancies between recorded human behavior, and 

what we desire to see from NPCs.  

A concrete example illustrates both of these motivations. Imagine a customer has finished eating a 

salad, salmon, and cherry cheesecake, and an AI-controlled waitress needs to decide what to say next. 

With a wide variety of dishes on the menu, there is no guarantee that a recorded game log exists that 

matches the dishes ordered exactly. Abstracting dishes in a domain-specific way -- into courses 

(appetizer, entree, dessert) -- compensates for sparse data, and domain knowledge associated with 

C_ORDERS leads the waitress's CriticDomain to invalidate initiating events from game logs where the 

history of consumed courses does not match what has been observed. Furthermore, there may be 

examples of human-human game logs where the waitress continues to offer dessert after dessert. An AI-

controlled waitress who offers dessert after serving dessert is interpreted as buggy by humans, even if 

she is imitating an actual recording of playful human behavior. CriticDomain can leverage hand-crafted 

domain knowledge to constrain an NPC to behavior desired by designer, even if humans have broken 

these rules. Programmatically restricting these behaviors allows them to remain in the corpus for 

recognition, without risk of execution. 

Domain knowledge is also used to perform adaptation of proposed cases during the CBP process, as 

mentioned above in Section 5.3.4. Each event type has an optional associated adaptation function. For 

example, domain knowledge for the C_ORDERS event includes a function that detects when an 

utterance from an annotated game log begins a causal chain, indicating that someone is ordering a food 

or drink. In these cases, the function replaces the item(s) mentioned in the utterance from the game log 

with the items mentioned in the associated utterance in the actual interaction. The ontology is 

employed to recognize words for food and drink items within utterances. 

In the current implementation, encoding domain knowledge is a time-consuming iterative process 

(iterating with testing). Future work should focus on formalizing the encoding of rules from ad hoc Java 

code to something more principled and more strictly structured. The expectation is that this first 

implementation will reveal design patterns in rules, which can be formalized into event configuration 

files, rather than procedural code. In addition, Section 5.5 suggests ways to simplify debugging, and 

preemptively detect problems. 
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5.3.6 High-Level Goals & Directability 

 

Automating NPCs from a large corpus of human performances produces digital actors who can 

improvise and adapt their behavior, in response to interactions in the virtual world. While this autonomy 

helps support a player-directed experience, it may also be desirable for the designer to be able to direct 

these NPCs at a high-level to behave in some specified way. For example, a designer may wish for an 

NPC to dramatize a scene exhibiting a particular attitude (e.g. a rude waitress). The planning 

architecture provides two mechanisms that can be used to direct an NPC with high-level goals that bias 

his or her behavior in some desired way. Specialized Critics can be introduced which attend to specific 

layers of meta-data, and domain knowledge for specific events can be augmented to support some high-

level goal. 

Two high-level goals have been implemented. The first biases an NPC to pursue a specified attitude. The 

second encourages an NPC waitress to upsell. The attitude bias in the simpler of the two to implement, 

though upselling is only slightly more complex. In order to bias an NPC toward a specified attitude, game 

logs are annotated with tags indicating actions and utterances that exhibit attitudes such as polite, rude, 

and flirtatious. When a desired attitude is specified for an NPC (via a configuration file), the attitude 

Critic rejects proposals for actions and utterances that are not tagged with the specified attitude. If no 

valid proposals are found, on the second pass the attitude Critic only rejects actions and utterances 

tagged with a different attitude, allowing untagged actions and utterances to be proposed as defaults. 

Upselling combines an attitude tag for upselling with a small modification to the domain knowledge for 

the W_SERVES_FOOD, W_SERVES_DRINK, W_PREPARES_BILL events. Validation functions for these 

events are modified such that the waitress will not begin serving an entrée until an appetizer has been 

ordered, and will not bring the bill until dessert has been served. These modifications combined with the 

upsell attitude tag, encourage the waitress to continue extending the C_ORDERS event, producing 

additional utterances that ask the customer if he would like to order more food, expressed in different 

ways. Ideally these restrictions would eventually time-out if the customer never orders more items, but 

a time-out is not currently implemented, producing a very persistent waitress. The next section includes 

transcripts illustrating the effect of these high-level goals on human interaction. 
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5.4 Human Interaction 

 

Human players can type text or speak into a microphone to converse with NPCs. Rather than passing the 

natural language input directly an NPC, the input is intercepted, and used to dynamically generate a list 

of contextually relevant dialogue options, as semantically similar as possible to the human input. 

 

 

Figure 5-12: Intelligent interface compensates for challenges in natural language understanding. 

 

Presenting dialogue options is a practical approach to alleviate the difficult problem of natural language 

understanding (NLU). NLU is a challenge for reasons of coverage and context. The enormous potential 

variation in open-ended spontaneous natural language input makes it likely that any future human-NPC 

game will encounter utterances never previously observed in the recorded game logs. While many of 

the words may be familiar, unfamiliar ordering, or the introduction of out-of-vocabulary words, may 

lead to an utterance with a completely different meaning from its closest match in the corpus. 

Furthermore, an NPC may misunderstand a familiar utterance used in an unfamiliar context. Finally, 

speech recognition adds additional uncertainty, as the system cannot be entirely sure that the words 

were recognized correctly. Presenting the player with dialogue options makes the process transparent, 

and increases the likelihood that the player will be able to move the narrative forward as intended.9 In 

                                                           

9
 There is evidence from the commercial game industry that making intelligent AI systems transparent to the 

player improves usability. Black & White (Lionhead 2001) featured creatures who learned from positive and 

negative reinforcement, but it was not always clear to the player what the creatures was learning, and sometimes 

the creature could learn the wrong things. In the sequel, Black & White 2 (Lionhead 2005), critics and press 

responded positively when the developers made the learning system transparent, so that players could see what 

was being learned, and intercept and correct the creature when it learned incorrectly.  
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this respect, NLU is handled in much the same way as a search engine, which returns multiple query 

results, sorted by relevance. The current interface, in the figure above, is a rough first implementation. 

One can imagine more polished interfaces. Perhaps the interface could automatically choose the top 

option in the list, and give the user one second to hit a button to intercept if options are desired, or 

perhaps the interface could present options in real-time as the user types, similar to Google's auto-

complete in search engine queries. There are many possibilities for interfaces that could operate on top 

of the foundation laid by an underlying CAI system. 

The following figures present transcripts from actual interactions between a human customer and an 

NPC waitress. Each transcript highlights a different configuration for interaction. In these transcripts, the 

utterances recorded for the customer represent the final dialogue option selected by the human player, 

based on typed text input (not shown). All dialogue options come from recorded human performances, 

including typos, misspellings, and colloquialisms. Figure 5-13 is a transcript with a default configuration, 

while the next two transcripts capture interaction with waitresses directed to achieve high-level goals of 

being rude and upselling respectively, using the approach described in Section 5.3.6. The transcript from 

the default configuration includes examples of the NPC responding to out of the ordinary behavior, such 

as sitting on top of the table and stealing the cash register. This transcript also contains two utterances 

that were selected based on the human input of "can I have," illustrating that the system provides 

different options based on context. At the start of the game, "can I have" produces options asking for a 

menu or a table. After sitting and eating some food, "can I have" produces options asking for the next 

course, a drink, or the bill. Clicking through several screens of options eventually leads to the more 

unusual option "can I have a microwave." 
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CUSTOMER: "Good evening, miss" 
WAITRESS: "Good evening sir" 
CUSTOMER: "can I have a table?" 
WAITRESS: "sure follow me" 
 

CUSTOMER SITSON table1(Table) 
 

WAITRESS: "SIR do not sit on the table!" 
 

CUSTOMER STANDSUP FROM table1(Table) 
CUSTOMER SITSON chair1(Chair) 
WAITRESS PICKSUP dyn026(Menu) 

 

WAITRESS: "a menu sir" 
CUSTOMER: "THANKS" 
 

WAITRESS GIVES dyn026(Menu) TO CUSTOMER 
 

WAITRESS: "drink?" 
CUSTOMER: "no" 
CUSTOMER: "so whats good?" 
WAITRESS: "another restaurant" 
WAITRESS: "no but I would go for the salmon" 
CUSTOMER: "I'll take it" 
WAITRESS: "ok" 
 

CUSTOMER PUTSDOWN dyn026(Menu) ON table1(Table) 
 

WAITRESS: "salmon" 
 

dyn087(Salmon) APPEARS ON counter2(Counter) 
WAITRESS PICKSUP dyn087(Salmon) 
WAITRESS PUTSDOWN dyn087(Salmon) ON table1(Table) 
CUSTOMER EATS dyn087(Salmon) 
CUSTOMER EATS dyn087(Salmon) 
CUSTOMER EATS dyn087(Salmon) 

 

CUSTOMER: "can I have an microwave?" 
WAITRESS: "yes..." 
WAITRESS: "ok lol" 
 

WAITRESS PICKSUP microwave(Microwave) 
WAITRESS GIVES microwave(Microwave) TO CUSTOMER 

 

CUSTOMER: "thank you!" 
 

CUSTOMER PUTSDOWN microwave(Microwave) ON table1(Table) 
CUSTOMER STANDSUP FROM chair1(Chair) 
CUSTOMER PICKSUP cash_register(Register) 

 

WAITRESS: "a robbery!" 
 

CUSTOMER EXITS RESTAURANT 

Figure 5-13: Transcript from actual interaction between human customer and NPC waitress. 
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CUSTOMER: "hello" 
WAITRESS: "welcome to the hell hole" 
WAITRESS: "SIT BOY" 
 

CUSTOMER SITSON chair1(Chair) 
 

WAITRESS: "what you want" 
CUSTOMER: "What are the specials?" 
WAITRESS: "specials? read 'em on the wall" 
CUSTOMER: "Ill have the salmon" 
WAITRESS: "Ill see what I can do" 
WAITRESS: "fish" 
 

dyn022(Salmon) APPEARS ON counter3(Counter) 
WAITRESS PICKSUP dyn022(Salmon) 
WAITRESS GIVES dyn022(Salmon) TO CUSTOMER 
CUSTOMER PUTSDOWN dyn022(Salmon) ON table1(Table) 
CUSTOMER EATS dyn022(Salmon) 
CUSTOMER EATS dyn022(Salmon) 
CUSTOMER EATS dyn022(Salmon) 

 

CUSTOMER: "bill please" 
WAITRESS: "HANG ON" 
 

WAITRESS TOUCHES cash_register(Register) 
dyn023(Bill) APPEARS ON podium(Podium) 
WAITRESS PICKSUP dyn023(Bill) FROM podium(Podium) 

 

WAITRESS: "pay it!" 
 

CUSTOMER PICKSUP dyn023(Bill) 
CUSTOMER LOOKSAT dyn023(Bill) 
CUSTOMER PAYS dyn023(Bill) 
CUSTOMER GIVES dyn023(Bill) TO WAITRESS 

 

WAITRESS: "You cheapskate" 
WAITRESS: "No tip!" 

 

WAITRESS PUTSDOWN dyn023(Bill) ON cash_register(Register) 
 

WAITRESS: "out you go" 
 

CUSTOMER STANDSUP FROM chair1(Chair) 
 

CUSTOMER: "bye" 
WAITRESS: "bye" 

 

CUSTOMER EXITS RESTAURANT 

Figure 5-14: Transcript from interaction between human customer and waitress directed to be rude. 
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WAITRESS: "can I get you an appetizer or something to drink?" 
CUSTOMER: "Ill just have the steak" 
WAITRESS: "anything else?" 
CUSTOMER: "no thank you" 
WAITRESS: "salad, soup, desert" 
CUSTOMER: "Ok Ill start with the salad" 
WAITRESS: "would you like some dessert too?" 
CUSTOMER: "no thank you" 
WAITRESS: "salad" 
 

dyn156(Salad) APPEARS ON counter1(Counter) 
WAITRESS PICKSUP dyn156(Salad) 
WAITRESS PUTSDOWN dyn156(Salad) ON table1(Table) 
CUSTOMER EATS dyn156(Salad) 
CUSTOMER EATS dyn156(Salad) 
CUSTOMER EATS dyn156(Salad) 

 

WAITRESS: "steak" 
 

dyn157(Filet) APPEARS ON counter2(Counter) 
WAITRESS PICKSUP dyn157(Filet) 
WAITRESS PUTSDOWN dyn157(Filet) ON table1(Table) 
CUSTOMER EATS dyn157(Filet) 
CUSTOMER EATS dyn157(Filet) 
CUSTOMER EATS dyn157(Filet) 

 

WAITRESS: "can I get you a dessert" 
CUSTOMER: "no just the bill please" 
WAITRESS: "we have a great berry pie" 
CUSTOMER: "can I get the bill?" 
WAITRESS: "can I interest you in dessert? The cheesecake is great" 
WAITRESS: "The cheesecake is wonderful" 
CUSTOMER: "Ok I think I'll have cheesecake" 
WAITRESS: "cheesecake" 

 

dyn158(Cheesecake) APPEARS ON counter2(Counter) 
WAITRESS PICKSUP dyn158(Cheesecake) 
WAITRESS PUTSDOWN dyn158(Cheesecake) ON table1(Table) 
CUSTOMER EATS dyn158(Cheesecake) 

 

CUSTOMER: "check please" 
WAITRESS: "will that be all?" 
CUSTOMER: "yes" 

 

WAITRESS TOUCHES cash_register(Register) 
dyn159(Bill) APPEARS ON podium(Podium) 
WAITRESS PICKSUP dyn159(Bill) FROM podium(Podium) 
WAITRESS GIVES dyn159(Bill) TO CUSTOMER 
CUSTOMER LOOKSAT dyn159(Bill) 
CUSTOMER PAYS dyn159(Bill) 
CUSTOMER GIVES dyn159(Bill) TO WAITRESS 

 

WAITRESS: "Come back again" 
CUSTOMER: "THank you" 
WAITRESS: "you bet" 

 

CUSTOMER STANDSUP FROM chair1(Chair) 
 

CUSTOMER: "bye" 
 

WAITRESS PUTSDOWN dyn159(Bill) ON cash_register(Register) 
CUSTOMER EXITS RESTAURANT 

Figure 5-15: Transcript from interaction between human customer and waitress directed to upsell. 
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The interface for human interaction re-uses the previously described planner. When a human controls a 

player, there is still an associated agent running in the background on the AI server. This agent passively 

runs plan recognition, but does not perform action selection. When the human interacts in the game 

world, physical actions are broadcast as usual. Utterances, on the other hand, are flagged for further 

processing by the human's agent, and are ignored by the NPC's agent. Human utterances originate from 

the text output of the Windows speech recognizer, running with a language model generated from the 

TRG corpus. 

The human's agent is responsible for selecting a list of dialogue options from the corpus, semantically 

similar to the flagged human utterance. The agent begins by pruning non-key words from the utterance. 

Next, the agent retrieves a list of U-SETIDs from the U-LIB for all utterance sets that include an utterance 

containing the key words. The Plan Recognizer generates candidate sequences for all U-SETIDs that can 

be recognized as the next action. The agent then iterates over the candidates, applies each, and 

retrieves proposed plans from the ELI (which point to the U-SETIDs as the next action). Finally, the agent 

runs the critique process, but rather than stopping at the first approved proposal, the agent continues 

critiquing, collecting a list of all approved proposals. 

If this process fails to generate at least five proposals (possibly zero if speech recognition fails), the agent 

uses context to compensate for failure to understand. In this case, the agent falls back to action 

selection driven by interaction Goals, like an NPC, as described in the last section. All proposals from all 

Goals are collected that are not rejected by Critics. 

 

 

C: Can I get table for one?

W: Sure right this way

W: would you like a drink to start?

C: can I get some water please

W: ok

W: would you like more time or 

are you ready to order?

C: can I have a menu?

. . .
W: our specials tonight are salmon, 

a vegtable soup, and a nectarine tart

C: ill have grilled salmon

please

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “can I have a menu please?”

Speech Rec heard: “banana nine yep”

Dialogue Options:

• “can ican i have a cobb salad please”

• “yes nectarine tarts sound good for desert”

• “maybe I should just start with the soup”

• “can I have another water, please?”

• “can I have a menu?”

• “I'll have the lobster and cheesecake”

• “and with that some spaghetti”

• “May i please have the Filet please?”

• “I'll have the... uh seafood I mean, salmon”

• “may i get the soup of the day please”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Human said: “I’ll have grilled salmon”

Speech Rec heard: “of grilled salmon”

Dialogue Options:

• “may i get the grilled salmon of the day please”

• “yes the grilled salmon”

• “a grilled salmon please”

• “ill have grilled salmon please”

• “and with that some grilled salmon”

• “can have grilled salmon and soup”

• “Ill start with the grilled salmon”

• “beery pie beer and grilled salmon”

• “I think grilled salmon sounds lovely”

• “can i have some grilled salmon?”

Actual transcript excerpt and 

dialogue options from 

human customer with

waitress NPC.

Selected utterance in bold.

Actual transcript excerpt and 

dialogue options from 

human customer with

waitress NPC.

Selected utterance in bold.

 

Figure 5-16: Top 10 dialogue options found for player inputs. 

 

The agent now has a list of proposals for utterances deemed valid by the Plan Recognizer and Critics. 

Proposals are sorted to best match the human input, discussed further below. The top five utterances 

are sent to the game engine, for display to the player as dialogue options (Figure 5-16 shows the top 10). 

The human can repeatedly click SHOW ME MORE to retrieve the next five options, or CANCEL to abort if 
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none of the options are satisfactory. When the human selects a dialogue option for execution, the 

selected utterance is broadcast as an ordinary unflagged utterance, for processing by agents through 

ordinary channels. 

A number of factors complicate retrieval and sorting of dialogue options, making it a less straight 

forward process than one might expect. The system can only present the player with five dialogue 

options at a time (limited screen real estate), and ideally the options at the top of the list will be as close 

as possible to the human input, both in terms of surface form and meaning. The best-case scenario is 

when the words of the human input directly map to a U-SET, where retrieval is simply a process of 

collecting all utterance proposals with the specified U-SETID(s) deemed valid by all Critics, and sorting 

them to maximize overlap with the input. In this case, sub-optimal dialogue options can result from 

exceeding limits placed on search time for valid proposals. It is possible that the best matching utterance 

in the corpus will not be found within a reasonable time, leading to dialogue options that share the 

same meaning, but do not match the words quite as well. Bigger problems arise when speech 

recognition fails, and words are misrecognized or not recognized at all, leading the system to rely on 

retrieval by context. In these cases, rather than optimizing the sorting to best match human input, 

sorting is optimized to increase the likelihood that a desirable option will appear on the first page, or 

soon after. This is accomplished by interleaving proposals associated with different event types, so that 

each page of dialogue options offers a variety of utterances with different purposes. 

There are numerous tradeoffs to consider when selecting dialogue options, and further experimentation 

remains for future work. The current system displays multiple utterances of the same U-SETID, often 

producing redundant options. Addressing this issue is complicated by the fact that concepts are 

clustered when encoding utterances (see Section 5.2.1). For example, when retrieving proposals by 

context, it may be desirable to display multiple utterances for ordering food, if each utterance refers to 

different menu items. In addition, all words are currently weighted equally. It might improve sorting if 

words that are unique to an event or U-SETID are weighted more heavily. 
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5.5 Best Practices 

 

Data-driven planning is a non-traditional approach to automating NPCs, which requires rethinking both 

how games are authored, and how they are debugged. The experience of automating NPCs in TRG has 

led to some insights about how best to approach this development process in the future. Below are 

some suggestions for tools and features that future developers of similar systems might consider. 

Integrated Search Tools: Bugs in behavior and dialogue may result from problems in the domain 

knowledge code, or incorrect / inconsistent annotation of the data. When issues exist in the annotation, 

it is likely that the same issue exists in other game logs within the corpus. It is important to have tools in 

place to search for all instances of a tagging pattern (e.g. sequence of actions tagged as some type of 

event), generate human comprehendible reports, and are ideally integrated with the annotation tools to 

streamline applying corrections. Currently, searching the corpus for instances of tagging patterns 

requires hand-crafting scripts which generate reports of search results. A tool exists to convert plain 

text-based reports into HTML, with links from reported instances to the original data files containing the 

potential tagging errors. Design patterns have emerged for frequently required types of searches. 

Ideally, rather than writing scripts, a configurable tool would exist for different types of searches, 

integrated with other tools for viewing instances in the appropriate authoring tool for making tagging 

corrections. 

Pre-emptive Debugging: Some annotation errors may be identifiable without running the game at all 

due to statistical anomalies. It is possible to generate reports of action sequences that are likely 

mislabeled by comparing recurrence counts of sequences within different event labels. While this will 

generate some false positives, the cumulative debugging time saved is worthwhile. Again, the existing 

tool for pre-emotively searching for tagging errors requires writing hand-crafted scripts to search for 

different types of errors, and ideally could evolve into a configurable tool. 

Synthetic Data Generation: If the planning system can play all of the NPCs in the game, it is possible to 

generate game logs by running the system repeatedly without any human players. Hiring people online 

to inspect human-readable transcripts of these games is a means of scaling up the quality assurance 

process. There are some bugs that will never be exposed without human players, but fixing issues 

observed in NPC-NPC games first can maximize the debugging gains from human tests. The current 

system was debugged for several months with NPC-NPC interactions prior to paying human testers, 

eliminating many bugs before consuming valuable human cycles. 

Replay System: One of the features of a system driven by thousands of recorded game logs is that the 

same scenario can play out differently every time. This can make debugging an observed problem 

difficult. It is extremely helpful to have a system that can generate a script from game log, and replay 

the exact same sequence of decisions. It may also be useful to be able to begin a replay from any step in 

a previously recorded game. Currently a replay system does exist, which proved critical for debugging. 

However, the current replay system could be improved by enforcing not only the game logs used to 

generate actions, but also the game logs that the system uses to understand observations. The CAI 

system ties all observations to a portion of a game log in the corpus, and the same sequence of 

observations may be interpreted differently depending on which log is bound to a sequence of 

observations. Forcing an NPC to understand observations using particular logs will better guarantee that 

the game plays out the same every time.  
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6 Evaluation 
 

A two-part evaluation was designed to answer the questions: 1) Does the system robustly support open-

ended interaction, and 2) Do players notice the increased freedom, and does it enhance their gameplay 

experiences? The first question is addressed through a quantitative evaluation, while the second is 

explored qualitatively via a focus group. 

 

6.1 Quantitative Evaluation 

 

The quantitative evaluation measures how well the system responds to the player, given an extremely 

challenging problem -- open-ended interaction with speech input. Speech adds additional complications 

to the already difficult problem of natural language understanding (NLU). Not only does the system need 

to be able to put utterances into the correct context, and handle out-of-vocabulary words, but it must 

also compensate for the uncertainty of speech recognition, where words may be misrecognized (faulty 

information), or the speech recognizer may fail to recognize any words at all (no information). 

 

6.1.1 Experimental Setup 

 

Evaluation data was collected from 20 people (with no previous exposure to TRG) playing as a customer, 

using speech to interact with an NPC waitress. The waitress behavior, and customer dialogue options 

were driven by 1,000 recorded games. These games were randomly selected from the corpus, and 

annotated through the process described in Chapter 5. Subjects were divided into four groups of five, 

each playing under one of four conditions for populating the list of dialogue options: 
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(1) Text+Context: 

Text+Context refers to the system described in Section 5.4, which selects U-SETIDs based on key 

words from typed input, and falls back to interaction Goals to compensate for failure to find 

valid proposals. Text+Context simulates perfect speech recognition, and provides an upper-

bound on how well this system works if speech recognition never fails at recognizing words 

(because the typed words are directly observable). 

(2) Speech+Context: 

Speech+Context works the same way as Text+Context, using the words returned by the speech 

recognizer as input. 

(3) Speech-Only: 

Speech-Only presents a sorted list of all utterances in the corpus that match any of the words in 

the speech input, without using the Plan Recognizer or Critics for filtering. 

(4) Context-Only: 

Context-Only completely ignores human input, and only relies on the inferred event hierarchy 

and interaction Goals to select the list of relevant utterances. 

 

Each subject played through one entire game as a customer, interacting with an NPC waitress. Subjects 

were given a brief tutorial of the game controls, and then were simply told to go have dinner. The game 

begins when the customer walks through the door of the restaurant, and ends when the customer exits. 

In between, interaction is open-ended, as the customer gets seated, consumes a meal (with a variable 

number of dishes and drinks), and pays a bill. Each session took about 10-15 minutes.  

Every time the customer spoke to the waitress (via typed text or speech, depending on condition), the 

subject was presented with a list of dialogue options, populated according to condition as described 

above. The subject was shown five dialogue options, and asked to select the option that best matches 

the meaning of what s/he was actually trying to say. If none of the options were satisfactory, the subject 

could repeatedly click SHOW ME MORE to see the next five options, cycling back to the start of the list if 

the subject reached the end of the list.  

The total number of options per input varied depending on condition and input. If the subject failed to 

find any satisfactory dialogue option, s/he could choose to click CANCEL to abort the interaction, and 

either try the input again, do something else, or wait for the NPC to do something. For each input, the 

subject was asked to mark the first 10 dialogue options, to indicate relevant options, which the subject 

felt had same meaning as what s/he was actually trying to say. In the Speech-Only condition, when the 

speech recognizer failed completely, the subject was given only a failure message, and CANCEL, due to 

lack of any other means to select dialogue options, given no input words. In the other conditions, the 

system could fall back to selecting options by context when speech recognition failed. 
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A variety of different kinds of data was generated from transcripts of these gameplay sessions: 

Selection Rank: 

For each input in which the subject was able to find a satisfactory dialogue option, the system 

recorded the selection rank of the option actually selected. The dialogue option at the top of the 

list is rank 1, the next option is rank 2, and so on. Thus, lower rank is better, indicating that the 

subject was able to find the desired option sooner. Dividing the rank by five determines how 

many pages the subject needed to click through before finding the desired option. The selection 

rank is undefined for inputs where the subject clicked CANCEL. 

Selection Rank Likelihood: 

Separately for each condition, based on the cumulative selection ranks across all inputs for all 

subjects, the likelihood that a selected dialogue option will be of rank N or higher was computed 

for N between 1 and 25. 

Input Option Count: 

For each gameplay session, the input option count indicates the total number of typed text or 

speech inputs made by the subject. 

Relevant Option Count: 

For each gameplay session, the relevant option count indicates the total number of options the 

subject marked as relevant, out of the top 10 options per input. 

Plan Recognition Failure Count: 

For each gameplay session, the plan recognition failure count indicates the number of times the 

subject selected a dialogue option, and the NPC could not understand the utterance. This can 

only occur in the Speech-Only condition, because the other conditions filter out options deemed 

contextually irrelevant by the system. 

Speech Recognition Failure Count: 

For each gameplay session, the speech recognition failure count indicates the number of times 

the speech recognizer failed completed, and no words were recognized from the input. Speech 

recognition failure is external to the implemented CAI system (and is a failure of the off-the-

shelf speech recognizer), but is measured to show that the number of recognition failures is 

comparable in both speech conditions, ruling out a possible confound in the results. 

 

6.1.2 Results 

 

The number of speech inputs varies per game. The evaluation looks at the first 10 inputs in each game, 

50 total per condition, for a fair comparison. The following four tables present the raw data associated 

with the 50 inputs for each condition. The Text+Context and Context-Only conditions did not employ 

speech recognition, thus the ASR Recognized column specifies "N/A." For inputs where the subject 

clicked CANCEL to abort, the "Selection Rank" is specified as "--". 
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Input Index Selection Rank ASR Recognized Num. Options Num. Relevant 

1 3 N/A 10 10 

2 1 N/A 10 10 

3 7 N/A 10 6 

4 -- N/A 10 10 

5 3 N/A 10 10 

6 1 N/A 10 7 

7 2 N/A 10 2 

8 -- N/A 10 0 

9 1 N/A 10 9 

10 1 N/A 10 10 

11 -- N/A 10 0 

12 4 N/A 10 7 

13 18 N/A 10 3 

14 1 N/A 10 8 

15 1 N/A 10 3 

16 -- N/A 10 0 

17 8 N/A 10 10 

18 2 N/A 10 7 

19 1 N/A 10 1 

20 1 N/A 10 10 

21 1 N/A 10 7 

22 1 N/A 10 7 

23 1 N/A 10 1 

24 2 N/A 10 7 

25 1 N/A 10 1 

26 1 N/A 10 9 

27 2 N/A 10 9 

28 1 N/A 10 8 

29 4 N/A 10 5 

30 1 N/A 10 1 

31 1 N/A 10 1 

32 1 N/A 10 3 

33 2 N/A 10 0 

34 3 N/A 10 9 

35 8 N/A 10 0 

36 9 N/A 10 3 

37 1 N/A 10 6 

38 3 N/A 10 8 

39 1 N/A 10 10 

40 1 N/A 10 1 

41 1 N/A 10 10 

42 3 N/A 10 10 

43 1 N/A 10 9 

44 1 N/A 10 10 

45 -- N/A 10 1 

46 1 N/A 10 7 

47 3 N/A 10 10 

48 3 N/A 10 9 

49 1 N/A 10 8 

50 2 N/A 6 6 

Table 6-1: Raw data for the Text + Context condition. 
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Input Index Selection Rank ASR Recognized Num. Options Num. Relevant 

1 4 FALSE 10 1 

2 1 TRUE 10 10 

3 1 FALSE 10 3 

4 1 TRUE 10 10 

5 1 TRUE 10 9 

6 7 FALSE 10 4 

7 19 FALSE 10 0 

8 13 FALSE 10 0 

9 2 TRUE 10 6 

10 1 TRUE 10 5 

11 1 FALSE 10 3 

12 1 TRUE 10 8 

13 -- TRUE 10 0 

14 -- FALSE 10 0 

15 -- TRUE 10 0 

16 1 TRUE 10 3 

17 6 TRUE 10 3 

18 23 FALSE 10 1 

19 1 TRUE 10 4 

20 -- FALSE 10 0 

21 7 TRUE 10 3 

22 4 FALSE 10 1 

23 6 TRUE 10 3 

24 1 TRUE 10 5 

25 4 FALSE 10 1 

26 1 TRUE 10 9 

27 1 TRUE 10 8 

28 1 TRUE 10 5 

29 -- FALSE 10 0 

30 -- FALSE 10 0 

31 2 TRUE 10 7 

32 57 TRUE 10 5 

33 1 TRUE 10 2 

34 1 TRUE 10 4 

35 1 TRUE 10 5 

36 13 FALSE 10 1 

37 2 TRUE 10 2 

38 3 FALSE 10 2 

39 3 TRUE 10 6 

40 1 TRUE 10 9 

41 1 FALSE 10 2 

42 3 FALSE 10 2 

43 1 TRUE 10 10 

44 2 TRUE 10 4 

45 4 TRUE 10 7 

46 5 TRUE 10 6 

47 4 TRUE 10 8 

48 2 TRUE 10 6 

49 1 TRUE 10 10 

50 8 FALSE 10 2 

Table 6-2: Raw data for the Speech + Context condition. 
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Input Index Selection Rank ASR Recognized Num. Options Num. Relevant 

1 1 TRUE 8 6 

2 1 TRUE 7 5 

3 -- FALSE 0 0 

4 -- FALSE 0 0 

5 -- FALSE 0 0 

6 -- FALSE 0 0 

7 -- FALSE 0 0 

8 1 TRUE 10 5 

9 1 TRUE 10 6 

10 1 TRUE 10 4 

11 1 TRUE 7 5 

12 -- FALSE 0 0 

13 -- TRUE 10 2 

14 1 TRUE 7 6 

15 1 TRUE 10 8 

16 1 TRUE 10 6 

17 -- FALSE 0 0 

18 1 TRUE 10 2 

19 1 TRUE 10 6 

20 1 TRUE 10 2 

21 -- FALSE 0 0 

22 1 TRUE 5 5 

23 -- FALSE 0 0 

24 -- FALSE 0 0 

25 -- TRUE 10 1 

26 -- FALSE 0 0 

27 33 TRUE 10 1 

28 -- FALSE 0 0 

29 1 TRUE 10 3 

30 -- FALSE 0 0 

31 2 TRUE 6 4 

32 1 TRUE 7 6 

33 1 TRUE 1 1 

34 5 TRUE 10 8 

35 2 TRUE 10 7 

36 3 TRUE 10 7 

37 1 TRUE 10 7 

38 2 TRUE 10 7 

39 1 TRUE 3 2 

40 1 TRUE 10 7 

41 1 TRUE 10 6 

42 1 TRUE 5 5 

43 -- TRUE 10 0 

44 1 TRUE 10 2 

45 -- TRUE 10 0 

46 -- TRUE 10 0 

47 6 TRUE 10 3 

48 -- TRUE 10 0 

49 -- FALSE 0 0 

50 4 TRUE 10 7 

Table 6-3: Raw data for the Speech-Only condition.  



 

133 

 

 

Input Index Selection Rank ASR Recognized Num. Options Num. Relevant 

1 1 N/A 10 3 

2 4 N/A 10 2 

3 1 N/A 10 1 

4 -- N/A 10 0 

5 -- N/A 10 0 

6 34 N/A 10 0 

7 25 N/A 10 0 

8 23 N/A 10 0 

9 4 N/A 10 1 

10 14 N/A 10 2 

11 1 N/A 10 2 

12 -- N/A 10 0 

13 -- N/A 10 1 

14 25 N/A 10 0 

15 65 N/A 10 0 

16 -- N/A 8 0 

17 24 N/A 10 1 

18 8 N/A 0 0 

19 -- N/A 10 0 

20 12 N/A 10 0 

21 8 N/A 10 3 

22 1 N/A 10 2 

23 1 N/A 8 2 

24 1 N/A 10 4 

25 -- N/A 10 0 

26 3 N/A 10 3 

27 33 N/A 10 0 

28 -- N/A 10 0 

29 5 N/A 10 1 

30 2 N/A 10 2 

31 1 N/A 10 2 

32 3 N/A 10 2 

33 20 N/A 10 0 

34 8 N/A 10 1 

35 111 N/A 10 0 

36 74 N/A 10 0 

37 -- N/A 10 0 

38 50 N/A 10 0 

39 -- N/A 10 0 

40 -- N/A 10 0 

41 1 N/A 10 2 

42 -- N/A 10 0 

43 24 N/A 10 0 

44 4 N/A 10 3 

45 -- N/A 10 0 

46 -- N/A 10 0 

47 -- N/A 10 0 

48 -- N/A 10 0 

49 -- N/A 10 0 

50 3 N/A 7 1 

Table 6-4: Raw data for the Context-Only condition. 
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The following two tables present statistics comparing the mean rank from each condition. Note that the 

sample size indicates the number of inputs (out of 50) in which a subject selected a dialogue option, 

rather than clicking CANCEL. The t-statistics in Table 6-6 show (in bold) that the mean rank of all 

conditions are statistically significant when compared to the mean rank from Context-Only, at the p = 

0.05 level. The difference in mean rank between other conditions is not statistically significant. 

 

 Text + Context Speech + Context Speech-Only Context-Only 

Mean Rank 2.58 5.07 2.63 18.00 

Sample Size 45 44 30 33 

Standard Deviation 3.12 9.34 5.88 25.03 

Table 6-5: Mean selection rank and standard deviation for each condition. 

 

 

 Speech + Context Speech-Only Context-Only 

Text + Context 1.69 0.05 4.10 

Speech + Context  1.27 3.15 

Speech-Only   3.28 

Table 6-6: t-statistics for independent groups t-test between mean ranks. 

 

The following two tables present statistics comparing the percentage of relevant options generated for 

each condition. Note that the total number of options can fall below 500 (10 per 50 inputs), when the 

system fails to generate at least 10 options for some inputs. For example, in the Speech-Only condition, 

when speech recognition fails, there are no options provided for the input. The t-statistics in Table 6-8 

show (in bold) that the difference between percentages for all conditions are statistically significant 

when compared to each other, at the p = 0.05 level. 

 

 Text + Context Speech + Context Speech-Only Context-Only 

Total Num. Options 496 500 316 483 

Num. Relevant Options 299 205 152 41 

% Relevant Options 60.2 41.0 48.1 8.5 

Table 6-7: Percentage of options flagged as relevant for each condition. 

 

 Speech + Context Speech-Only Context-Only 

Text + Context 6.06 3.38 16.99 

Speech + Context  1.99 11.76 

Speech-Only   12.79 

Table 6-8: t-statistics for two sample t-test between percentages of relevant options. 
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The following two tables present statistics comparing the percentage of successful interactions 

generated for each condition. Note that all conditions include 50 interactions. A successful interaction is 

an interaction where the subject chooses a dialogue option, rather than clicking CANCEL. The t-statistics 

in bold in Table 6-10 indicate statistically significant difference between percentages, at the p = 0.05 

level. 

 

 Text + Context Speech + Context Speech-Only Context-Only 

Total Num. Interactions 50 50 50 50 

Num. Successful Interactions 45 44 30 33 

% Successful Interactions 90.0 88.0 60.0 66.0 

Table 6-9: Percentage of successful interactions for each condition. 

 

 

 Speech + Context Speech-Only Context-Only 

Text + Context 0.32 3.46 2.90 

Speech + Context  3.19 2.64 

Speech-Only   0.62 

Table 6-10: t-statistics for two sample t-test between percentages of successful interactions. 

 

6.1.3 Discussion 

 

The results demonstrate that the complete system (Text+Context and Speech+Context) is successful at 

using context to compensate for language understanding failures (due to failed speech recognition, or 

sparse coverage of possible inputs). A system that can effectively combine understood words with 

context can better support open-ended interaction, where a player to uses language as action. 

Quantitatively, the player can do what s/he wants to do more often. Figure 6-1 compares percentages of 

successful interactions visually, where subjects were able to find satisfactory dialogue options. The 

success of the system at supporting player choice is a direct result of crowdsourced imagination. The 

crowd has provided ample coverage of possible inputs (Section 6.1.4 shows that only six words in the 

Text+Context condition were not in the corpus, and most of these six are misspellings), and where 

words or phrases were not recognized, contextual understanding from annotated game logs led to 

suggesting options that subjects found satisfactory up (90% of the time for Text+Context, and 88% for 

Speech+Context). While a side-by-side comparison with a hand-crafted system would require 

reimplementing TRG without CAI, one can speculate that far fewer inputs would have been covered, and 

the system would have much more limited means of providing contextually relevant alternatives, if any.  
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Figure 6-1: Comparison of percentages of successful interactions between conditions. 

 

Table 6-11 presents a summarized view of the results, comparing various measures of system 

performance across conditions. For the speech conditions, this table reports that Speech-Only yields the 

highest percentage of relevant options (total for 50 inputs), and the lowest mean rank of the selected 

option (though the difference between means with Speech+Context is not statistically significant). In 

fact, Speech-Only achieves almost the same mean selection rank as Text+Context. However, looking 

only at these metrics is misleading, and does not tell the whole story.  

 

When the speech recognizer fails completely, Speech-Only has no other means of selecting dialogue 

options, giving the subject only a failure message, and CANCEL. In the Speech+Context condition, 

subjects have 28% more successful interactions than with Speech-Only. Subjects were able to find a 

satisfactory dialogue option 88% of the time with Speech+Context versus only 60% of the time with 

Speech-Only. Looking at the converse, subjects aborted the interaction due to dissatisfaction with 

dialogue options 28% more often with Speech-Only versus Speech+Context, despite similar numbers of 

speech recognition failures. Also, there were two instances where Speech-Only allowed the subject to 

select an utterance that the Plan Recognizer could not understand in the current context (due to sparse 

data). Two times out of 50 is not a lot, but consider that this is an issue that never occurs in the other 

conditions where options are filtered by Critics. Speech+Context performs considerably better than 

Context-Only, validating that the words are important in this scenario, but context can compensate for 

failure to understand words. Text+Context performs best on all measures, demonstrating the potential 

for improvement as the quality of speech recognition improves. 
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 Text+Context Speech+Context Speech-Only Context-Only 

mean selection rank 2.58 5.07 2.63 18.00 
% of opts flagged relevant 60.2 41.0 48.1 8.5 

     

% of successful interactions 90.0 88.0 60.0 66.0 

# of plan rec. failures 0 0 2 0 

# of speech rec. failures  N/A 18 14 N/A 

Table 6-11: Comparing four methods for populating dialogue options. 

 

For any speech input, Figure 6-1 plots the likelihood that the subject’s selected option will be rank N or 

less. Of the speech conditions, Speech-Only delivers the highest likelihood of providing the desired 

selection at rank 1, and plateaus after rank 5. If the spoken words are recognized correctly, and a similar 

utterance exists in the corpus, Speech-Only is most likely to provide a desirable option at the top of the 

list. For each method, the remaining likelihood in the space above the plateau represents the likelihood 

of aborting by clicking CANCEL. Speech-Only plateaus at 0.6 because this condition only has a 60% 

chance overall of providing a satisfactory dialogue option. Thus, no matter how many options the 

subject looks through beyond the first 5, there is always a 40% likelihood of clicking CANCEL. The 

conditions leveraging context have a higher likelihood of providing a desirable option, though possibly 

later in the list, rather than no satisfactory options at all, leading to fewer aborted interactions. 

Text+Context performs best overall, providing an upper-bound on selection rank, as it relates to speech 

recognition quality. Context-Only serves as a baseline, illustrating that recognizing words plays an 

important role in generating high-quality dialogue options. 
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Figure 6-2: Likelihood of selecting dialogue option rank N or less. 
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6.1.4 Other Metrics 

 

The results above show that, in the context-only condition, users aborted 34% of the time, out of 

dissatisfaction with the available dialogue options. This means that 66% of the time (two thirds), based 

on context alone, the system was able to provide an acceptable choice, though its rank may been 

further down in the list forcing the user to click through several pages of options. The ability of the 

system to suggest appropriate options based on context alone is only impressive if the number of 

possible alternative dialogue options is vast. Perplexity is a metric from the field of natural language 

processing for measuring the effective branching factor of a model based on entropy. Based on a 

trigram model learned from the 1,000 transcript training set (compiled into ACTIDs and U-SETIDs) 

driving interaction in this evaluation, the perplexity is computed to be 41.35. Essentially, it is as if each 

time the system selects the next action, it is selecting from about 41 possibilities, all equally likely. For 

comparison, a trigram model trained on 38 million words from the Wall Street Journal was found to 

have a perplexity of 109. 

Figure 6-3, below, illustrates the effect of corpus size on coverage of recognized words and utterances. 

The graph was generated by extracting all utterances from the five Text+Context games, and counting 

how many of the words and utterances have an exact match (case- and punctuation-insensitive) in a 

corpus of size 1 ... 10,027. About 90% of the words are recognized within the first 500 games. The rate of 

recognition after that point is significantly slower, and reaches about 96% coverage by the time the 

entire corpus of 10,027 game logs has been processed. The six unrecognized words are mostly 

misspellings, with one colloquialism:  blooowwwwwwssss, bullocks, dellicious, wadday, 

yodelehehoooooo, and zzzzzzzzz.  
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Figure 6-3: Percentage of words and utterances recognized, with increase in logs processed. 
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Utterances are recognized at a more gradual rate, and hit a plateau of about 48% coverage after 

processing 7,230 game logs. Table 6-12 contains the 43 utterances never observed in 10,027 game logs. 

Some of these utterances contain out of vocabulary words, but many are composed of recognized words 

in unfamiliar sequences. Some of the utterances are surprisingly ordinary (e.g. "I'd like a glass of the 

house red"), but just did not happen to come up in exactly the same form in the 10,027 recorded game 

logs. Note that the implemented system does have two mechanisms in place to recognize close, but not 

exact, matches (described in Chapter 5) -- clustering concepts, and retrieving U-SETs by keywords found 

within. Thus many of these utterances will be interpreted correctly. In many cases, the corpus does 

contain something nearly identical, for example, "sure, I'd like a glass of the house red wine." This 

exploration of utterance coverage is presented simply to highlight one of the challenges of 

understanding open-ended natural language input, and to quantify the effect of corpus size. 

 

beer and the lobster 

bring me berry pie 

bullocks 

can i get some mutton pie now 

can i have another glass of beer 

can i have some pepper 

check please this place blows 

decaf coffee please 

dellicious 

do you have any beer 

do you have decaf 

get me a seat first 

hey buddy your food sucks 

hi honey 

how about red wine 

how about the spaghetti 

i already had dessert 

i would like a soup please 

id like a glass of the house red 

id like a glass of wine 

ill have the check now please 

ill have the pie a la mode 

ill start with a salad please 

its very tasty 

manhattan shaken not stirred 

may i have the nectarine tart please 

maybe ill have a drink at the bar 

really what does that taste like 

so bitch 

tell the chef the steak sucks 

the chef is bad 

the chef needs work 

the salmon was excellent 

there was a hair in my steak 

this food is terrible 

this looks like white wine 

this restruant blooowwwwwwssss 

wadday mean enough 

what is your favorite dessert 

what kind ao special 

what main course would you recommend 

yodelehehoooooo 

zzzzzzzzz 

Table 6-12: Utterances in five human-NPC games, never observed in 10,027 recorded games. 

 

6.1.5 Comparison to N-Gram Models 

 

Chapter 4 describes some of the drawbacks of automating NPCs with n-gram models (e.g. non-sequiturs 

and cycles). This section gives a concrete side-by-side comparison between a system driven by n-grams, 

and the system driven by human annotation (the system presented in Chapter 5 and evaluated in this 
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chapter), in terms of dynamically generating dialogue options. For the Text+Context and 

Speech+Context games evaluated in Section 6.1.2, Table 6-13 details how often the player's selected 

dialogue option was ranked in the top 5 or 10 percent by the annotation-driven system. These results 

are compared to percentages of how often the selected dialogue option would have been in the top 5 or 

10, when dialogue options are generated with a trigram model trained on the 1,000 annotated game 

logs.  

 

The trigram model is learned from logs that have been compiled into sequences of ACTIDs and U-SETIDs, 

seamlessly interleaving physical and linguistic actions. For each natural language input, the trigram 

model populates the list of dialogue options with the 10 highest probability U-SETIDs, based on the two 

most recent observations, and computes the rank of the U-SETID of the utterance actually selected. The 

results show that the trigram model dramatically underperforms, due to its reliance on only low-level 

patterns in recent observation history. In many cases (77% of Text+Context, and 70% of 

Speech+Context), the trigram model did not predict any utterance at all at the moment of player input, 

thus was unable to provide any dialogue options. This is a problem of sparse data, when only trained on 

1,000 games, but the system driven by human-vetted annotations does not suffer from this problem 

when running from the same corpus. Training the trigram model on more data was not possible for this 

test, because compiling logs into ACTIDs and U-SETIDs relies on annotated logs, for human clustering of 

utterances. It is notable that there were a few cases (1 for Text+Context, and 3 for Speech+Context) 

where the trigram model proposed correct utterances where the annotation-driven system failed, 

indicated by the player aborting the interaction. 

 

Text+Context Annotation-Driven Trigram-Driven 

% in Top 5 71.3 5.3 

% in Top 10 77.7 5.3 

   

Speech+Context Annotation-Driven Trigram-Driven 

% in Top 5 60.2 8.0 

% in Top 10 68.2 8.0 

Table 6-13: Comparison of dialogue option quality from annotation- and n-gram-driven systems. 

 

6.2 Qualitative Evaluation 

 

The previously described study demonstrates that the system is successful in supporting open-ended 

interaction driven by natural-language input, for a customer in a typical dining interaction, but has no 

means of measuring the impact this open-endedness has on the player's experience. The purpose of the 

qualitative study is to explore whether players notice that The Restaurant Game (TRG) is more open-

ended than other games, whether they feel their natural language input has effect on the narrative, and 

to what degree this open-endedness enhances their experience. This section reports observations 

captured from focus groups in which The Restaurant Game is compared side-by-side with two other 

games: Façade, an experimental interactive drama from 2005; and Skyrim (Bethesda 2011), a AAA 

commercial role-playing game (RPG) from 2012.  
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This section describes the experimental setup, presents results, and concludes with some discussion of 

what this qualitative study revealed. Prior to the results, visualizations of gameplay in TRG and Façade 

are provided, to characterize interactivity in these games. Results are grouped into transcribed salient 

observations about different aspects of the experience, with some surrounding commentary. The 

discussion highlights successes of the system, priorities for future work, and some surprising 

observations. 

 

6.2.1 Experimental Setup 

 

Three focus groups were conducted, with six participants each. Participants were recruited via an email 

to the university EECS mailing list, and screened to ensure they had some prior game playing experience.  

None of the participants had played Façade or TRG previously. Each group had at least two people who 

played Skyrim. The groups of six were divided into two groups of three, where each member of the 

group played each game once for ten minutes, while the others observed. In total, 18 recordings were 

captured of each game. Note that Façade and TRG only take 10-15 minutes to complete, while Skyrim 

can take 30 hours, or much more. For the purposes of this study, focused on NPC interactions, players 

loaded a previously saved game placing them into a tavern in Skyrim, in which they could interact with 

NPCs for 10 minutes. While this short interaction does not give players the full gameplay experience 

with Skyrim, it is enough to remind participants of the current state-of-the-art for typical NPC interaction 

in commercial games. 

TRG is positioned side-by-side with two complete, polished games -- the experimental game Façade, and 

the recent blockbuster AAA RPG Skyrim. Despite the word "game" in the title, TRG is not really a game at 

all, but rather a simulation of everyday restaurant behavior, without any goals for the player aside from 

having a virtual meal. TRG is really a demo of how data-driven technology could be incorporated into a 

full-fledged game in the future. The purpose of this study is compare different approaches to interacting 

socially with characters, in order to evaluate whether players notice that TRG allows more open-ended 

NPC interaction, and if so, whether this contributes to a more engaging experience. Everyone plays each 

game for 10 minutes, which means players are getting a severely limited experience with Skyrim, an 

epic-scale game that can take 50 hours or more to complete. Locking players in a tavern focuses 

observations on the NPC interactions, rather than combat or exploration, putting the experience on 

more equal footing with the short one-room experiences in Façade and TRG. 

 

6.2.2 Visualizing Interactivity in The Restaurant Game and Façade 

 

Façade was chosen as one of the games for comparison in the qualitative study due to its similarities to 

TRG in terms of face-to-face social interaction in an everyday setting, with a similar interface for 

unrestricted typed-text dialogue input. As discussed in Chapter 2, Façade has a different emphasis than 

TRG. Façade prioritizes delivering a dramatic experience, while TRG prioritizes supporting an open-

ended player-directed experience, where language can be used effectively as action. The qualitative 

study is intended to explore whether players notice and appreciate the open-endedness of TRG. 

Because some readers may not have played Façade, and most readers will not have played TRG, this 

section uses data from the qualitative study to visualize how the gameplay experience differs in these 

two projects. 
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Figure 6-4 plots all of the action sequences observed in 18 play throughs of TRG (on left) and Façade (on 

right). Existing infrastructure was used to plot the graph of TRG. The methodology for graphing Façade 

was the following: First, each gameplay session was transcribed by a human. Next, functionally similar 

utterances were clustered, similar to the approach for TRG described in Chapter 5. Finally, all 18 

transcripts were plotted on the same graph. As a post processing step for the graphs of both TRG and 

Façade, linear action sequences within the graphs in which there are no branches coming in or out were 

collapsed into a single node. This step focuses the visualization on decision points, to illustrate how the 

branching patterns of the two games differ. In both graphs, physical and dialogue actions are 

represented uniformly interleaved, and sequences are capped at 25 actions, to facilitate visualization. 

At a minimum, one can recognize that the structure of these graphs looks visually different. The graph of 

TRG contains about 40% more edges (230 edges vs. 136 for Façade), and appears more chaotic than 

Façade. The graph of Façade could be described as a more neatly structured cascade of visible beats. 

Table 6-14 compares the lengths of games, and number of unique actions observed. 

 

 The Restaurant Game Façade 

Min. Game Length 63 14 

Max. Game Length 147 138 

Mean Game Length 108 95 

   

# unique actions observed 633 590 

Table 6-14: Comparison of game lengths and variety of actions observed. 

         

    
Figure 6-4: Branch points observed in 18 games of The Restaurant Game (left) and Façade (right). 
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The structure of the above graphs highlights the difference in variability per play through. What is not 

evident from these graphs is the percentage of actions taken by the player, versus taken by NPCs, and 

the rate of growth of the action lexicon. Figure 6-5 plots the total number of unique actions observed 

after playing N games (1 to 18). The graph on the left plots the count of unique action bigrams (two 

actions in sequence). The graph on the right plots a total count of unique actions taken by the player. 

The variety of unique action sequences begins to plateau after 18 games of Façade, while it continues to 

increase in TRG, and the variety of player actions grows at a much slower rate in Façade. Figure 6-6 

illustrates the percentage of all actions taken by the player versus the NPCs, across all play throughs. In 

TRG, almost half of the actions are taken by the player, where they account for only 14% in Façade. 
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Figure 6-5: Number of unique observations after N games: action pairs (left), player actions (right). 
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Figure 6-6: Percentage of player actions, compared to NPC actions. 
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6.2.3 Observations About Engagement and Replay Value 

 

Whether a game is designed to entertain or educate, ultimately it can succeed at neither unless it 

engages the player. A game that continues to engage over repeated interactions maximizes its potential 

to entertain or educate. Observations from the play sessions reveal that there are numerous factors that 

impact engagement and replay value, including goals, challenge, variety of experiences and outcomes, 

depth of character and story, and how active or passive the interaction is. Some of these factors can be 

highly subjective.  Below are various focus group observations identifying these factors (prefixed with 

the focus group ID: G1, G2, or G3). 

Façade engaged players by confronting them with the goal of saving Grace and Tripp's relationship -- a 

goal that seems difficult, yet not impossible, to achieve. 

(G1) [Façade] feels like it has the most replayability, because I want to see it work. 

(G2) [Façade] was a real interesting game, it like really pulled me in, I wanted to make it work. 

The fact that Grace and Tripp move the narrative forward, sometimes faster than the player can 

respond, adds to the challenge of mediating Grace and Tripp's argument. Some players found this 

frustrating, while others noted that the challenging timing added replayability. 

(G3) It was very difficult to carry out the objective that I wanted to because of the response 

windows, like you know I would want to respond to something that was just said, but by the time 

I typed it out and hit enter, they think you know they've already said something else, and then 

they're like yelling at me because I said the wrong thing. 

(G3) [Façade] is very replayable because it's time-based, and because you don't know how the 

thing is going to parse it, you don't know if you're about to get kicked out, you don't know if 

they're just going to you know kiss and make up, I feel like it's harder to see how you're directing 

the events, so I think because of that it's harder to narrow down possibilities, therefore it will be 

more replayable. 

Other players felt like there were a finite number of end conditions to Façade, and they simply wanted 

them enumerated rather than experiencing it. 

(G3) I don't want to keep playing it, but I think it would take a while to figure out all the endings. 

I'll probably go online just to find out what happens, read the wikipedia page, and see if it has like 

the answer, or like possible paths. 

In contrast, the open-endedness of TRG encouraged replay for exploration, while the prescripted nature 

of Skyrim's NPC interactions eliminates replay value. 

(G1) The thing with Skyrim is that since you're only given a small number of dialogue options you 

can't really influence the direction of the world.  

(G3) I played Skyrim second, and all the interactions had already been had, there was like no 

freedom, like I only watched one person play before me, and I did the exact same thing basically 
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(G3) I think the most fun to replay would be the waitress just because so much of the game was 

dictated by things my typing would prompt, it seemed the most open-ended game, well sort of, 

had many paths to explore, which was kind of fun, and then the Façade seemed like no matter 

what you did you either got kicked out or yelled at, but that's still more entertaining than having 

the same dialogue over and over. if I was playing Skyrim again I would probably just get the 

sword and see how many people I can kill. 

For some players, open-endedness is not enough to create engagement without more challenging and 

explicit goals, or a supporting story. The basic goals involved in dining at a restaurant are taken for 

granted, so familiar that they are perceived as easy to achieve. Whereas Façade felt like decisions within 

the game might have consequences in a larger overarching narrative. 

(G3) I think that out of all the three games, The Restaurant Game would be the game that I just 

wouldn't play again, because I mean when you read the initial screen the goal was to get dinner 

at the restaurant, but it's very easy to get dinner at the restaurant, you know if depending on 

what you say she either didn't serve you dinner or called the police or whatever it would be 

different but you know. 

(G3) It's like life. Like you walk in you don't really have an objective and like it's not particularly 

hard to go to a restaurant so it kind of reminded me of actually going to a restaurant. 

(G2) There's not much of a history and a world trace to like work off of, so you're just kind of 

telling yourself ok this is a restaurant, and what I do here doesn't matter anywhere else, whereas 

in Façade you have some kind of backstory right? Like you were friends with this person and they 

want to reconnect, and if this goes badly what will I do, how will their marriage end up? 

(G2) I invested more in [Façade] because I was worried about how it would turn out. 

The combination of the deeper back story with the time-based nature of Façade created palpable 

tension for players. Some players described it as movie-like, and were content to sit back and watch the 

narrative unfold for minutes at a time. 

(G2) [Façade] just keeps going, there's like no way to stop it. No matter what you do, they just 

end up arguing more. There was a lot more tension in that game than the other ones 

(G1) Façade would move forward without you doing anything, and so I feel like that one had 

almost like a movie sense to it, where you could interact with it if you wanted, but you could also 

sit back for minutes at a time and just listen to what they were saying. 

It was interesting to observe that players sometime assume that all narrative variations are a 

consequence of the player's actions. 

(G2) In Façade I think [my actions] did matter. For example I played last and both of them had, 

when they were playing Tripp was playing with the magic 8 ball, but when I played he didn't even 

touch it, he didn't talk about it at all. 
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6.2.4 Observations About Variety and Coherence 

 

Players commented that Façade and TRG varied content to play out differently each time, while Skyrim 

played the same each time. 

(G2) With Façade you can always get new things. 

(G3) [The waitress's] reactions didn't seem deterministic either, because sometimes even the way 

she would greet you when you entered like, it's not like you did anything different but she'd say 

something different. ... There would probably be a lot of like hidden gems that even if you did the 

same thing every single time you'd probably get different reactions. 

(G2) [In Skyrim] you can talk to that same character again, and you'd have the same exact 

options and the same conversations. 

However, some players expressed that the variations in TRG sometimes felt incoherent. 

(G1) like we talked to the waitress and asked her name several times and she gave a different 

answer each time. 

(G3) You know in the waitress thing I asked her before stealing the cash register do you want to 

go out with me, I got a cold shoulder, I stole the cash register, ran out the door and then said do 

you want to go out with me and she's like, "What time?" 

These observations are side-effects of generating NPC dialogue by replaying fragments of games 

recorded from thousands of different people. The waitress's inconsistent name could be corrected by 

adding names to the ontology as concepts, so that the system can track them, and a Critic could prevent 

her from using the wrong name once her name has been established. The attitude Critic described in 

Section 5.3.4 could enforce a consistent personality over time (e.g. aloof vs. outgoing, or flirtatious). This 

Critic was implemented after running the studies. Dynamically changing an NPCs attitude in response to 

player behavior requires implementing a system for tracking affinity between characters, which remains 

for future work. Players noted that Façade was actively tracking affinity of NPCs toward the player. 

(G1) I felt like [Façade] didn't actually listen to what I was saying most of the time, it would just 

kind of decide who's side I took every time I said something. 

 

 

6.2.5 Observations About Main Characters and Agency 

 

Façade was the first instance of a new variant of games called an Interactive Drama, designed around 

the philosophy that the minimum number of characters to produce drama is three, where the player is 

explicitly not the main character (Mateas 2003). This unique design provides a practical way to work 

around the difficult problems of natural language understanding, masking understanding failures with 

two self-absorbed main characters, Grace and Tripp, who start arguing whenever they do not 

understand the human input -- a practical solution, which feels plausible, even natural, given the 

scenario dramatized in Façade. Players recognized this relationship with the NPCs in Façade. 

(G1) Grace and Tripp are the main characters in Façade. The player is just there for the story to 

progress around. 
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(G2) I feel like both of them were, their situation, the structure of the relationship was the main 

character. 

(G3) I think in Façade you're not really the main character, because the main story line doesn't 

really have anything to do with you really I feel like you're more of an observer. 

In the observations above, the main characters are determined by their roles in the story. Players also 

noted a connection between the influence one has on the story and who is the main character. 

(G3) [Façade] seemed very game-led which was weird because it was a free-response game, and 

then sometimes you know I'd be trying to respond to the question they just asked me, and they'd 

be like oh look at our window, and it's just completely unrelated and they don't even respond to 

the last thing I said, so like I said it seemed to not matter at times what you said, but the game 

would just automatically move forward. I think if you don't have a lot of ability to exercise free 

will you're not really a character. 

Façade is well executed, and the previous section illustrates that ignoring the player at times does not 

negatively impact engagement, and even increases tension, however this is not a general solution 

applicable to all games. In contrast, the majority of games orbit around the decisions of the player, who 

controls the main character. Players commented that TRG and Skyrim were player-driven, while also 

noting that the waitress does take the initiative at times in TRG. 

(G1) Façade led you, The Restaurant Game lets you lead it. 

(G3) In Skyrim, and The Restaurant Game a lot of the times, I was driving the situation. In The 

Restaurant Game there was like a couple, like once or twice when the waitress would initiate 

conversation and would ask me what I wanted to do, but I still had to respond in the proper 

manner, whereas in Façade regardless of how I responded the situation would progress. 

(G3) In The Restaurant Game sometimes she would initiate conversation if you just sat there, 

she'd be like oh do you want a table, do you want to sit down, do you want a menu, stuff like 

that, if there was no user input for a while. In Skyrim you know like AI doesn't just walk up to you 

and ask you questions, it's always me walking up and saying, "oh yes, hi play this song for me. I 

really like it." 

Given the freedom the player was given in TRG, players were surprised by the range of interactions the 

waitress could respond to. Players commented that the waitress does try to support the direction the 

player takes the narrative. 

(G2) I tried to click on the chair, and I ended up sitting on the table by accident, and she just came 

over and said "you're sitting on the table", I'm like "yeah sorry about that." I was a little bit 

surprised that she didn't just come back with a stock conversation like "What would you like to 

order?" She like noticed that I was sitting on the table, and asked what I was doing. 

(G1) It felt like The Restaurant Game was trying to play along with the player. It just kind of roles 

with it. 

Some players drew a distinction between being the main character and being player-driven, based on 

the existence or absence of plot. 

(G1) It's hard to make the player the main character if you choose what to say, and you have no 

back story. If you need plot for a main character, then the waitress isn't, because there is no plot. 
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(G2) I feel like in The Restaurant Game there really isn't a main character because there wasn't 

really a story. 

The first-person perspective in all three games also factored into some player's definition of the main 

character. 

(G3) I feel like I was the main character in all of them. I mean in Façade it opens with, the 

conversation's about you, and the phone call that happened you're, and it opens with you 

standing alone, it's your first-person, like you're taking on the act of facilitator. 

 

6.2.6 Observations About Natural Language Understanding 

 

Skyrim presents the player with predetermined dialogue options for conversing with each NPC. In 

Façade, the player types open-ended text input. Predetermined dialogue options ensure the system will 

understand the player's choices, while open-ended natural language input gives the player freedom to 

express him/herself. TRG's interface is designed to provide the best of both worlds, giving the player 

freedom to type anything, and then dynamically generating dialogue options intended to be as 

semantically similar as possible, and at a minimum contextually relevant. 

Opinions on the best approach to dialogue interaction varied greatly. Some players were impressed with 

the ways Façade masked understanding failures. 

(G1) It responded really well to things it didn't understand. There's like "what?" and then they 

would go back to what they were saying. You just kind of have them react in a normal way, and 

just kind of brush it off, and go back to what they were doing so you don't get hung up on it. 

(G3) I think if you said something sometimes that didn't fit into the script, like they didn't 

understand, they would try to work around it. Cause like the first time we went to the painting 

and he was trying to get us to say what it was. I said "love" and he said, "great that's right," and 

then the second time we went to the painting he said something like "wasteful" and he's like "no 

romantic." Later I said "castle," and he said "no!" and she said "honey he could be right." That to 

me just seemed like a clever way of saying I don't know what he said. I think stuff like that I think 

is a little better for the immersion, you know realistic. 

While other players found Façade's approach frustrating, and would have preferred more transparent 

feedback. 

(G2) The situation in Façade where you type something and the game doesn't understand, I felt 

like often they would just brush you off and try doing something different, so if you say something 

complicated they're like, "eh whatever, I don't understand it so I'm just going to change the 

topic," so it felt like a device to try and make you talk in simple terms, so I think something like 

the dialogue options where they definitely understand could be useful. 

(G3) There was a worry that like when you type something in, it wasn't always clear if it would 

register, like I was saying in Façade like sometimes they'll just kind of look at you, and they'll have 

like a weird reaction, like pseudo reaction, and I can't tell if they just didn't understand what I said 

or if like what I said was awkward or like something like that, so it was like kind of difficult to 

discern. 



 

149 

 

(G3) I would've much preferred like if Façade just told me it didn't understand, because then I 

would know what I did made no sense. I would have preferred being able to see a dialogue box. In 

general I prefer dialogue boxes because it gives me the I guess the feeling that I can't break the 

game.  

Players commented that Façade seemed to be looking for keywords, and noted where this caused 

problems for them. 

(G1) The impression I got when I was playing it was that there were a few big like chunks of 

content that you could unlock by saying certain things, like I mentioned therapy and divorce to 

them, and it suddenly picked up on that and started going on that, so I think there a few specific 

like keywords that they'll pick up on that can influence the direction of conversation but that 

otherwise the general things that you say aren't so crucial. 

(G1) Certain colloquialisms don't work very well. For instance, in my run they were talking about 

bartending, and so you know snark, snark, snark about bartending, and he's embarrassed about 

it, and so my reaction was "bartending's not a bad job," except that there's two negatives in 

there, and so it just automatically took it as a negative rather than negating the negative. 

(G1) Yeah I noticed a couple times when we were playing too that it would like take the opposite 

interpretation of what we meant. 

TRG's approach of dynamically generating dialogue options based on human input provides 

transparency, which players appreciated for supporting more nuanced input, and giving more control 

over how utterances would be interpreted by NPCs. 

(G1) What I noticed about The Restaurant is that it was trying to do more than Façade in the sort 

of AI actual interpretation of colloquialisms. 

(G1) I thought that the idea where it would like take what you type in and then say which of these 

did you mean was a really a good idea because it's like that way the program can pick a 

statement that it understand and then you can confirm that is in fact what you meant. And I think 

that would also let you avoid the problem you had with Façade where for example the double 

negative thing. So I think that's a really good system for like having the computer check to make 

sure that it knows what you mean while at the same time giving you the freedom like do 

whatever you want basically. 

However, other players noted that TRG's interface, which pauses the game while the player selects a 

dialogue option, would detract from the tension of a real-time interaction. Players also commented that 

it felt strange when the options presented did not match the input (a side-effect of retrieval by context). 

(G2) The problem with that is if you ended up having like type and it would pause their 

conversation to figure out what you were saying it would take away from the whole building 

tension in the game, because it's like stopping the conversation. 

(G2) It was kind of awkward in The Restaurant Game to have to type something and then choose 

from a menu because sometimes what comes up isn't the question that you asked. 

While others felt that seeing unintended dialogue options actually improved the experience, by 

suggesting things to say that might not have occurred to the player. 

(G2) Mostly there was an option that was close to it, at least there was usually one, and there 

were some weird ones which was just fun. It's always fun to just type some random thing, see 

what you get. 
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In general, players expressed that they found open-ended natural language input to be more engaging. 

However, they also commented that some games are better with a more limited set of static options. In 

particular, players said that the actual full-scale Skyrim experience (as opposed to the limited tavern 

experience) would be overwhelming with open-ended input, and that deep NPC interaction is not really 

the focus of the intended experience. 

(G1) Comparing the hard-coded options to the more open-ended you can say what you want, it 

definitely made me feel like I had more options that I wanted to explore when I could type 

whatever I wanted, like I wasn't sure how it would react to different things, so I would be inclined 

to spend a lot more time in a short segment of the game trying a whole bunch of different options 

and seeing what the outcomes would be, in The Restaurant or in Façade, where in Skyrim you're 

presented with the options and they're the expected you just go through the list. 

(G2) In Skyrim, you can't voice your own opinions, so you're not as invested. 

(G1) I like the big world of Skyrim. Skyrim is about exploration. Depth of character is not what the 

audience wants. It might be excessive, ...but does make games more interesting. 

Finally, some players simply prefer the reassurance of a preset list of options -- that no content has been 

missed. 

(G1) The fact that characters just wait for you in Skyrim breaks immersion, but it's reassuring that 

you're not going to miss anything. Façade is like a movie. It doesn't get boring though, it's fluid, 

felt the most natural, but you wouldn't have time for so much conversation in a bigger 

environment. 

(G3) Actually I like the choice interface. When I play a video game I'm like a completionist. I like 

to, like, do everything and make sure you know, maybe I save it and I try one route and see if that 

likes comes out with the goal, and then I like start over or something, but, yeah it's almost 

overwhelming having too many paths. Like if you can imagine every conversation being like 

Façade with like every character you meet in the game, that would just be ridiculous, you know. 

 

6.2.7 Discussion 

 

Based on the observations from the qualitative study in the previous sections, this discussion section 

highlights positive results and areas to focus on in future work, and concludes with comments about 

some of the more surprising observations. 

The focus groups revealed anecdotal evidence that players did find TRG to be more open-ended than 

the other games, with respect to NPC interaction, frequently referring to it as a sandbox, unprompted, 

and there was general agreement that the player was able to drive the experience with natural language 

input more so than in other games. Several players noted that the TRG interface better supports more 

complex natural language input, including colloquialisms and nuance. 

Despite incredible production values, Skyrim was the least engaging experience for the players -- with 

the significant concession that it was not being played as intended, with players confined to one tavern. 

Players found that NPC interactions in the tavern played out exactly the same way each time, and 

offered minimal player freedom or influence over the narrative. Each gameplay session invariably ended 

in combat, as players ran out of anything else to do. These observations about Skyrim validate the value 

of more open-ended interaction with NPCs, to produce more engagement when replayed. 
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This thesis began with a discussion of the two bottlenecks that introduce tension between player 

freedom and system comprehension: the authorial effort, and limited human imagination, which lead to 

limited coverage of possible inputs (actions and utterances). The contrast between the focus group 

responses to TRG and Skyrim illustrates how CAI addresses these bottlenecks to mitigate the tension 

between freedom and comprehension. In the case of TRG, one researcher (plus some outsourced labor) 

was able to create an experience so open-ended that players spontaneously labeled it a sandbox. When 

players refer to TRG as a sandbox, they are recognizing both the unusual freedom given to players, and 

the fact that the system comprehends and responds to much of what players choose to do. Players were 

pleased to find an NPC in TRG who responds to sitting on tables, stealing cash registers, and getting 

hitting on for a date, in addition to responding to typical restaurant inputs expressed with a wide variety 

of natural language utterances (as validated in Section 6.1). The freedom and comprehension in TRG are 

made possible by drawing from an enormous pool of content, mined for interconnections. Skyrim, on 

the other hand, has no issues with system comprehension, but greatly restricts player freedom (outside 

of combat). While this might be a deliberate design choice, one can speculate on the practical 

considerations which motivated this design decision. TRG and Skyrim inhabit similar spaces (a restaurant 

and a tavern). Using current tools of the trade in commercial game development, authoring responses 

to all possible physical and linguistic interactions in the tavern by hand would be prohibitively costly, in 

terms of development effort, and would likely not adequately cover all possibilities. The developers of 

Façade did choose to embrace the challenge of open-ended interaction, despite authoring content by 

hand, and as a result Façade provides much more player freedom than Skyrim. Design choices in Façade, 

which favor dramatic tension over agency, distract the player's attention from system comprehension 

failures. Section 6.2.2 illustrates the impact of Façade’s design philosophy on how player-directed the 

experience is, leading to less of a sandbox experience. 

Focus group feedback indicating that player freedom in TRG provided a unique experience, adding 

entertainment value and encouraging replay, is a positive result given the unfinished nature of TRG 

compared to the other games. However, player freedom is not the only factor to ensure an engaging 

experience. With a noticeable lack of explicit goals or strong narrative, players of TRG were not as 

engaged with the game as they were with Façade. Façade overwhelmingly dominated the discussion in 

all three focus groups. While players did express awareness that Façade often ignored their dialogue 

input, they were impressed that it unfolded differently each time, and were driven to try to intervene in 

the awkward, intense, uncomfortable situation in front of them. Players were also impressed with the 

depth of character and backstory in Façade, and the expressiveness of their faces.  

There were many comments about goals in TRG, both the lack of prescribed goals, and the ability to set 

your own goals. As a result of being asked to play each game three times, groups of players were 

observed, unprompted, setting new goals for themselves on subsequent play sessions of TRG (e.g. 

ordering as many items as possible, stealing things, getting a date with the waitress), and generally 

found that TRG supported them in these pursuits. As players experimented to find the boundaries of the 

simulation, they were often pleasantly surprised that the waitress could respond to interactions with 

many objects in the environment, as well as questions about herself and requests for dates. However, 

with limited numbers of examples in the 1,000 games, sparse data sometimes led to insufficient 

numbers of dialogue options for social interactions outside the scope of basic restaurant interaction. 

While some players enjoyed the freedom to explore this sandbox, others commented that it felt too 

much like the real world, without being given explicit gameplay goals, thus decreasing engagement. In 

retrospect, having humans play the waitress with NPC customers may have better supported 

comparisons with other games, and led to a more engaging experience with natural goals of trying to 
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earn the most money, either by serving faster, upselling more items, or through social interaction 

encouraging higher tips. 

The majority of negative comments about TRG were related to issues with coherence of personality, 

which players interpreted as memory failures. As discussed in Chapter 2, one of the challenges of 

automating an NPC from thousands of recorded performances is portraying a consistent personality, 

and avoiding schizophrenia. The waitress's behavior was structurally coherent with regards to 

completing the expected events involved in ordinary restaurant interaction (e.g. seating customers, 

taking orders, bringing bills), and the waitress did remember to bring the correct items ordered, and 

even add them to the bill. However, competency for basic restaurant interactions is expected in a 

restaurant simulator, and is so familiar that it is taken for granted. Incoherence in other respects 

distracted from the coherence of the core restaurant behaviors. Players commented that the waitress's 

behavior sometimes appeared "random," as her attitude fluctuated, and her behavior did not seem to 

take into account how she was treated in the past. Players tended to ascribe mental models to NPCs, 

and associated coherence with an NPC's memory. The perceived quality of memory appeared to have a 

big impact on how engaged players were with a game. Players were impressed that NPCs in Façade 

sometimes referred to things that had been said in the past, and were disturbed when past behavior 

seemed to have no effect on the waitress's later behavior in TRG. Based on these observations, the 

highest priority for future work on CAI should focus on increasing coherence by implementing a system 

to modulate affinity toward other characters based on observations. The attitude Critic is part of the 

solution, but was implemented after this study concluded, and does not yet address changing attitude 

dynamically over time.  

There were a few surprises related to observations of player responses to Façade, which could be 

informative for future game designs. Related to the above discussion of goals, it was interesting to see 

the prominence of accomplishing goals in players' response to a social simulation. Façade is a game 

about social interaction, yet players comments often characterized it as a puzzle-solving or adventure 

game, which they were driven to figure out. Many players commented on the importance of response 

time in Façade, and the frustration of trying to type a response within the allowed window of time, 

before the NPCs move on to another topic. The drive to accomplish the goal of saving Grace and Tripp's 

relationship factored into their response to this decreased player agency (due to timing-dependent 

inputs) in an unexpected way. Multiple players explained that this actually increased the drive to replay 

the game, to type input within the allowed time in the next play session. In addition, it was interesting to 

observe that some players assumed that any variation in content was caused by player actions. On 

subsequent replays, some players believed that differences in Grace and Tripp's behavior was due to 

player actions, when in fact many of these differences were due to random selection of variations of 

dramatic beats.  

One somewhat surprising insight came out of discussions with players who were familiar with Skyrim -- 

the game as a whole outside of this study. As commercial games increasingly strive for photorealism in 

graphics, physics, and animation, one might assume that more lifelike social interaction and dialogue 

would be desirable as well, to complete the realization of immersive simulation. In fact, some of these 

players commented that they would not want such spontaneous, open-ended NPC interaction in Skyrim, 

as it would interfere with the rest of gameplay, which focused on collecting items, increasing character 

stats, and killing enemies. Rather than quickly restocking in town, and possibly obtaining new quests 

through brief conversations in the tavern, players would be slowed down with time consuming dialogue. 

The design of today's games is a response to years of working around the limitations of artificial 

intelligence, and as a result gameplay is typically less focused on NPC interactions outside of combat. 
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Games keep players engaged for many hours by stretching the story across enormous worlds, not 

expecting players to spend too much time in a small area (like a tavern). Yet there is a tension between 

the enjoyment players had interacting with the NPCs in Façade and TRG, and the disconnect in applying 

new NPC technologies to the designs of currently successful games like Skyrim. This observation 

suggests that there is an opportunity to rethink game designs, and how stories are told in games. Rather 

than trying to enhance existing games with CAI, it may be more productive to explore previously 

impossible designs, which depend on rich, open-ended social interaction.  
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7 Conclusion 
 

This thesis has described an end-to-end system for recording thousands of people playing roles online, 

discovering patterns in this data through a human-machine collaboration, and automating data-driven 

NPCs who can interact in the 3D environment and converse with humans via typed or speech input. The 

unconventional development process associated with this system introduces a new division of labor in 

interactive media production, where the majority of work is performed by non-programmers, 

democratizing content creation by recording performances from anyone online, and providing tools for 

non-experts to structure and filter the data. Combining an accessible, collaborative authoring process 

with a data-driven runtime planning system, that functions like a search engine, leads to the realization 

of NPCs who can say and do thousands of things in response to player actions and utterances. 

 

By crowdsourcing content creation, and mining this data for inter-connections, CAI is able to make 

significant strides toward overcoming the bottlenecks related to authorial effort and the limits of human 

imagination, and deliver an experience that simultaneously supports improved increased player 

freedom and increased system comprehension. A quantitative evaluation has shown that the 

implemented Collective AI (CAI) system handles a wide range of natural language input, and can often 

leverage content to compensate for understanding failures. Focus groups demonstrated that players do 

find The Restaurant Game (TRG) to be unusually open-ended and player-directed, as compared to other 

existing games. However, these focus groups also revealed some weaknesses with the current 

implementation, and identified additional factors that contribute to engagement, which should be 

considered when extending CAI in the future.  

 

Ultimately, the work described in this thesis brings us a step closer to realizing the full potential of an 

interactive storytelling medium -- where the player's actions shape the story being told; actions both 

physical and linguistic, open-ended and seamlessly interleaved; interacting with data-driven digital 

actors, capable of improvising and adapting to the wills of the player, while paying heed to an intended 

narrative. This chapter concludes the thesis summarizing contributions, responses to criticism, future 

work, and final thoughts. 

 

7.1 Contributions 

 

While much work remains for the future, the work completed thus far has made several contributions. 

Collective Artificial Intelligence:  

The primary contribution of this thesis is an end-to-end process called Collective Artificial Intelligence 

(CAI) for compositing recorded performances and automating NPCs who can play roles in interactive 

stories. The narrative structure associated with this process organizes each recorded performance into 

an action sequence, overlayed with an event hierarchy, supplemented with additional meta-data 

capturing dependencies and attitudes. The combination of this CAI process and narrative structure 

produce a new data-driven medium for simulated role-playing. A case-based planning system exploits 

this medium to bring NPCs to life, who can converse and cooperate with human players in open-ended 

scenarios. NPCs can interact with humans via typed text or speech input. This data-driven approach is a 

significant divergence from current hand-crafted approaches to authoring interactive experiences, 
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overcoming previous limitations of human imagination and the authoring bottleneck. Evaluations of an 

implementation of CAI applied to TRG have demonstrated that this approach supports open-ended, 

player-directed interaction using language as action. 

 

Quantitative & Qualitative Evidence of the Value of Data-Driven Interaction: 

Judging the success of a system that simulates human behavior and language can be difficult. The 

default metric  is often a variant of the Turing test, where humans guess if an interaction partner is a 

human or machine. The goal of this work is not to deceive players into thinking the NPCs are human, but 

rather to support player autonomy and agency with improvisational NPCs, capable of playing along with 

the player through a fluid mixture of words and physical actions. To that end, the quantitative 

evaluation measures how well the CAI system can leverage corpus-driven vocabulary coverage and 

inferred context (from the Plan Recognizer), to provide relevant dialogue options, based on 

unconstrained spoken input. This study finds that the implemented system is able to provide a 

satisfactory dialogue option 28% more often than a system that relies solely on speech input, and 

cannot exploit context. These strong results are made possible by hundreds of hours of human labor 

tagging game logs, through a successful online data annotation effort. Focus group participants reported 

that they found TRG to be more open-ended and player-directed than other games. 

A Practical Transparent Interface for Natural Language Interaction: 

A data-driven interactive medium enables rethinking the interface for natural language interaction. By 

scaling up to provide adequate coverage of possible inputs, and exploiting context to compensate for 

understanding failures, a data-driven interface can robustly support using language as action in a player-

directed experience. A quantitative evaluation has demonstrated that the interface implemented for 

TRG was able to provide a dialogue option adequately semantically similar to human input 90% of the 

time (and 88% with speech input). Qualitative focus group discussions confirmed that the transparent 

interface for natural language interaction supported more nuanced input than an opaque interface. In 

their own words:  

It felt like The Restaurant Game was trying to play along with the player. It just kind of roles with 

it. 

I think the most fun to replay would be the waitress just because so much of the game was 

dictated by things my typing would prompt, it seemed the most open-ended game. 

In Skyrim, you can't voice your own opinions, so you're not as invested. 

What I noticed about The Restaurant is that it was trying to do more than Façade in the sort of AI 

actual interpretation of colloquialisms. 

 

Data Sets from The Restaurant Game and Improviso: 

There is much potential to learn from the TRG and Improviso data sets beyond this thesis. TRG offers 

thousands of examples of everyday interaction in a restaurant using actions and words, while Improviso 

captures dramatic performances in a science fiction scenario. It is likely that other researchers will glean 

new insights from these data sets related to common sense, linguistics, action planning, data mining, 

and machine learning. 

 



 

157 

 

7.2 Responding to the Critics 

 

While there is increasing interest in applying data-driven approaches to development of interactive 

media, there is also a healthy dose of skepticism. Over the years of working on this research, I have 

sought out feedback from a variety of experts from academia and the game industry. This section 

provides responses to a number of valid questions and concerns that have come from these 

interactions. 

 

How can CAI be applied to larger scale games like Skyrim and Mass Effect? 

Commercial Role-Playing Games (RPGs) are used in this work as examples of the current state-of-the-art 

in dialogue interaction with NPCs, which often leads to questions about whether CAI could be applied to 

games of enormous scale, consisting of many locations and characters, and hundreds of different 

dialogues. While it may be possible to apply CAI at this scale, to ask this question is somewhat missing 

the point. Skyrim and Mass Effect already exist, and a large audience of gamers enjoy them in their 

current form. This research is intended to enable new experiences, more focused on open-ended, 

replayable, player-directed social interaction with NPCs. 

 

The game industry is going through an incredible period of disruption and change right now, due to new 

platforms and business models made possible by mobile devices, the cloud, and improved connectivity. 

The audience for games is growing exponentially, but not all players have the same tastes. In particular, 

there are trends toward shorter, highly replayable experiences for $0.99, rather than 30+ hour AAA 

experiences for $60. From a business standpoint, games earn more money the longer they retain 

players' attention. While the old model required enormous game worlds to keep players entertained for 

weeks, games today retain players by offering replayable experiences (e.g. play hundreds of times to 

earn all of the achievements), or by supporting user-generated content, continually evolved by an 

engaged community. CAI has the potential to enhance replayability with collaborative role-playing 

characters, and democratizes content creation through a process that could be managed by 

communities of player-designers.  

 

What if it is not possible to collect the data? 

Due to the data-driven nature, CAI requires recording human performances to begin the authoring 

process. This introduces a different production process than that currently followed in the game 

industry. Where there is proven value, the industry has been known to adapt new processes, some of 

which are data-driven. For example, motion captured animation, and even capturing 3D models from 

peoples' faces, have become accepted parts of production. In general, beyond game development, in all 

fields, it is becoming increasingly easy to capture, store, and process massive amounts of data, and there 

is no reason to expect this trend to change anytime soon. Data-driven approaches are becoming the 

norm in all aspects of life, and it is just a matter of time before this is the case for authoring interactive 

content for games. 

  

How does crowdsourcing content help an industry that is focused on crafted experiences? 

There is a trend in AAA game development toward crafted experiences that are approaching Hollywood 

level production values. For instance, the lighting is perfect, camera angles are carefully planned, and 

characters are voiced by A-list actors. Outsourcing content creation to the crowd is inconsistent with this 

trend. CAI is a disruptive technology that might be considered two steps forward, one step back. While 
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developers give up some control, the result provides new levels of interactivity, intentionally moving 

away from the linear medium of Hollywood films. 

 

The history of graphics is informative here. While resolution was steadily increasing to the point that 

hand-illustrated 2D games looked as good as Disney films, 3D graphics engines emerged. Initial 3D 

renderers offered blocky, pixelated visuals that could not compare to hand-drawn 2D, yet interactivity 

literally gained a new dimension. Ultimately, 3D graphics hardware and software steadily improved, and 

today's games look nearly as good as Pixar films while rendered in real-time from the player's camera. 

One can imagine a similar trend for data-driven interaction with NPCs. Initially designers may not have 

as precise control over every detail of the interaction, and may have to make sacrifices in exchange for 

increased interactivity, but as approaches like CAI improve, the experience of interacting with data-

driven NPCs will far exceed anything that designers would be able to craft by hand.  

 

Furthermore, there is an argument for data-driven behavior and dialogue that is consistent with the  

industry's reliance on motion capture. While development studios have skilled animators, and 

sophisticated animation tools, hand animation of human motion fails to capture the nuance of actual 

human motion. When humans observe an animated character, they can tell whether it was hand-

animated or motion-captured for reasons that are difficult to articulate. Something deep in our 

subconscious mind is wired to recognize human motion. The same is true of patterns of interaction and 

dialogue. Hand-crafted behavior and dialogue somehow fails to capture the nuance that separates 

actual human interaction from hand-crafted content.  

 

Voice recording thousands of lines of dialogue is impractical. 

The current TRG prototype includes 18,000 lines of dialogue, used by the waitress to both understand 

and generate utterances. Professional game developers frequently respond to this fact with concern 

over production time and costs of recording all of these lines. This concern is valid. However, in the 

short term this issue can be addressed by only recording a portion of the lines, since many are variations 

that have the same semantic function. The real benefit of supporting 18,000 lines of dialogue is 

coverage for understanding human input, thus generation of all of these lines is not as crucial. Long 

term, it is possible that speech synthesis technology will improve to the point where generating 

thousands of lines is possible without actually recording each line. This thesis research is thinking about 

content at a different scale than what developers assume are the limits of possibility today. Regardless 

of the challenges of supporting thousands of lines of dialogue, if game players demand content at this 

scale, the industry will find a way to meet the demand. 

 

How can coherence be ensured when content is crowdsourced from thousands of different people? 

Coherence of personality has been addressed previously in this document. The attitude Critic enforces 

consistency of personality, based on a specified attitude, and future work remains to implement a 

system to modulate affinity between characters, and dynamically adjust attitude accordingly. Beyond 

these technical solutions, coherence can also be addressed by considering who is the in crowd that 

generates the content. As an academic research project, TRG collected data from the general public. A 

commercial application of this approach might collect data from a cast of employees in house, or might 

hire a collection of writers or actors. A crowd of trusted collaborators can be given more in depth 

direction and backstory for how to play roles. Higher quality participation might require fewer recorded 

performances, as less data will consist of misbehavior. However, even with a trusted crowd, it might be 

useful to collect additional data from the public to better cover the space of how people will try to 

interact with the system.  
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7.3 Next Steps 

 

The focus groups were enlightening in terms of identifying factors that to lead to engaging gameplay 

experiences, and recognizing where TRG excels, and where to focus in the future. Next steps will focus 

on addressing shortcomings in TRG, as well as improving the development and debugging process, 

generalizing to new scenarios, scaling up to more content, and integrating into larger game worlds. This 

section focuses on near term next steps, while the following section explores broader scoped future 

work. 

 

7.3.1 Capturing and Generating Strong Narratives 

 

The original human players of TRG, during the data collection phase, were simply told to either earn 

money as a waitress, or have dinner as a customer. As a result, the "game" generated from this data is 

simply a simulation of dining in a restaurant, with no overarching narrative and few gameplay goals. The 

focus groups' response to Façade demonstrates the powerful effect of a strong narrative on player 

engagement, even at the cost of reduced agency -- players were drawn into the game despite reporting 

that their input was often ignored. Some players enjoyed the open-endedness of TRG, creating their 

own goals (e.g. getting the waitress to go on a date), but others lost interest, complaining about the 

absence of a motivating story. This shortcoming is more related to the data collected for TRG than the 

technology driving the experience, and future work will focus on capturing and generating scenarios 

with stronger guiding narratives and player objectives. In fact, data sets already exist for this purpose --

Mars Escape is a goal-directed puzzle, and Improviso has a strong backstory, and three act narrative 

structure. However, additional types of annotation and Critics may be required to produce a satisfying 

experience. For example, Façade's drama manager ensures that the dramatic beats unfold such that the 

tension of the experience adheres to a dramatic arc. Meta-data and Critics have not yet been 

implemented to modulate tension in CAI. 

 

7.3.2 Improving Personality Coherence 

 

Players complained that the behavior of the waitress in TRG was at times incoherent. Her name could 

change within the same gameplay session, and her personality could oscillate from polite to rude 

seemingly without reason. While the CAI system does ensure structural coherence of basic restaurant 

interaction (e.g. the waitress serves what the customer ordered, knows to bring appetizers first and 

dessert after the main course, and follows established social conventions of getting seated before 

ordering, and bringing the bill after the customer is finished), these everyday behaviors are so familiar 

that players take them for granted, as they fixate on inconsistencies mentioned previously. Currently, 

the ontology includes concepts for items involved in restaurant interaction, such as food, the bill, and 

the menu, but does not cover concepts related to the waitress as an individual (e.g. her name, age, 

where she is from, etc.). Extending the ontology would provide the means for correcting inconsistencies. 

The attitude Critic described in Section 5.3.4 was implemented after the focus groups, and addresses the 

oscillating personality, though this Critic enforces a static personality. Ideally the attitude would change 

in response to observed player behavior (e.g. respond rudely after observing offensive player 
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utterances). Focus group participants noted that the NPCs in Façade seemed to associate each player 

input with an affinity toward one NPC or the other, and adjusted their behavior accordingly. There were 

comments that this is a more complex version of the way commercial RPGs, like Skyrim, often associate 

dialogue options with the effect each option will have on an NPC's affinity toward the player. A 

mechanism for modeling affinity has not yet been implemented for CAI. This feature would require 

tagging of actions and utterances that modulate affinity, and a data structure that associates (previously 

tagged) attitudes with ranges of affinity. As mentioned in Chapter 2, the implementation of social 

physics in Prom Week might provide insights for the way forward. It would be interesting to learn such 

social physics from data by discovering causal chains in recorded performances, either automatically or 

through human annotations. 

 

7.3.3 Scaling Up 

 

The current implementation of CAI has successfully scaled to running from a corpus of 1,000 game logs, 

composed of over 18,000 utterances and 1,414 unique actions. While one of the strengths of the system 

is that it can utilize examples of behavior observed only once, adding more data will further improve 

coverage of human input, variety of NPC behavior and dialogue, and ability to respond to less common 

interactions where data is sparse (e.g. complaining about the food or bill). Future work will work toward 

annotating and importing all 10,027 game logs, and eventually scaling beyond the current corpus. This 

will introduce new challenges in searching for responses in real-time. The current implementation relies 

on linear searches through the corpus (leveraging the ELI for efficiency), but the architecture is well 

suited for parallelization, due to the fact that each proposed game log is validated independently. 

Scaling up the corpus by orders of magnitude will require a more distributed, parallelized approach to 

searching for proposed plans, evolving even closer to the architecture of a search engine. 

Increasing the corpus size is an example of scaling one dimension of the system. There are other 

dimensions that can scale as well, including the number of characters, and the scope of the interaction. 

Improviso collected data from a game where each scene can include up to five characters. Future work 

remains to generate a game from this data, but as long as each role is distinct, the system theoretically 

scales to more than two characters. The scope of all of the data collection games is limited to face-to-

face interaction in small environments, within a relatively short game (about 10 to 20 minutes). An 

interesting future direction would be to explore applying CAI to a storytelling layer that sits above the 

face-to-face interactions, and sequences plot points. While the current source of data is recorded 

demonstrations, the system itself is agnostic about the source, provided that the data is represented as 

a corpus of linear sequences, which can be abstracted into events. For this storytelling layer, the data 

might come from linear sequences of plot points authored by writers, which are then tagged and 

clustered by annotators. The approach to annotation might draw insights from story generation systems 

like Mexica.  

A game with a broader scope may introduce additional challenges, such as dynamic role bindings. For 

example, when a player exits a restaurant, he is no longer a customer. From the perspective of other 

NPCs in the world, the former customer may now be a mailman, a suspect, or a father. A related issue is 

the generalization of content. Many of the actions and utterances in the TRG corpus are specific to 

restaurant interactions, but some are generally applicable to any social interaction, while others are 

applicable to any scenario involving a transaction between a buyer and seller of food (e.g. a grocery 

store). As future work, it should be possible to tag instances of events with labels indicating their scope, 
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with regards to generalization to other possible scenarios, resulting in large cross-domain corpora of 

content for social interaction in various contexts.  

 

7.3.4 Development, Tuning, and Debugging 

 

The CAI system, as described in this thesis, is a first implementation, and much has been learned in the 

process. There are numerous opportunities to improve the authoring and debugging processes, as well 

as tuning the runtime experience. The authoring process could be made more inclusive and distributed 

in two ways: transforming annotation from an outsourced task to a truly crowdsourced task, and 

formalizing the encoding of domain knowledge to eliminate, or at least reduce, the amount of 

programmer involvement. Hiring annotators through oDesk.com demonstrated that it is easy to hire 

people anywhere in the world to tag data, and this work requires minimal training. The experience with 

oDesk can be considered a pilot test, refining the process in preparation for true crowdsourcing in the 

future (e.g. through Amazon.com's Mechanical Turk). Currently, annotators tag entire game logs with 

the full set of event tags. This task might be broken down to per-event tagging tasks, with each game log 

distributed to multiple crowdsourced workers at once. Another promising future direction is automating 

or semi-automating repetitive aspects of the annotation process, possibly leveraging techniques 

described in Chapter 4.  

Encoding domain knowledge is currently an ad hoc process where validation functions are programmed 

by hand in Java. Reviewing the domain knowledge implemented for all of the events in TRG, various 

design patterns and repetition of validation functions have emerged. Future work will focus on 

centralizing different types of validation, so that domain knowledge can be represented with 

configuration files, or a domain-specific language, accessible to non-programmers. 

Debugging an open-ended, data-driven system that delivers unscripted NPC behavior is a time 

consuming process. After one month of full-time debugging for TRG, the game is not entirely bug free. 

Section 5.5 describes a number of mundane suggestions to facilitate debugging. All of these suggestions 

can be further refined to deliver significant decreases in debugging time. Suggestions include leveraging 

statistical techniques to preemptively catch tagging inconsistencies, generating logs of NPC-NPC games 

faster than real-time, and analyzing these logs for suspected bugs, as well as submitting logs for 

inspection by humans. For the thesis, the quality assurance process was run at a small scale, with four 

outsourced testers playing TRG, while I fixed bugs myself. Embracing game development as an iterative 

process, where games are living systems evolving online, and deploying games to many players online 

sooner rather than later, may provide opportunities to engage the community in the QA process, and 

take advantage of the economy of scale. With more players online, it may be easier to identify, and 

prioritize which issues to fix first, given limited resources for debugging. Recognition of recurring 

problems might even be possible to automate.   

Finally, future work remains to improve one of the key components supporting human interaction, the 

system that dynamically generates dialogue options. Currently, options are sorted through a simplistic 

approach. If the set of keywords in the input utterance maps to keywords in a U-SET, then the validated 

dialogue options are sorted to maximize the number of matching input words. Otherwise, if proposed 

options are retrieved by context, options are sorted arbitrarily, shuffling them to ensure that each page 

of options offers a variety of utterances representing different events. Other factors that could be 

incorporated in the future include the likelihood of different utterance types, the redundancy of the 
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utterance (with consideration for similar utterances that reference different concepts), whether an 

utterance could respond to an unanswered question, and possibly other factors. 

 

 

7.4 Future Work 

 

This thesis has demonstrated how CAI can amplify the content creation productivity of one graduate 

student, to produce an experience with thousands of possible actions and lines of dialogue. However, 

this first exploration only scratches the surface of what may be possible, given more time and resources. 

Following are several thoughts on broader potential applications of CAI. 

 

7.4.1 New Data Sources  

 

Online games are one obvious source of data, but are not the only possibility. For instance, one can 

imagine recording humans interacting physically through the Kinect, while recording spoken dialogue. 

The pattern discovery process would need to be expanded to recognize actions from continuous skeletal 

animation, and segment utterances from (automatic or human) transcribed speech, but it is not 

inconceivable that this may be possible someday. Our world is increasingly being covered with sensors, 

and pervasive mobile devices are capturing tremendous amounts of data about our lives -- photos, 

emails, phone calls, GPS, etc. In sense, life is becoming a game. One can imagine aggregating this data to 

automate role-playing characters in the future from real-world data.  

 

7.4.2 Decision Support in the Real World 

 

Current research has focused on automating role-playing NPCs from crowdsourced data, but the 

medium produced through the CAI process could be used in other ways. The natural language interface 

implemented for TRG presents contextually relevant dialogue options based on human input, and 

players avatar executes the selected option in the game world. A similar system could act as a support 

system for people making decisions in the real world. Perhaps options could be displayed through a 

head-mounted display, or simply displayed on a hand-held mobile device. This system could be 

configured to suggest utterances at any time without requiring input, and could suggest physical actions 

as well. Making decisions in the real-world relies on being able to perceive actions and utterances, but 

as the previous section explores, there are an increasing variety of options for sensing interactions in the 

world. Translating sensor input into discreet observations, as input to the decision making system, may 

require human assistance, or may be possible to semi- or fully automate in the future. While decision 

support systems may have applications in business or the military, they could also be powerful tools for 

people struggling with neurological disorders affecting social interaction, like autism, or for travelers 

negotiating life in a foreign language. 
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7.4.3 Simulating Real-World Role-Playing Scenarios 

 

Over the years of pursuing this research, a variety of people from different fields have proposed 

applications of simulated role-playing for solving real world problems. This section reports briefly on a 

selection of these potential applications. Medical students today receive instruction on how to 

communicate difficult information to patients and their families (e.g. cancer diagnoses) through 

interaction with specially trained, live, improvisational role-playing actors. Simulating such an interaction 

could offer several advantages over live role-players. In addition to being more cost-effective, simulation 

would allow students to spend more time replaying the material, ensure consistent lessons between 

students, and capture data about student performances. Perhaps simulation could complement live 

instruction, making time with human instructors more valuable. A similar argument exists for large 

corporations, with high turnover and training needs. Simulated role-playing could replace or supplement 

live role-playing or less interactive training videos, teaching subjects like interviewing skills, salary 

negotiations, and conducting performance reviews. Simulated role-playing has also been suggested as a 

way for corporations to communicate with and educate consumers. For example, someone who has 

never applied for a mortgage before might feel intimidated by the process, and could interact with a 

simulation before meeting with the bank to better understand what to expect. Practicing social 

interaction in a safe simulated setting before a real interaction has also been suggested as part of 

therapy for those diagnosed with autism or Asperger’s. There is a counter argument, that autistics do 

not generalize well from games to the real world, however the spontaneous, replayable, highly varied 

nature of a data-driven interaction may be able to overcome this concern. As another example of social 

interaction practice, there has been interest from law enforcement agencies in using face-to-face 

simulated role-playing to practice non-violent conflict resolution. Finally, as robots become common in 

the home and workplace, their ability to cooperate as a peer in everyday activities becomes increasingly 

important. The Mars Escape project has already taken a step toward demonstrating the value of data-

driven approaches in automating robots who can serve as better teammates. 

 

7.4.4 Improvisational Interactions between Heterogeneous NPCs 

 

The CAI process democratizes the content authoring process, producing improvisational NPCs 

compositing performances from thousands of human performances. The research thus far has focused 

on NPCs interacting with humans, primarily using NPC-NPC interactions as a means of testing the 

behavior before spending human testing cycles. In addition, current research explores automating NPCs 

in the same scenario in which the data was recorded. There are two promising directions for interactive 

storytelling, yet to be explored. One of these directions is interactive storytelling that focuses on 

interactions between heterogeneous NPCs, powered by data collected from different populations, and 

different environments. Is it possible to deliver a coherent story in a world populated with NPCs who 

have essentially never met before, but all draw upon large corpora of human performances in relevant 

scenarios? The second promising direction focuses on NPC-NPC interactions in persistent worlds. 

Videogames typically spawn NPCs (friends or foes) near the player at opportune moments, for practical 

reasons of limited processing resources. If the higher-level thinking of NPCs moves onto CAI servers on 

the cloud, there is the potential to allow these characters to continue going about their lives, interacting 

and conversing with one another. Data-driven NPCs dynamically conversing, drawing from thousands of 

possible lines of dialogue, could discuss recent observations and future plans. One can imagine new 

experiences exploiting this persistent simulation, for example a player in a stealth game might be able to 
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hack into enemy radio chatter, eavesdropping as they discover evidence of the player's previous actions, 

to learn of and foil their future plans. 

 

7.5 Final Thoughts 

 

Compared to other mediums, such as books and film, interactive mediums for storytelling are young, 

and continuing to rapidly evolve. No one can predict what interactive storytelling will look like three 

years from now, let alone 10 or 20. Given the trajectory seen in other fields, it seems inevitable that 

data-driven approaches will transform the way interactive stories are created, and the experiences they 

deliver. This thesis has shown how an online, data-driven, distributed development process can amplify 

the productivity of one individual developer to author an enormous amount of content, supporting 

open-ended simulated social role-play, in a small environment with two characters. What would be 

possible if the CAI process was scaled up by multiple orders of magnitude? It is not inconceivable that 

one day, we will reach a point where traces exist on the cloud of every game played, forming dense 

coverage of possible behavior and language. This thesis began with a discussion of the limitations of 

human imagination. Interestingly, this same limitation prevents any one person from fully imagining the 

future of interactive storytelling. In the world of videogames, there is a trend toward thinking of games 

as living systems, which communities evolve over time, rather than static immutable releases. It is likely 

that the future of storytelling will not come from an individual designer, researcher, or studio, but 

instead will emerge through a collective pursuit of new experiences. The interactive storytelling medium 

produced through the CAI process was conceived with this collective pursuit in mind. The future of this 

medium is in the crowd.  
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Appendix A: Event Tagging Tutorial 
 

Event Tagging Tutorial (page 1 / 9) 

You will be tagging events in transcripts from a pairs of players in a restaurant 
video game. 

 
Players type chat text and interact with objects through a point-and-click interface 

(pictured below). Behavior of players ranges from typical restaurant interactions to 
bizarre misbehavior. Misbehavior may include off-topic dialogue, eating flowers, 
theft, etc. A game lasts about 10-15 minutes.  

 

 

 
Below is a video of a typical experience in the game: 
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Event Tagging Tutorial (page 2 / 9) 

The interface will display each transcript as a timeline of actions (in yellow boxes). 

You can scroll the timeline using the scroll bars, arrow keys, or by dragging the 
canvas while holding down your mouse button. 

 
Your task will be to tag events by grouping action sequences in colored boxes. To 
draw a box, hold CTL while clicking the first action, and while continuing to hold 
CTRL click the last action in the sequence. While holding CTRL, you can scroll the 

canvas to access off-screen actions. Boxes can be moved, deleted, or overwritten 
as needed. 
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Event Tagging Tutorial (page 3 / 9) 

 

To set the label on a box:  

1) Click the box to select it (it will highlight with a red border).  

2) Hold SHIFT and press the right and left arrow keys to toggle the label.  

- OR -  

Hold SHIFT or CTRL, and click a label in the list on the right-hand side of the 

screen.  

You will be provided with a list of definitions and examples for all event labels.  
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Event Tagging Tutorial (page 4 / 9) 

Sometimes multiple events overlap. The interface allows you to move actions up 

and down to separate the events. Actions can only move vertically. Below is the 
same timeline before and after moving actions.  

BEFORE: 

 

AFTER: 
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Event Tagging Tutorial (page 5 / 9) 

It does not matter where boxes are placed vertically. Below is the same timeline 

with two different vertical event placements. These two examples are equivalent.  

EXAMPLE 1: 

 

 

EXAMPLE 2: 
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Event Tagging Tutorial (page 6 / 9) 

Any action or sequence of actions that does not fit any of the event labels should be 

labeled OTHER. This includes nonsense behavior, incomprehensible dialogue (e.g. 
gibberish, foreign languages), as well as dialogue and actions that are not 
representative of typical restaurant behavior. For example, customers eating 

flowers is nonsense, so it is marked OTHER. Waitresses eating (rather than 
customers) is also atypical, and should be marked OTHER. When in doubt, use 

OTHER! 

When marking actions as OTHER, it does not matter if they are grouped, or marked 
individually. Everything marked OTHER will be ignored by the systems that will use 

these annotations. Below is the same timeline with two different markings of 
OTHER. These two examples are equivalent.  

 

EXAMPLE 1: 

 

EXAMPLE 2: 
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Event Tagging Tutorial (page 7 / 9) 

You will be given a set of files to tag. You can advance through the files with the 

PREV and NEXT buttons. Clicking on the filename allows you to skip to a specific 
file. 

 

 

The preview button allows you to view the entire transcript as a text file.  
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Event Tagging Tutorial (page 8 / 9) 

Interface help and event definitions/examples are available anytime by clicking 

 

To see the help page now, click here. (Opens in a separate window).  

 

You can also get context-sensitive help by clicking the tilda key.  
Move the mouse cursor over an event label, and hit tilde to get the 
definition/examples in a pop-up window. 

 

http://www.media.mit.edu/~jorkin/annotator/help/event_help.html
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Event Tagging Tutorial (page 9 / 9) 

You will be given a set of 10 files that have already been tagged, followed by file(s) 

to tag yourself. Examine the 10 files that are already tagged, and then begin 
tagging the next file. You do not have to complete tagging in one sitting. You can 
log into the system and continue at any time.  

Save your work often by clicking the SAVE button, or hitting CTRL + S.  

If you encounter any interface bugs (e.g. a box won't move, or a label won't 
change), the bugs should correct themselves if you just save your work, move to a 
different file, and return to the original file.  

Read over the event definitions and examples before beginning. 

 
When you are ready to begin, log in at: 
http://krypton.media.mit.edu/annotate.swf  

If you do not have a user name, contact jorkin@media.mit.edu  

If you have any questions, email jorkin@media.mit.edu  
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Appendix B: Script to Generate Event Log Index 
 
set TOOLS_DIR=..\..\torque_win\tools 

 

// Compile every physical action in every game log into an ACTID. 

java -classpath %TOOLS_DIR%\GenActIDs;%TOOLS_DIR%\BassShared GenActIDs .\ini_files\GenActIDs.ini 

 

// Convert every utterance in every game log into a U-SETID. 

java -classpath %TOOLS_DIR%\GenSignedDlg;%TOOLS_DIR%\BassShared GenSignedDlg 

.\ini_files\GenSignedDlg.ini 

 

// Identify who speaker is talking to, for every utterance in every log file. 

java -classpath %TOOLS_DIR%\GenListeners2;%TOOLS_DIR%\BassShared GenListeners2 

.\ini_files\GenListeners2.ini 

 

// Merge time-coded ACTIDs, U-SETIDs, and listeners into single file per game log. 

java -classpath %TOOLS_DIR%\DlgMergeListeners;%TOOLS_DIR%\BassShared DlgMergeListeners 

.\ini_files\DlgMergeListeners.ini 

 

// Merge human annotations with compiled ACTIDs and U-SETIDs. 

java -classpath %TOOLS_DIR%\EventMergeAnnotation;%TOOLS_DIR%\BassShared EventMergeAnnotation 

.\ini_files\EventMergeAnnotation.ini 

 

// Generate Event Dictionary from annotated log files. 

java -classpath %TOOLS_DIR%\EventDictionaryGen;%TOOLS_DIR%\BassShared EventDictionaryGen 

.\ini_files\EventDictionaryGen.ini 

 

// Identify who is executing every action and utterance in every log file. 

java -classpath %TOOLS_DIR%\RoleTagger;%TOOLS_DIR%\BassShared RoleTagger .\ini_files\RoleTagger.ini 

 

// Extract semantic frames from each utterance (e.g. concepts for food items). 

java -classpath %TOOLS_DIR%\GenSemFrames;%TOOLS_DIR%\BassShared GenSemFrames 

.\ini_files\GenSemFrames.ini 

 

// Extract human readable action descriptions and utterances from compiled log files. 

java -classpath %TOOLS_DIR%\GenDetails;%TOOLS_DIR%\BassShared GenDetails .\ini_files\GenDetails.ini 

 

// Extract list of time-codes per log file. 

java -classpath %TOOLS_DIR%\GenTimecodes;%TOOLS_DIR%\BassShared GenTimecodes 

.\ini_files\GenTimecodes.ini 

 

// Merge compiled logs, semantic frames, time-codes, action descriptions, and utterances into index. 

java -classpath %TOOLS_DIR%\GenLogEventIndex;%TOOLS_DIR%\BassShared GenLogEventIndex 

.\ini_files\GenLogEventIndex.ini 
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Appendix C: Configuration for Goals and Critics 
 

// Max pressure before complete planning failure. 

 
max_pressure = 3 

 

 

// Critics, sorted by priority. 

 

Critic0 = "SynthCriticRequiredRole, -1, -1" 

Critic1 = "SynthCriticNoReruns, -1, -1" 

Critic2 = "SynthCriticInvalidatedAction, -1, -1" 

Critic3 = "SynthCriticDegenerateEvent, -1, -1" 

Critic4 = "SynthCriticCensor, -1, -1" 

Critic5 = "SynthCriticAttitude, -1, -1, BIAS" 

Critic6 = "SynthCriticPersonalityFallback, -1, -1" 

Critic7 = "SynthCriticStructure, -1, -1" 

Critic8 = "SynthCriticStaleDialogue, -1, -1" 

Critic9 = "SynthCriticCausalChain, -1, -1" 

Critic10 = "SynthCriticResourceConflict, -1, -1" 

Critic11 = "SynthCriticDomain, -1, -1" 

Critic12 = "SynthCriticReference, -1, -1" 

Critic13 = "SynthCriticReservedLog, -1, -1, BIAS" 

Critic14 = "SynthCriticHumanInput, -1, -1" 

 

 

// Goals, sorted by priority. 

 

Goal0 = "SynthGoalRespondToSequence, -1, -1" 

Goal1 = "SynthGoalExtendCompletedEvent, -1, -1" 

Goal2 = "SynthGoalRespondToCompletedEvent, -1, -1" 

Goal3 = "SynthGoalCompleteEvent, -1, -1" 

Goal4 = "SynthGoalCompleteCausalChain, -1, -1" 

Goal5 = "SynthGoalExtendScenario, -1, -1" 

Goal6 = "SynthGoalExtendStructure, 2, -1" 
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