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Abstract

The thesis presents a novel situationally-aware multimodal spoken language system
called Fuse that performs speech understanding for visual object selection. Fuse
uses semantic information from immediate visual context to guide spoken language
recognition and understanding. An experimental task was created in which people
were asked to refer, using speech alone, to objects arranged on a table top. Fuse
extracts visual information about objects and their spatial configurations using com-
puter vision techniques. This visual information is used to generate language models,
which, together with an adaptive visual attention mechanism, biases spoken language
recognition to more likely interpretations of speech signals to select the target object
referred to. In an evaluation of the system, visual context-based language modeling
is shown to significantly decrease the word error rate of the speech recognition task.

During training, Fuse acquires a grammar and vocabulary from a “show-and-tell”
procedure in which visual scenes are paired with verbal descriptions of individual
objects. Fuse determines a set of visually salient words and phrases and associates
them to a set of visual features. Given a new scene, Fuse uses the acquired knowledge
to generate language models conditioned on the objects present in the scene as well as
a spatial language model that predicts the occurences of spatial terms conditioned on
target and landmark objects. The speech recognizer in Fuse uses a weighted mixture
of these language models to search for more likely interpretations of user speech in
context of the current scene. During decoding, the weights are updated using a visual
attention model which redistributes attention over objects based on partially decoded
utterances. The dynamic situationally-aware language models enable Fuse to jointly
infer spoken language utterances underlying speech signals as well as the identities of
target objects they refer to.

The underlying ideas of context-aware speech understanding that have been de-
veloped in Fuse may may be applied in numerous areas including assistive and mobile
human-machine interfaces.
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Chapter 1

Introduction

The variety of applications of automatic speech recognition (ASR) systems for hu-
man computer interfaces, telephony and robotics [18][39][30] has driven the research
of a large scientific community in recent decades. In recent years, speech recognition
has reached the point of commercial viability realizable on off-the-shelf computers.
There have also been recent efforts to develop natural spoken language understand-
ing systems for human machine interaction. Such systems consist of ASR engines,
whose output is used as the input of a language understanding component. Such a
late-integration framework poses an immediate challenge since the ASR component
typically introduces speech recognition errors into the system.

Statistical language modeling [34] techniques have been developed to capture reg-
ularities of natural language for the purpose of improving the performance of ASRs.
These techniques estimate the probability distributions of various linguistic units such
as words, sentences, and whole documents. A typical speech recognizer uses these es-
timates as background knowledge to predict possible word strings or sentences. Most
common language models such as n-grams [15] estimate the probability of a linguis-
tic unit conditioned on 7 previously seen units using large amounts of texts. They
take no particular advantage of the deep semantic structures underlying the language
being modeled. Recent attempts have been made to incorporate linguistic theories,
semantic knowledge, dialog histories and other rich structures into language modeling

(34, 5]. However, such attempts have been limited to restricted domains.
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Figure 1-1: Typical Human Robot Interaction.

There have been recent efforts to build situatioanlly-aware applications [2, 8] that
support human-computer interaction in personal computing domains. Situationally-
aware systems extract, interpret and use situational information and adapt their
functionalities to current environments. A few of the current speech understanding
systems, such as the AT&T “How May I Help You”, [11], use user contexts as well
as dialog contexts to assist human-computer spoken language dialog in customer-care
domains. However, little work has been done to introduce situational awareness in
the ASR language modeling through sensory information channels to assist human
robot or human machine interaction. Although audio-visual speech recognition has
emerged as an active field in multi modal research in recent years, much focus has been
on facial features, to be precise, lip movements, to enhance recognition confidence.
The efforts do not address spoken language acquisition to assist speech recognition
and understanding for human computer interaction. They deal more with surface
forms of speaker features rather than semantics of the shared human machine envi-
ronment. However, statistical language models that can use situational knowledge
obtained from other channels of sensory information to dynamically adjust utterance
distributions based on the environment may improve performance of spoken language

processing systems.
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1.1 Thesis Motivation

One of the essential properties of language is that its grammatical structure can be
characterized independently of meaning or reference (universal grammar) [6] This
has led to a long tradition in psycholinguistics, which assumes that the brain pro-
cesses responsible for the rapid syntactic structuring of continuous linguistic input are
”encapsulated” from other cognitive and perceptual systems. Much of early visual
processing often is claimed to be structured by independent processing modules [10].
The primary empirical evidence that syntactic processing is modular is due to the
fact that brief syntactic ambiguities, which arise because language unfolds over time,
seem to be initially resolved independently of prior context. However, recent psy-
cholinguistic studies have revealed surprising breaches of modularity. These studies
have found that acoustic and syntactic aspects of online spoken language processing
are influenced by visual context [44, 43, 9]. During interpretation of speech, par-
tially heard utterances have been shown to incrementally steer visual attention and
vice versa, visual context has been shown to influence speech processing. It has also
been found that the visual context may affect the resolution of temporary ambigu-
ities within individual words. Motivated by the compelling evidence for the early
and nearly seamless integration of visual and linguistic information that emerged
from these experiments, the thesis presents a cross-modal spoken language process-
ing (recognition / understanding) system in which visual context affects early stages
of speech processing to assist confident speech recognition and understanding. The
system design is based on the assumption that valuable cross-modal information is
lost if the speech recognition module remains unaware of other sensory modules in a

multimodal system.

1.2 Thesis Objective

In this thesis, we consider the problem of recognition / understanding of spoken

language utterances that consist of expressions referring to objects in a non-mobile
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Figure 1-2: Block Diagram of the Proposed Early Integration Approach

visual environment of object configurations shared between a robot and a human
participant. Spoken language processing in this domain is challenging since there are
numerous potential candidate objects present that may lead to ambiguities in the
interpretation of such classes of expressions. Furthermore, speakers may use various

description strategies to refer to an object in a visual scene.

The proposed approach of early cross-modal integration has been implemented in
an on-line, real-time, multimodal processing system that jointly infers the most likely
word sequences in spoken language utterances as well as identities of the referent tar-
get objects. Figure 1-2 illustrates a block diagram of the proposed approach. Unlike
state-of-the-art language models that are derived from textual transcriptipons, our
system generates dynamic visually driven language models in the form of statistical
distributions of words and phrases using semantics extracted from visual represen-
tations of an input image. These visually driven language models are used in the
speech recognition search algorithm to steer search paths towards more likely word
sequences. Partially decoded spoken utterances during the speech recognition search
update a dynamic model of visual attention spread over the input scene, which, in
turn, re-estimates the possible words and phrases that a speaker is likely to say next.
As processing continues, linguistic and visual information mutually reinforce each

other, sharpening both linguistic and visual hypotheses. The cross-modal linguistic
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and visual integration approach takes care of the challenges highlighted above. Hence,

the system constitutes four broad components:

e A medium vocabulary speech recognition system.

A machine vision system to process simple objects and spatial relations.

A trainable language-modeling component that generates predictions of words

and phrases from visual representations.

An adaptive visual attention model to integrate the language model into the
speech recognition system on-the-fly to bias the recognition process towards

more likely interpretations of acoustic signals.

An overview of the design and the main components are described in chapter 3.

Details of each of the system components are described in chapters 4, 5 and 6.

1.3 Application Scenario in Human Computer In-
teraction

The research may find various applications which involve spoken language recognition
/ understanding accompanied by user context. Portable devices that are context-
aware through visual as well as other sensory modalities may apply them to perform
better user speech understanding. For example, a personal travel assistant may inte-
grate other non-speech sensory situational awareness such as, user location, current
time, user schedule, to the core speech processing in order to improve task understand-
ing. Other domains may include context-sensitive automatic medical transcription

systems, and assistive robots [40].

1.4 Thesis Outline

The rest of the thesis describes our approach of early cross-modal integration as

well as the design and implementation details of the proposed system. The thesis is

21



organized as follows:

e Chapter 2 highlights some of the prior work related to spoken language under-

standing, language modeling and related research in these areas.
e Chapter 3 gives an overview of the system highlighting the main components.
e Chapter 4 details the visual analysis module of the proposed system.
e Chapter 5 describes the speech recognition module of the proposed system.

e Chapter 6 details the early cross modal integration through dynamic language

modeling interfaces.
e Chapter 7 summarizes performance evaluation of Fuse

e Chapter 8 concludes the thesis with suggestions for future work.
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Chapter 2

Background

Automatic speech recognition has been an active field of research in recent decades.
Most of the research has focused on building automatic transcription systems and
voice command-driven telephony systems. These systems address four broad research

components

1. Robust signal processing of the acoustic waveforms

[\™]

. Statistical modeling of sub word units such as phonemes

3. Statistical modeling of language regularities

4. Fast speech decoding over a large vocabulary, and

5. Language understanding to enable human-to-computer conversations

The thesis makes contributions to (3) and (5) by introducing a novel method for
generating trainable language models using visual representations.

This chapter gives a brief overview of some of the research that has taken place
in the areas of statistical language modeling and spoken language understanding.
The chapter also briefs some of the recent cognitive studies of cross-modal speech
interpretation that show early integration of linguistic and visual information. Due

to the broad range of topics, selected works have been highlighted.
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2.1 Statistical Language Modeling (SLM)

A survey of major SLM techniques is listed in the following subsections.

2.1.1 n-grams

N-grams are the most successful language models used in current speech recognition
technology. An n-gram model estimates the probability of occurrence of the n'”
word, phrase or any arbitrary symbol based on a history of previously encountered
n — 1 symbols. For large training corpora, a trigram (n=3) language model is a
common choice whereas a bigram (n=2) language model is often used with smaller
ones. The problem in estimating trigrams as well as bigrams is a sparse data problem
because there may be several bigrams and trigrams combinations that never occur in
the training corpora. For example, [33] mentions that even after training a trigram
language model using a 38 million words’ worth of newspaper articles, one-thirds of
trigrams in new articles from the same source are novel.

Clustering methods have been developed to tackle data sparseness in statistical
language modeling [3]. A typical vocabulary-clustering algorithm searches for equiv-
alence classes (word classes) from the training data. It assigns equal probability
distributions to all members in a word class. This accounts for comparable weighting
of syntactically similar words in the language model. [33] reports that good results
are obtained by manual clustering of words [45] in narrow discourse domains (e.g.
ATIS, [28]). [20] suggests an automatic iterative clustering method using information
theoretic criteria that can be applied to large corpora to increase the performance of
the resulting model. Class-based n-gram models form the basis of the language mod-
eling component in the system presented in this thesis and are described in details in
section 6.1

While n-gram models do reflect the semantics of the language being modeled,
theymainly model syntactic regularities in a language. Every language possesses a
deep set of structures contributing to its comprehensibility [6]. N-gram models do

not take advantage of these semantic characteristics in language modeling.
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2.1.2 Linguistically Motivated Models

Several SLM techniques, however, are directly derived from grammars commonly
used by linguists. Context free grammars (CFGs) [25], as the name suggests, are
context free models [14] of natural language. A typical context-free grammar consists
of an initial non-terminal symbol, a set of non-terminal symbols and terminals such
as words, and a set of transition rules called “rewrite rules“. Sentences are generated
by applying these transition rules that fan out non-terminal symbols in terms of
terminals and non-terminals, until a sequence of terminals is achieved. Specific CFGs
have been created based on parsed and annotated corpora such as [22]. A stochastic
context free grammar (SCFG) [4] puts a probability distribution on the transitions
fanning out from each non-terminal, thereby inducing a distribution over the set of
all sentences.

Link grammar is a lexicalized grammar proposed by [42]. In a link grammar, each
word is associated with one or more ordered sets of typed links with each such link
connected to a similarly typed link of another word in the sentence. Probabilistic
forms of link grammars have also been attempted [16].

Although these models provide more sophisticated language information, their
main disadvantage is that they suffer from data fragmentation, in that more detailed
modeling results in estimating numerous parameters with less and less data. Esti-
mation of these models is data-driven and often results in generating locally optimal
models. Moreover, they do not account for actual context sensitive behavior of the

language.

2.2 Spoken Language Understanding

This section briefs some of the research in developing spoken language understanding
systems in recent decades to assist human-computer interaction in various domains.
A particular domain that has been in focus is the Airline Travel Information System
(ATIS) [28] domain. Many research laboratories have developed spoken language

understanding systems in this domain. One such system is the SRI International
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ATIS spoken language understanding system [25]. The SRI ATIS system uses so-
phisticated natural language processing algorithms that transform speech recognition
output into well-posed database queries. The natural language processing component
incorporates information from natural language and lexicon into a statistical language
model to assist both recognition and understanding. It also uses context-modeling
mechanism for air travel planning that constructs user dependent models to assist

speaker-dependent speech understanding.

The Berkeley Restaurant Project (BeRP) [17] is a medium-vocabulary sponta-
neous speech understanding system developed at ICSI. The system constitutes a
medium-vocabulary Viterbi [31] speech decoder called Y that uses simple bigram
language models as well as stochastic context free grammar (SCFG) parsers / gen-
erators. The BeRP natural language processing backend transforms candidate word
strings from the decoder to well-formed database queries. The backend uses bottom-
up stochastic chart parser on a stochastic context free attribute grammar to compute

all possible parses and semantic interpretations of the input.

GALAXY [41], a spoken language system architecture developed by the Spoken
Language Systems group at MIT, performs spoken language understanding to en-
able human-to-computer conversations in domains such as weather forecasts, travel
reservations and city guides. Like BeRP, Galaxy follows a modular design in which a
speech recognition component, SUMMIT, generates a list of candidate sentences from
the acoustic signals. The top choice sentence selected by SUMMIT is represented in
a logical, meaningful structure. Based on stored rules, the language understanding
component, TINA, parses each sentence into grammatical components, such as sub-
ject, verb, object, and predicate. TINA then formats this information in a semantic
frame, a command-like structure consisting of a clause, topic, and predicate. The lan-
guage generation component, GENESIS, converts the semantic frames to well-formed

messages.
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2.3 Spoken Language Acquisition

The systems described in the previous section use built-in databases and rules to per-
form spoken language understanding. In recent years, there has been some research
on automatic acquisition of linguistic information to assist speech understanding.
One of the first systems to be deployed that performs spoken language acquisition
in real-world customer-care scenario is the AT&T "How May I Help You” spoken
language understanding system [11, 12]. The system learns salient phrases and gram-
mar fragments from human-operator conversations related to telephony customer care
services. During spoken language processing, the system takes in the output of the
AT&T Watson speech recognition system [13] in the form of word graphs or lattices
[21], retrieves salient parts of the dialog and maps it to one of many possible subse-
quent dialog actions. The system performs late integration of both customer as well

as dialog context to guide the speech understanding.

Roy and Pentland [35, 38] modeled the early stages of word acquisition from
sensor-grounded speech and visual signals. They demonstrated the utility of learning
algorithms based on cross-modal mutual information in discovering words and their
visual associations from untranscribed speech paired with images of three-dimensional
everyday objects. An embodied system was able to learn object names from a cor-
pus of spontaneous infant-directed speech. The system discovered and segmented
word-like acoustic units from spontaneous speech driven by cross-modal analysis. An
acquired lexicon of visually grounded words served as the basis for a small vocabulary
speech understanding and generation system. The system was able to process single

and two-word phrases which referred to the color and shape of objects.

Roy [36] developed a spoken language generation system that performs language
acquisition to describe objects in computer-generated visual scenes. The system was
trained by a “show-and-tell” procedure in which visual scenes are paired with natu-
ral language descriptions. Learning algorithms acquire probabilistic structures that
encode the visual semantics of phrase structure, word classes, and individual words.

The system integrates syntactic, semantic, and contextual constraints to generate
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natural and unambiguous descriptions of objects in novel scenes. The system gen-
erates syntactically well-formed phrases phrases, as well as relative spatial clauses
to describe target objects through simple utterances as well as complex utterances
involving landmark objects and spatial relations. A similar research reported by Roy
et.al. [37] presents a trainable, visually grounded, spoken language understanding
system that acquires a grammar and vocabulary from a ”show-and-tell” procedure
in which visual scenes are paired with verbal descriptions. During training, a set
of objects is placed in front of the vision system. Using a laser pointer, the system
points to objects in random sequence, prompting a human teacher to provide spo-
ken descriptions of the selected objects. The descriptions are used to automatically
acquire a visually-grounded vocabulary and grammar. Once trained, the system late-
integrates speech recognition and visual analysis outputs and points, in real-time, to

the object which best fits the visual semantics of the spoken description.

2.4 Psycholinguistic Experiments on Cross-modal

Processing

The early cross-modal integration of linguistic and visual input to guide language
comprehension forms the basis of the design of our system. This section reviews a
couple of psycholinguistic experiments that have been carried out in the past few
years to observe whether human spoken language comprehension follows the same
principles of cross-modal behavior. In one such study on cross-modal behavior of
human language comprehension, Tanenhaus et. al.[44] demonstrated that individuals
process spoken language instructions incrementally using visual cues from the envi-
ronment. Eye movements were recorded with a head-mounted eye-tracking system
while subjects followed instructions to manipulate real objects to test the effects of
relevant visual context on the rapid mental processes that accompany spoken lan-
guage comprehension. The subjects were found to make saccadic eye movements to

objects immediately after hearing relevant words in the instruction. For example,
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during processing an utterance “touch the starred yellow square”, the subjects made
eye movements to the target block after hearing the word “starred” when only one
starred object was presenting the environment. The authors found strong evidence
for seamless integration of visual and linguistic information to hypothesize that a
relevant visual context, if available for the listener to query as the linguistic input
unfolds, may influence its initial syntactic analysis.

Spivey et.al. [43] conducted a linguistically mediated visual search experiment to
support theories about a connection between the language comprehension and visual
perception portions of the brain and that language comprehension can constrain visual
perception. In this task, a subject was asked whether a target object was present on
the computer screen then instructed to press a key on the keyboard that corresponded
to their ’yes’ or 'no’ answer. The reaction time increased with the increase in the
number of competitive objects in the scene. The experiments led to a theory of how
mental processes are able to respond to the question of whether a target object is

present, or absent on the screen.

2.5 Summary

To summarize, statistical language modeling and speech understanding form the core
components of the system described by this thesis. The chapter highlights some of
the research that has taken place in these areas over the past few years. Some of the
language modeling techniques reviewed in this chapter, such as n-grams and vocabu-
lary clustering, have been modified in the system design to generate visually-steered
language models that use visual context to assist spoken language understanding.
Unlike most of the spoken language understanding systems described in this chapter
that perform late integration of speech recognition output with natural language pro-
cessing, this thesis presents a system that performs early cross-modal integration of
linguistic and visual information to assist speech recognition as well as understanding
simultaneously. The chapter also presents some of the recent studies in human lan-

guage comprehension that form the basis of our experiments to compare human visual
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attention patterns to the proposed visual attention mechanism used in the system.
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Chapter 3

Fuse: A Model of Cross-modal

Spoken Language Processing

This chapter provides an overview of our approach to speech recognition / under-
standing, which is integrated with visual context through dynamic language models.
The chapter starts with a brief description of the speech recognition task used in
our experiments. The rest of the chapter introduces the main components of the

developed system named Fuse.

3.1 The Scene Description Task

A simple scene description task was developed to study the role of visual context
in spoken language recognition / understanding. A typical visual scene used in the
task consists of a camera image consisting of ten lego blocks in average with random
spatial configurations. During data collection, the task interface randomly selects
one of the ten lego bricks as the target object. Participants were asked to verbally
describe target objects in scenes (Figure 3-1) without any restrictions placed on the
vocabulary, style, or length of description. Typical descriptions ranged from simple
phrases such as, “The green one in front” to more complex referential utterances such
as, “The large green block above the large red and yellow blocks“. The result of this

data collection was a set of images and spoken descriptions to objects in the images.
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Figure 3-1: An example scene.

The performance of the system was evaluated based on two criteria:

e Speech recognition performance: given a visual scene, compare the speech recog-

nition output with and without the knowledge of visual context.

e Spoken language understanding: given a spoken description, find the object in

the scene that best fits the description.

Details of the data collection and evaluation are presented in chapter 7

3.2 The System Overview

Figure 3-2 provides an overview of our approach to integrating visual context with
speech recognition and understanding. The remainder of this section highlights the

main ideas underlying the approach.

As shown in Figure 3-2, input consists of a speech signal and an image. Figure
3-1 is representative of images in the current task, captured by a color video camera.

The speech signal is recorded from a head-worn microphone.
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Figure 3-2: The overview of the system architecture.

3.2.1 The Main System Components

Fuse is implemented as a distributed system that allows system components to com-
municate with each other through network message passing protocols. Processing in
Fuse is initiated by the detection of spoken utterance by the Speech Recognition
module. At this stage, the utterance segmenter sends a request to the Visual Scene
Analysis module to capture the current video frame. The visual scene analysis
component segments individual objects in the scene and extracts visual properties
of objects and spatial relations between object pairs. The resulting representation is
sent to both the Dynamic Language Model Generation module and the Visual
Attention Generation module. The visual attention generation module keeps the
representation in memory, generates a vector of equally distributed attention over
all the objects in the scene and sends it to the language model generation module.
The language model generation module estimates the probability distribution of oc-
currences of visually relevant words and phrases given the object configuration in
the current scene and the visual attention. The generated language model provides

contextual knowledge to the Speech Decoder during speech processing.
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Figure 3-3: Visual Configuration for Case 1: Simple Utterance

As the spoken utterance is processed by the speech decoder on line, multiple partial
hypotheses of utterances up to the current time (¢) feed back to the visual attention
module in the form of a partially ordered word graph [21]. The visual attention
module redistributes attention over the objects based on the partial utterances. The
language model is updated based on the reestimated visual attention and is accessed
by the decoder at time ¢t + 1 The process continues until the utterance segmenter
detects speech endpoint. At this point, the Speech Understanding component
uses the decoder results to highlight the object that best fits the utterance. Changes
made to a scene during the processing of individual utterances are not taken into
account.

We will work through a couple of examples to explain the main processing loop
in Figure 3-2 and the role of the language model and visual attention model. The

details of these components are described in chapter 6.

3.2.2 Handling Simple Referent Expression

Let us consider a situation in which a speaker utters the expression “The red block
on the left” in the context of a scene as shown in the figure 3-3. As the first portion

of the utterance is processed, let us assume that the system has correctly pulled out
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Figure 3-4: Visual Scene Configuration for Case 2: Complex Utterance

a hypothesis “the red“. We consider a single hypothesis for this example. In reality,
there are thousands of hypotheses active at a given time frame. The visual attention
module at this point receives the output from the speech recognizer as well as the set
of visual features from the visual analysis module. Visual attention is modeled as a
probability mass function (pmf) vector whose elements are identical during the onset
of an utterance. When the words “the red” are fed into the visual attention module,
it updates the probability mass function vectors so that visual attention is shifted to
the the red things in the scene, which results in a shift to the single red block present
in the scene.

The language model generator module generates a probabilistic mixture of de-
scriptions for each object in the scene. At this point, the updated pmf s cause the
generator module to favor the words “left” and “bottom” rather than “right” or “top”
since there is only one red block in the scene. In this way, the updated language model

biases the speech recognizer to decode the rest of the utterance more confidently.

3.2.3 Handling Complex Referent Expression

One complication is introduced with utterances with relative spatial clauses such as,
“The red block above the small green one“. Let us consider a situation in which a

speaker says so in the context of a scene as shown in the figure 3-4 . In this class of
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utterances, the visual attention must be reset mid-way through processing to refocus
from one object to another. Let us assume that the speech recognizer recovers a
partially decoded utterance, “the red block®“. The visual attention module updates
the probability mass function so that most of the attention is shifted to the two red
blocks on the scene. The dynamic language model generator favors “above” as well
as “left” more than “below” or “under” as the red blocks are either above or to the
left of some other landmark object in the scene. Let us assume that the recognizer
ends up with a partial hypothesis “the red block above“. At this stage, the visual
attention pmf is updated such that most of the attention is spread over objects that
may serve as the possible landmark objects satisfying the spatial relation “above”
with respect to the objects probabilistically referred to by the partial utterance “the
red block®. In our case, the system ends up paying more attention to the green and
the blue blocks that are below the red block. This gradually drives the speech decoder

to interpret the landmark expression ” the small green one” more effectively.

3.3 Summary

To summarize, the system generates a visually steered language model as a mixture
of descriptions when presented a new scene. As acoustic evidence is incrementally
processed, the visual attention pmf evolves. The dynamic pmf in turn biases the
language model of the speech recognizer. As more of the utterance is processed,
the visual attention becomes progressively sharpened towards potential referents in
the scene. The approach is different from a modular approach, in which speech
recognition and visual analysis would be performed separately and combined by an
integrator that does not affect the internal operations of earlier stages of processing.
The design and implementation aspects of the system are explained in the following

chapters that provide detailed descriptions of each component of the system.
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Chapter 4

Visual Scene Analysis

The chapter details the visual scene analysis module of Fuse. The module segments
colored objects in an input camera image in real time, extracts visual properties of
objects and computes inter-object spatial relations. The resulting representation is

passed to the language model generator and the visual attention generator modules.

4.1 Object Segmentation

Object segmentation is performed on the basis of color. The color distribution of
objects is modeled using mixtures of Gaussian distributions. Although all objects are
constrained to be single-colored, shadow effects of three-dimensional objects necessi-
tate the use of a mixture of Gaussian distributions. Three mixtures have been used
for each color distribution to capture these effects. The density functions for the color

distributions are given by:

feotor () = T3 w; N (x| 5, Cj); (4.1)

where
N(z|p;,C;) = ! L ot 4.2
(]ps, Cj) = Wexp[—§($ — i) Gy (@ — )] (4.2)

w; are the mixture weights (E?lej = 1,w; > 0) p; are the mixture means, and
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Figure 4-1: Object detection procedure.

C'j are the mixture covariance matrices.

For each type of object used in the experiments, a color model is created by
collecting sample images of each object and manually specifying the region within
each image that corresponds to the object. The Expectation Maximization (EM)
algorithm [7] is used to estimate both the mixture weights and the underlying Gaus-
sian parameters for each object. K-means clustering [19] is used to provide initial

estimates of the parameters.

As shown in Figure 4-1 | input images are split into two parallel processing paths.
The first process performs local edge detection in each of the RGB color planes. The
outputs from the edge detectors of all three planes are summed to provide an overall
estimate of local edges. This results in a binary image in which pixels located at edges
are set to 0. In the second process, each 5x5 patch of pixels is classified as belonging
either to one of the known set of objects or to the background. This is done by
evaluating each color model (described above) for each pixel patch and thresholding
the resulting values. Patches that have high matches with any color model are set to
1 and the remainder are classified as 0. The upper middle image in Figure 4-1 shows

the result of this stage.
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Feature Name

Feature Description

T

The mean R value of the 10x10 pixel region in the center of the object.

g The mean G value of the 10x10 pixel region in the center of the object.
b The mean B value of the 10x10 pixel region in the center of the object.
hw-ratio Height to width ratio of the object contour

area Contour area,

X X coordinate of the upper left corner of the object bounding box

y Y coordinate of the upper left corner of the object bounding box
mm-ratio Ratio of the maximum to the minimum dimension of the object contour

Table 4.1: The Set of Object-related Features Extarcted by the Visual Analysis Sys-
tem

A final step merges the outputs of the two processes by performing a pixel-wise
multiplication of the edge and object masks. A contour finding algorithm [46] identi-
fies connected regions in the resulting binary image. The integration deals effectively
with partial occlusions of non-similar colored objects.

Figure 4-1, ten objects are identified and assigned random indices.

4.2 Object Properties

Table 4.1 lists the set of object properties related features extracted by the visual
analysis module in Fuse. The set of features described in the table form an exhaus-
tive representation of objects with respect to the scene description task. [36] has
successfully used these features to develop a spoken language generation system for

a similar scene description task.

4.3 Inter-object spatial relations

To enable Fuse to ground the semantics of spatial terms such as ”above” and ”to
the left of”, a set of spatial relations similar to [32] is measured between each pair of
objects. The first feature measured is the angle (relative to the horizon) of the line
connecting the centers of area of an object pair. The second feature is the shortest

distance between the edges of the objects. The third spatial feature measures the
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angle of the line that connects the two most proximal points of the objects. The
fourth feature measures the distance between the two most proximal points of the

objects.

4.4 Summary

The visual scene analysis module in Fuse captures a video frame during the onset of
each spoken language utterance, extracts object properties and inter-object spatial
relations. Each object is represented by a ten-dimensional feature vector consisting
of three color features, five shape features and two position features. The spatial
relations between pairs of objects are represented by four additional spatial features.
The set of features are passed to the language model generation and visual attention

generation modules.
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Chapter 5

Speech Recognition

This chapter describes the speech recognition module of Fuse. Fuse has a conventional
speech recognition system that can process a medium size vocabulary of more than

1000 words in real time.

5.1 The Speech Recognition Paradigm

The speech recognition paradigm [29] aims to search for the word string W' such that
W' = argmax P(A|W)P(W)

where P(A|W) is the probability of the observed acoustic input A conditioned on a
word string W, and P (W) is the probability of the occurrence of the word string W.
Like most current speech recognition systems, the speech recognition module in

Fuse constitutes of

e Acoustic Front-End: The acoustic front-end is responsible for spectral feature
extraction from acoustic waveforms to obtain sequences of multi-dimensional

observation vectors, A’

e Utterance Segmenter: The utterance segementer divides a stream of obser-
vation vectors into speech segements or silence segments. It passes the speech

segments A to the decoder.
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Figure 5-1: The speech recognizer in Fuse

e Acoustic Models: Statistical models are trained for all phonemes in the vo-
cabulary. Since word strings are modeled as concatenation of phonemes, the

phoneme models are used to estimate P(A|WV)

e Language Model: Conventionally, a statistical language model provides the
decoder with estimates of the probability of word strings P(W¥). In Fuse, the
language modeling components of the architecture provide visual-contextual

knowledge to the decoder.

e Lexical Search Space Generator: The lexical search space generator pro-
vides a finite state network comprising all the words related to the task to the

decoder.

e Decoder: Given an utterance, the decoder uses the acoustic and the language
models to search for the best path in the finite state search space that maximizes
P(AW)P(W). The decoder outputs a word lattice corresponding to more

probable word strings.

The following subsections describe these components except the language mod-
eling component, that will be described along with the dynamic language modeling

components of the architecture in subsequent chapters.
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Figure 5-2: The acoustic front-end in Fuse
5.2 Acoustic Front-end

Figure 5-2 gives an overview of the acoustic front-end component in Fuse [47]. The
audio from the microphone is pre-emphasized to compensate for the radiation load,
which sound undergoes as it exits the mouth. The waveform is then windowed with
a Hamming window of length 20 ms, and the window is moved in increments of 10
ms. across the length of the waveform. This creates a vector of features every 10
ms. The samples within this window are passed through a Mel Scale filter bank to
determine the amount of each frequency range present in the signal. Following this,
the log of each filter bank coefficient is taken. As the average is subtracted off of
each component at the end, this allows the feature extraction to concentrate mostly
on feature differences. Next, the output of the filter banks is transformed using a
discrete Cosine Transform (DCT). 12 filters are used in the bank of filters resulting in
12 transformed coefficients. Liftering is done to attempt to smooth these coefficients.
Log energy is included as an extra coefficient. In addition, as the waveform is not
stationary, the set of coefficients are augmented to include first and second order
derivatives.

24-band Mel scale filters were used in Fuse, and with the data given being sampled
at 16 kHz, the front-end generates 10 ms acoustic frames consisting of 39 dimensional

feature vectors.

5.3 Utterance Segmenter

The utterance segmenter divides the audio stream into speech and silence segments
using a four-state finite state machine to smooth out occasional silence frames in
speech segments, and speech frames in silence segments. The model is shown in Fig-

ure 5-3. The design, implementation and evaluation details of the utterance segmenter
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Figure 5-3: Four State Speech Silence Model

component can be found in [48].

The segmenter is initialized in the silence state, and transitions to possible speech,
speech, then possible silence based on the input signal. If the state machine is in the
speech or silence state, it will stay in that state as long as the speech /silence classifier
makes the same classification for an incoming frame. If a differing classification is
given for the frame, it switches to the possible-speech or possible-silence state. The
possible-speech and possible-silence states insure that a pre-specified number of con-
secutive frames are necessary in order for a transition between speech and silence
segments to occur. The segmenter stays in the possible-speech or possible-silence
state until a pre-specified number of consecutive frames with the opposite prediction
has occurred. If this specified number of frames do not occur, the state reverts down
to the previous speech or silence state. If the minimum number of consecutive frames
with the opposite prediction occurs, the finite state machine transitions into the op-
posite state. In the speech state, feature vectors of the incoming signal are sent on to
other parts of the program, whereas in the silence state, information is not sent on

to other parts of the system.

5.4 Acoustic Models

Acoustic models are represented as three state left-to-right Hidden Markov Models
(HMMs) [30] for each of the phonemes present in the vocabulary. The HMMs are
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initialized through a Segmental K-means algorithm [31]. The output and transition
probabilities can be iteratively improved through the Baum-Welch method [1] for
Expectation Maximization [7]. However, this method may only reach local maxima, so
it is important to initialize these probabilities to reasonable estimates. The transition
weights for the HMM arcs are stored as matrices. The probability density function
associated with a state is modeled as a continuous density mixture of gaussians.
Ideally the base units chosen for word recognition are independent of context, so
that they don’t depend on the other units around them. In practice, however, the way
phonemes are pronounced varies depending on the phonemes around them. Much of
this has to do with co-articulation, where the movements made by the mouth and
vocal cords are coordinated to produce smooth speech. This coordination means that
adjacent phonemes are produced from one fluent motion, and thus the pronunciation
of any phoneme is tied to the other phonemes around it. In order to deal with this
effect, models that depend on the context are developed. The speech recognition

system uses four models for a phoneme

e “Triphones”, phoneme models that depend on the previous and following phonemes,
e “left biphones”, phoneme models that depend on the previous context

e “right biphones”, phoneme models that depend on the following phonemes

e “uniphones”, phoneme models that are context independent

xx_aa_l_l:eps/0.348 xx_aa_l_2:eps/0.221 xx_aa_l_3:eps/0.291

2 0 S xx_aa_l_l:eps/1.351 ; | )\ xx_aa_l_2:eps/1.767 ; ) )\ xx_aa_l_3:xx_aa_1/1.374 ‘

Figure 5-4: Graphical model of a right biphone

Figure 5-4 represnts a right biphone HMM for the phoneme “aa” with phoneme
“” in the right context. Details of implementation of acoustic models can be found

in [26].
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5.5 Lexical Search Space

Like most state-of-the-art speech recognizers, the search space of Fuse is represented
by a tree-structured finite state transducers network constituting the set of the words
and the phrases belonging to the vocabulary . In the simplest form, every word in
the vocabulary is represented through its pronunciation form using phonemes. Word
models are represented as linear sequences of the underlying phoneme HMMs. Figure

5-5 illustrates word models for “red” and “green” using context-dependent phonemes.

@ epsred S ‘@ xx_r_eh:eps ‘@/L r eh dieps ‘® eh_d xcred ‘@

@ epsigreen_S @ XX__r:eps @ L1 iy:eps @ r_iy_n:eps @ iy_n_xx:green @

Figure 5-5: Graphical models of the words “red” and “green”

The following algorithm generates word models in terms of the acoustic model

parameters.

e Generate an union of all finite state transducers corresponding to the context

dependent phonemes that make up the vocabulary.

e Generate a finite state transducer that is equivalent to the Kleene closure [14]

of the union of above finite state transducers.

e Compose the above transducer network with each of the word models.

Figure 7?7 in Appendix ?? illustrates the modified word models for the word “red”.

The search space is then generated as given by the following algorithm

e Generate union of the entire word model Finite State Transducers comprising

the vocabulary.
e Remove epsilon transitions from the generated Finite State Transducer

e Determinize and minimize the above Finite State Transducer
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e Apply Kleene Closure to the Finite State Transducer generated in Step 3

Figure ?? in Appendix ?7? illustrates the lexical search space for a vocabulary of
two words: “red” and “green”.
Details of the finite state transducer algorithms such as union, composition, de-

terminization, minimization and Kleene closure can be found in [24, 27]

5.6 Speech Decoder

To start the recognition process, the tree-structured lexicon is loaded into memory.
The transitions in the tree-structured lexicon contain information regarding the con-
text of phonemes, the phoneme HMM states distributions and the transition weights.

Transitions can take place on several different levels.

e Between states in a phoneme HMM model. This is determined by the transition
matrix estimates for the phoneme. The lexicon finite state transducer takes care

of the transition values in respective arcs.

e Between phonemes in a word. If the transition matrix allows a transition out
of the phoneme model, it transitions to the next phoneme of the word. The
lexicon finite state transducer incorporates the information in its within-word

transition arcs.

e Between different words. Since a tree-structured lexicon is used, it does not
necessarily mean that word-starts follow word-ends. This happens because of
the overlap between first few phonemes of different words. However, once fi-
nal states in the lexicon finite state transducer corresponding to word ends
are reached, the lexicon needs to be conceptually expanded to incorporate the
probability of transitioning to new words (supplied by the language model esti-
mates). This is made possible by bookkeeping the list of words associated with
each phoneme in the transition arcs. This enables the incorporation of language

model estimates when the decoder makes transition from a word-end. The cost
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of these transitions are determined by the situationally-aware language models

generated by Fuse.

The decoder processes observation vectors corresponding to speech segments and
outputs the single best word string corresponding to the speech signals as well as
partially ordered word graphs [21] containing multiple probable word strings. The

decoding algorithm is as follows:

e For all the current hypotheses, make transitions from current active states to

new states as allowed in the tree-structured lexicon.
e Add the transition costs as described above.

e Merge two hypotheses when the word-ends in their paths are same, keeping the

more probable one.

e Update the state probabilities by adding their probability of creating the current

observation vector to their probability.
e Prune states if their probabilities fall below a threshold.
e Mark the remaining states as active hypotheses.

e For all active hypotheses that mark word-ends, append a finite state automaton
with a new state corresponding to the word and a transition from the last word-

end in its path. Weigh the transition with the posterior probability of the word.

e Repeat the above steps until all the observation vectors in a speech segment are

processed.

e At the end of this procedure, a simple back trace starting from the most probable

active hypothesis provides the best guess of the most likely word se quence.

e The resulting finite state automaton is determinized and minimized [27] result-

ing in a reduced search space

Figure ?? shows an example of a compact word lattice.
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5.7 Summary

This chapter describes the main components of the speech recognition module in Fuse.
Like most speech recognizers, the speech recognition module in Fuse uses acoustic and
language models to search for best word strings corresponding to the speech signals.
The main components of the speech recognition module are similar to most state-of-
the-art systems except the fact that Fuse uses situationally-aware dynamic language

models to perform speech decoding.
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Chapter 6

Language Modeling Component for
Early Integration

This chapter details the language modeling interface in Fuse that performs the early
integration of visual contextual knowledge into the lexical search space during the
decoding of the incoming utterance. The chapter starts by recapitulating the basics
of class-based n-gram language modeling. Algorithms related to the acquisition of vi-
sually salient words and phrases and generation of scene-wise visually driven language
models are described in the following section. The rest of the chapter deals with the
interface of early integration of visual context in the speech decoding process through
dynamic update of visual attention, thereby, leading to more likely interpretation of

spoken language utterances.

6.1 Class-based n-gram Language Model

This section briefly describes n-gram statistical language models that serve as the
basis of the proposed cross-modal integration. Given a word sequence W such that

W = wq, wy, ws, ..., w,, the probability of the occurrence of such a word sequence is
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given by:

P(W) = P(wl,wg,wg;, ,wn) = P(wl)P(wg\wl)P(w;),\wz,wl)...P(wn\wn,l...wl)
(6.1)
For n = 2, the above model assumes the Markovian property that the occurrence

of any word depends only on the previous word in the word string. Therefore

P(W) = P(wy,ws, ws, ..., w,) = P(wy) P(ws|wy) P(ws|ws)...P(wy|w,_1) (6.2)

Words may be clustered into equivalence classes leading to class based n-gram
models. The set of words may be partitioned into word classes through a function

that maps every word w to its corresponding word class ¢(w). This results in:

P(W) = P(c(w1)) P(wifc(w1)) P(c(we)|c(wr)) P(ws|c(ws))...P(wa|c(wn)) — (6.3)

where P(c(w;)|c(w;_1)) denotes class-to-class transition probability while P(w|c(w))

denotes class conditional probability. Equation 6.3 can be used to factor P(w;|w;) as

P(wilw;) = P(wilc(w:)) P(c(wi)|c(w;)) (6.4)

Fuse uses class based language models for the following reasons:

e (Class based language models make better use of limited training data to make
generalized predictions for word sequences that may not occur in the training

data.

e Class based language models involve the estimation of class conditional prob-
ability mass functions. In context of Fuse, this generation procedure depends
on the visual context. The visual context does not affect the underlying gram-
mar. Hence, the class-to-class transition probabilities in Fuse can be estimated

statically from the training data.
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6.2 Visual Context Driven Language Model

Visual context driven language modeling addresses some of the basic requirements

mentioned below:

e The language model should encompass descriptions or expressions that fit all
objects in the scene. This is due to the fact that Fuse cannot afford to bias

towards individual objects at the onset of an incoming utterance.

e For each object, the language model should consider all possible combinations
of words and phrases that speakers may use to describe it. This is due to the

fact that speakers may describe individual objects in various ways.

e The language model should guarantee visual generalization while describing

individual objects.

We now summarize our approach below. Details of the algorithms and implemen-

tation can be found in subsections 6.2.1, 6.2.2 and 6.2.3.

e A vocabulary of visually salient words and pharses and the underlying grammar
is acquired from the training dataset. The sematics of the visually salient words

are associated with the set of visual features described in chapter 4.

e Descriptions are generated for each object in the current scene using the ac-

quired knowledge base.

e For each object, multiple descriptions of different lengths weighted by their
semantic relevance are generated. For example, the word “red” is weighed more

than the word “blue” for a red object.

e The resulting descriptions are then weighted by their contextual relevance in
the given scene. Ambiguous descriptions are given less weighting than the more

salient ones.
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e A class-conditional language model is created for each of the objects in the
scene. The class-conditionals estimate probability distributions of words and

phrases conditioned on the objects in the scene.

e A weighted mixture of all the class-conditional language models is used by the
speech decoder. The individual class-conditional language models remain fixed
during the processing of an utterance. However, the relative weighting of indi-

vidual submodels is dynamically updated using partially decoded hypotheses.

To deal with utterances that consist of target as well as landmark objects, the
language model also needs to take spatial terms into account. The approach is de-
scribed in subsection 6.2.3. The following subsections describe the set of algorithms

for learning and generating visually grounded language models.

6.2.1 Learning The Description Model

This subsection describes the set of algorithms that have been developed for acquiring
the structures necessary to produce object related descriptions. Details of the learning
methods may be found in [36]. All parameters of the description model are learned
from examples of objects embedded in scenes that are labeled with descriptive phrases.
A set of 60 training examples were collected from each participant, resulting in a
total of 476 examples in the training dataset described in section 3.1. The examples
were chosen such that the accompanying spoken language descriptions are simple

expressions referring to individual objects.

Detection of Visually Salient Words / Phrases by Feature Selection

Feature selection proceeds by assigning features to each word on an individual basis.
Features for an individual word are selected to maximize the symmetrized KL distance

[36] between the word conditional distribution and the background unconditioned
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Figure 6-1: Feature associations with visually salient words.

distribution,

KL(p1(2) Ipo()) = 5tr (ST + 5581 = 20) + 5 (1 — o) (57" + 557 (1 — )
(6.5)
where Y is the full covariance matrix and p is a mean vector.

Feature selection is achieved using a greedy algorithm. It starts by selecting the
single feature which leads to the highest symmetrized KL distance between condi-
tioned and unconditioned distributions. The feature selection procedure iteratively
finds the next best feature which maximally increases equation 6.5. Each KL distance
is normalized by the number of selected features (i.e., the number of dimensions). Af-
ter each feature is added, the increase in normalized KL distance is computed. No
further iterations are made when no increase is obtainable.

Visually salient words are retrieved from this feature search algorithm. If the
selected feature set for a word is a subset of the entire visual feature set described in
Table 4.1, the word is denoted as a visually salient one. Words that are not able to

pull up discriminative feature subsets are marked as ungrounded or visually irrelevant.
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Word Class Class Members

Co large, big, small, little, bigger, smaller

C10 rectangle, square

C11 front, back, left, right, top, bottom, rear, upper

C12 frontmost, topmost, bottommost, leftmost, rightmost, centermost
C13 red, blue, yellow, green

C25 horizontal, vertical

Table 6.1: Word Classes and their Members
Figure 6-1 illustrates a couple of visually salient words pulling out subsets of features
from the training data.
Word Class Formation

Once visually relevant words are retrieved from the training examples, they are clus-
tered into word classes. Visually ungrounded words serve as singleton equivalence

sets.

1. Clustering based on syntactic similarities: A bigram-pair occurence indicator

variable is defined as follows:
I(w;,w;) =1, if w; follows w; in the corpus
I(w;,w;) =0, otherwise

A distortion metric between two word classes is defined as

di (s, Cj) = 21192121]\21(22:1,m¢c,-(1c),m¢cj(l) (I(Ci(k), wm) — I(Cj(l)a wm))2)
(6.6)

where V is the vocabulary size.

A greedy algorithm is used to merge clusters as follows

e Begin with K = V clusters.
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e Find C; and C; such that d;(C;, C;) falls below a chosen threshold, 1 <
,,j > K
e If there are no such clusters, then stop

e Merge the elements of clusters that do not contain visually ungrounded

words.

e Goto Step 2

On termination, the visually relevant words get clustered into equivalence classes

while the ungrounded words remain as singleton word classes.

2. Clustering based on semantic similarities: This method clusters words that co
occur in similar visual contexts. Details of the clustering algorithm can be

obtained from [36].

A weighted combination of the above clustering algorithms is used to generate
a set of visually salient word classes. Table 6.1 enumerates the list of word classes

acquired by Fuse.

Grounding Word Semantics

For each visually salient word, a multivariate Gaussian model is estimated using
the observations which co-occur with that word. Each visually relevant word class
inherits the conjunction of features assigned to its members. The word-conditional
model specifies a probability density function (pdf) over the subset of visual features
which have been inherited by the corresponding word class. Table 6.2 enumerates the

set, of features associated with individual word classes

Word Class Feature Subset

C8 area, mm-ratio
C10 area, mm-ratio
C11 X,y

C12 X,y

C13 r,g, b

C25 hw-ratio,

Table 6.2: Feature Subsets Associated with Individual Word Classes
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mm-ratio

area

Figure 6-2: Example of a word class with four members.

Figure 6-2 shows the visual models associated with some of the members of the

word class “C8” in Fuse.

Class-based Bi-gram Language Model

A class-based bigram statistical language model [3] is estimated (based on class fre-
quencies) to model the syntax of referring expressions. Visually “ungrounded” words
form singleton word classes (classes with only one member). The bigram statistical
language model representing the word class syntax is learned from the training data
in a leave-one-speaker-out form. Due to the fact that the underlying grammar of
referring expressions does not change with visual context, the class based bi-gram

model remains static irrespective of changes in the visual scene.

Figure 6-3 shows a subset of phrase level bigrams in the form of a transition net-
work. Each arc is labeled with the transition probability between the connected words
/ word classes. Any path through this network constitutes a possible description of

an object.
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0.05 e 0.15

Figure 6-3: The bi-gram finite state network used to generate descriptions of objects.
To allow legibility, the full grammar has been pruned for the figure (18 of 55 nodes
are shown).

6.2.2 Generation of Dynamic Language Model

In our implementation, the speech recognizer requires a language model consisting of
a set of word bigram transition probabilities (refer to chapter 5). As Equation 6.3
shows, the word bigram can be obtained from the product of word class transition
probabilities P(c(w;)|cw;—1)) and class conditional word probabilities P(w;|c(w;)).
The word class transition probabilities are fully determined from training data (Figure
6-3) and remain static during speech processing. The transition probabilities between
classes remain static with respect to the immediate visual context. However, the
probabilities of words within each word class do depend on visual context. There are

two aspects in generating such probabilities.

e Given a scene, the language model generates word probabilities conditioned on
the objects present in the scene. The model is reestimated when a new scene is

presented to the system.
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e During the onset of an utterance all objects are given equal priors. The priors
are updated based on the partially decoded hypotheses obtained from the speech

decoder.

Therefore, class conditional word probabilities are dynamically estimated as a

function of the scene and visual attention using a six step process:

1. A graph-theoretic path search algorithm enumerates all left-to-right paths con-
necting the start and end states of the finite state transition network. The
process results in a set of N variable length sequences {C1,Cy, ..., Cy}, where

each sequence C; consists of a ordered set of T; word classes:

Ci=c;,c,...,c (6.7)

VR I )

These sequences constitute the set of syntactic frames embedded in the transi-

tion network.

. . T

2. Given a sequence C; and an object O, the word classes C; = ¢;,cZ,...,¢;" are
J_ 1 02 T; .
mapped to a sequence of words W; = w;;, w;;, ..., w;;. There are two cases:

e A word w;; belongs to a visually irrelevant word class. Since these classes

are singleton sets, the single word member is chosen.

e A word w;; belongs to a grounded word class. In this case, wfj is selected

according to:

) _ argmax

Wi = M P(Ojlwm), c(wm) =c

k
79

m=1...n (6.8)

where p(Oj|wy,) is derived from the visually grounded model associated

with the word w,,.

For a scene with M objects, this mapping process results in N x M word

sequences (N descriptions for each of M objects).
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3. Similar to the procedure described in [36], each description is evaluated by
computing the product of the word conditional probabilities of the observed

object properties, which is equivalently expressed as a sum of log probabilities:

STy log p(O;|wy;)

(6.9)

where G(C;) is the number of visually grounded word classes in the sequence
Ci, and p(O;|w};)) evaluated the visual model associated with word wj; for the
visual features of object O; . For ungrounded words, p(Oj|wj;)) is set to a
constant. The denominator term normalizes effects due to the length of the

description.

The fitness function measures how well a descriptive phrase matches the prop-

erties of the target object.

4. The fitness function does not take into account contextual effects due to other
objects in the scene. For example, a description may be ambiguous over several
objects if two or more objects are visually similar. To capture contextual effects,
[36] defines a context-sensitive fitness, which is assigned to the source word class

sequence:

W(Ci, 0y) = fit(W],0;) — mazg; fit(W], Oy) (6.10)

5. For a given object and word class sequence, object conditional probabilities are

assigned to each visually grounded word:

Oi i,C(w)eC; C" O’t
P(w|0;, c(w)) = Af( 10) Y03, 0000; V(5 O (6.11)

Yk=1 P(Ok|w) X cwyec; P(Cj, Ok)
where ¢(w) is the word class to which w belongs.

Such a framework presents a balance between the visual fitness criterion as well

as the contextual fitness criterion. It can handle situations where

61



e If two words are visually salient to a similar extent for a given object , they
are given higher priorities by the fitness criterion, irrespective of whether

they tend to increase ambiguity in the scene.

e If two words describe the object equally, the contextual fitness criterion
ensures less weightage of the word that tends to increase ambiguity in the

scene

6. The final step is to weigh the influences of all objects in the scene:

P(w|e(w)) = ;P(w|0i,c(w))P(Oi) (6.12)

Relative emphasis of objects is controlled by Fuse’s visual attention state, P(0;),

described in section 6.4.

The above procedure generates a set of class conditional word probabilities that
represent the system’s anticipation of words the speaker will use, given the contents
of the visual scene, and the system’s current visual attention state. The class condi-
tionals generated can be used to compute bi-grams as given by equation 6.3. As Fuse
updates its visual attention based on partial linguistic information, the words that
describe objects that have a larger attention spread become more probable and thus
bias the speech recognizer search towards them. Since visual context in this domain

does not affect order of words, the grammar remains static throughout the processing

6.2.3 Generation of Spatial Language Model

e Learning of Spatial Terms: To learn spatial relations between a target and
a landmark object, a user interface was created to enable the user to load an
image on the screen and type in spatial phrases such as "above”, ”below” and
”left_of”. Participants were instructed to select two objects from the scene that
he or she found suitable to serve as the target and the landmark objects for the
spatial phrase. Spatial relations between the target and the landmark objects

are extracted by the visual analysis system and a multidimensional Gaussian
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model is computed for each of the spatial lexical items using all observations

that co-occur with the lexical item.

Spatial Clauses Grammar: Phrase bigrams are used to model the use of
relative spatial clauses. For example, “The red block beneath the small green
one” contains references two objects, the target and a landmark (“the small
green one”). The spatial relation “beneath” describes the relation between
target and landmark. Figure 6-4 illustrates the spatial clauses grammar. The
states “TARGET OBJECT” and “LANDMARK OBJECT” correspond to the

class bigram network shown in figure 6-3.

Grounding of Spatial Terms: Spatial connective terms may consist of mul-
tiple words (e.g., “to the left of”) but are tokenized and treated as a single
acoustic unit during speech decoding. Each spatial term is grounded in a Guas-

sian model that is defined over the spatial features described in Chapter 4.

Generation of Spatial Language Model: All distinct paths connecting the
start and end nodes of the transition network are enumerated. This process
leads to a set of N sequences, {C1,Cy,...,Cy}. Each sequence C; consist of a

ordered set, of the form:
C; = (target object, spatial term, landmark object)

For all combinations of target and landmark object pairs, each of the sequences

are evaluated as follows:

Y(0;, w, 0;) = logP(w|0;, 0;)T (w|target)T (w|spatial), i # j (6.13)

where P(w|0;,0;) is derived from the grounded models while the following

terms are derived from the spatial grammar.

The spatial language model is estimated through the following equations:

P(w|O;, c(w)) = S, 00(05,w, 0y), i # j,w € spatial terms (6.14)
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_left_of

to_the
_right_of

Figure 6-4: The probabilistic grammar used to generate descriptions with relative
spatial clauses. A pruned grammar has been shown in the figure.
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P(Ojlw,0;) = ¥(0:, v, 0)) i # j,w € spatial terms (6.15)

B Ejvzl,];ézw(ou w, O]) ’

6.3 Integration of Visually Steered Models in Speech
Recognition

As we have mentioned in chapter 5, the speech recognition paradigm [29] aims to

search for the word string W' such that
W' = argmax P(A|W)P(W)

where P(A|W) is the probability of the observed acoustic input A conditioned on a
word string W, and P (W) is the probability of the occurrence of the word string W.
The effect of visual contextual information does not play any role to infer on P(A|W)
since they are estimated f rom the acoustic signal alone. The visually steered linguistic
models generated by the methods described above are used to evaluate P(W).

A class-based language model approximates P(w;|w;—1) by
Pwilwi ) = P(e(wi)|e(wi1)) P (wi|e(w)) (6.16)

where P(c(w;)|c(w;—1)) is the estimate of the probability of the wordclass ¢(w;) follow-
ing ¢(w;_1) and P(w;|c(w;)) is the class conditional distribution of w; in the wordclass
c(w;).

Probability mass functions in the form of P(c¢;|c;—1) are estimated from the static
class based bigram language model. The dynamic language models described in the
previous sections are used to evaluate P(w;|c(w;)).

Three independent cases are considered:

e w; is a visually grounded word depicting an intra-object property such as ‘color’,
‘shape’ and ‘size’: We linearly interpolate the generated class conditionals over
the number of objects in the scene to evaluate P(w;|c(w;))

P(wz\cz) = E?Zl)\jP(wi\c(wi), OJ) E;-L:l/\j =1 (617)
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where n is the number of objects in the scene.

e w; is a visually grounded word depicting a spatial relation such as ’above’,
‘below’, etc.: We perform a linear interpolation over the spatial language

model. The interpolation is in the form of
P(wz|c,) = E?Zl)\jP(wi|c(wi), O]) E?:l)‘j =1 (618)

where O; is the target object and n is the number of objects in the scene.
P(w;|c(w;),0;) is derived from the generated spatial language model using

Equation 6.14

e w; is a visually ungrounded or visually irrelevant word such as ’the’, ‘by’:

P(w;|c(w;)) is estimated from the static leave-one-speaker-out corpus.

The priors provide a measure of visual attention in context of the current scene.
Their values are determined dynamically from active partial utterance hypotheses

during speech decoding.

6.4 Using Incremental Speech Processing to Drive

Visual Attention

The visual attention generator module enables the early integration of visual context
to provide dynamic re-estimation of the priors associated with the interpolated class
conditional probabilities. In other words, the model uses the visual context to im-
mediately determine the attention distribution spread over the objects in the current
scene. Given a partial utterance hypothesis, the model rank-orders and scores each
object in the current scene based on the visual semantic fit over the partially decoded
utterance. These scores are used as the interpolation weights to calculate the class
conditional in the form of P(w;|c(w;)).

The priors A;, j = 1,...,n get dynamically updated when the decoder search

algorithm leaves a state that marks the end of a word w,,. The partial hypothesis
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is of length m at this point. From the nature of the collected utterances, there exist

three cases that are described below:

® w,, is a visually relevant word depicting intra-object property, for example

”large”, "vertical”, etc. Here, the update rule is as follows

P(Oj)w,, = P(Oj|wm)P(Oj)w,, 1, j=1,2,..,n (6.19)

where P(O;|wy,) is derived from the visully grounded models. Therefore

P(Oj)wm

N = S PO

j=1,2,...n (6.20)

e w,, is a visually relevant word / phrase depicting a spatial relation, for example

”above”, "beneath” and so on. Here, the update rule is in the form
P(O5)w, = Bit1iziP(Ojlwm, 0i) P(O)w,,_, (6.21)

i=1,2,..,n

where P(Oj|wp, O;) is derived from the dynamic spatial language model using
Equation 6.15.
Again,

P(Oj)w,,

N = S PO

1=12,..,n (6.22)

® w,, is a visually irrelevant or ungrounded word such as "the”, "by”, etc. In this

case, we have the following update rule:

P(Oj)w = fyP(Oj)wm,l, i=1,2,..,n (6.23)

m

where 7y is a constant score given to the likelihood of ungrounded words. The

priors are updated by the same rules described above.
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6.5 Spoken Language Understanding for Visual Fo-
cus of Attention

Fuse performs spoken language understanding to identify target objects referred to by
the spoken language descriptions besides visually grounded speech recognition. Given
a spoken language input referring to individual objects in a scene, Fuse receives output
from the speech decoder in the form of word strings, W = w; ... wy. Fuse is able to

handle two classes of expressions listed below

e Simple expressions: In the case of a simple referring expression, Fuse selects

the object with greatest visual attention:

., argmax

object' = i P(O;)wy (6.24)

e Complex expressions: For complex referring expressions, W is segmented
into three sub-sequences, W = w; ... w1, Wy, Wyt - . . Wy Where w,, is a rel-
ative spatial term, w;...w,, 1 describes the target object, and wy,41...wy

describes a landmark object. Fuse selects O; based on:

., argmax M
object' = i P(O)wn_y Y. P(Ojlwm, 0;)P(O;)wy (6.25)

=1,

where p(O;|wp, O;) is derived from equation 6.15

6.6 A Detailed Example of Visually-Steered Speech
Processing

To make the interaction between visual attention and speech processing more con-
crete, we take a closer look at an example. Shown below is the transcription of a
sample utterance, the output of the speech decoder using standard bigrams without

use of the visual attention model, and the de coder’s output using visual attention:
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Transcript The large green block in the back above the yellow block.
No visual context | [The] lower green block in the back of [the] yellow block
Visual context The large green block in the back above the yellow block

Table 6.3: Speech Recognition Output with and without Visual Context

i

j large

green

[ back
| 6 green 8 red

|5 yellow 7 green

2 3 -
green yellow above
yellow
Hypothesis:

the large green block 123456 789

in the back
above the yellow block

Figure 6-5: Evolution of attention during processing of the utterance, “The large
green block in the back above the yellow block”.

The evolution of visual attention is illustrated for this example in Figure 6-5. Each
plot shows the spread of attention across the nine objects in the scene after integrating
the words shown to the left of that plot. This occurs for all active partially decoded
hypotheses but only the hypothesis containing the most likely word sequence is shown
in the diagram. Words that have no visual salience have no effect on visual attention

and are not shown.
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6.7 Summary

Fuse acquires visually grounded vocabulary from a ”show-and-tell” procedure in which
spoken language descriptions accompany visual scenes from camera images. Given
a new scene, Fuse generates a language model as a mixture of language sub models
for each of the objects in the scene. Fuse also generates a spatial language model
to handle relative spatial clauses in complex referring expressions. A dynamic visual
attention model, driven by incremental partially decoded hypotheses, generates mix-
ture priors at each time step in the speech decoding process. The visual attention
module has been designed as a simple computational model of belief propagation
for the purposes of the thesis. Future directions may include the design of a more

complex computational model for visual attention.
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Chapter 7

Evaluation

This chapter describes the set of experiments performed to evaluate Fuse. Section
7.1 details the data collection procedure. The following section evaluates the speech
recognition / understanding performance of Fuse. The rest of the chapter presents

an analysis of possible sources of errors in the system performance.

7.1 Data Collection

A corpus of 990 utterances paired with corresponding visual camera images was col-
lected from eight speakers. The speakers were instructed to talk naturally and de-
scribe target objects such that a listener could later select the same target object
from the identical scene . A data collection program was written that displays images
and records spoken responses. A set of 60 images was captured from a camera em-
bodied on a two-degree freedom robot in preparation of data collection. Each of the
speakers wore a headset microphone. A user interface was designed to display a ran-
dom image, highlight a random object in the image and record the spoken language
response. This was repeated 100 times on an average for each of the speakers. The
speech segmenter in Fuse was used to segment the captured audio into separate spo-
ken utterances. Each utterance was saved as a separate file tagged with the identity
of the corresponding image and the target object highlighted at the time.

Each spoken utterance was manually transcribed at the word level. The utter-
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Type Utterance

Simple the red square

Simple the large yellow rectangle

Simple the large yellow block in front

Simple the vertical green block

Simple the frontmost and rightmost yellow block

Complex the red block above the green block

Complex the yellow block in the front beneath the red block

Complex the green block to the left of the yellow block in the back
Complex the vertical large green block in front of the small blue block
Complex the large yellow block in the far right beneath a pile of yellow blocks
Complex the large green block above the red and the yellow blocks

Table 7.1: Typical utterances in the scene description task

ances were divided into two types: simple referring expressions and complex referring
expressions as have been described in the previous chapter. Table 7.1 lists some rep-
resentative utterances from each of the types. Out of the 990 utterances collected,
476 simple examples were chosen to build the visually grounded word models.

A separate user interface was developed to collect examples corresponding to spa-
tial clauses. The interface enabled the participants to display an image on the screen
and select a spatial phrase such as ”"above”, "below”, ”left_of” from a list of phrases.
Participants were instructed to select two objects from the scene that he or she found
suitable to serve as the target and the landmark objects for the selected spatial phrase.
Each selected spatial phrase was saved separately tagged with the image identity as

well as the target and landmark object identities.

7.2 Experimental Evaluation

To study the effect of visual context on speech processing, the speech recognition
performance accuracy of the system was evaluated with and without the accompa-
nying visual information. During the evaluation without visual context, the class
conditionals were distributed equally among words occurring in the same word class
for all visually relevant word classes. Table 7.2 reports speech recognition errors over

the set of speakers. The speech recognition errors are measured using the standard

72



Speaker No Visual Context With Visual Context

1 28.2 21.7
2 24.6 14.3
3 26.9 17.2
4 23.7 16.6
) 19.2 14.5
6 21.3 13.3
7 24.3 17.1
8 26.0 18.8
Ave 24.3 16.7

Table 7.2: Speech recognition word error rates (%). Averaged across all eight speak-
ers, the introduction of visual context reduced the word error rate by 31%.

Speaker No Visual Context With Visual Context

1 274 17.6
2 25.5 12.1
3 27.8 14.8
4 23.3 17.0
) 23.0 13.2
6 23.5 13.9
7 23.8 13.1
8 21.2 12.6
Ave 244 14.3

Table 7.3: Speech understanding accuracy results (%). Averaged across all eight
speakers, the early integration of visual context reduced the language understanding
error rate by 41%.

NIST measurement package [23] that compares speech decoder with ground truth
penalizing insertions, deletions and substitutions . The introduction of visual context
led to a 31.3% reduction in word error rates averaged over eight speakers, a significant

improvement over the baseline system.

To study the overall performance of the system components, namely, the visual
system, the dynamic language model acquisition/generation system and the visual
attention model, the spoken language understanding accuracy of the system was
evaluated. The evaluation was performed in a leave-one-speaker-out fashion by com-
paring the target object identity chosen by the system to the identity of the object
that was highlighted during the generation of the training dataset, given the visual
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scene. Table 7.2 reports the speech understanding errors over the set of speakers
with and without early integration of visual context in the speech recognition search

process.

7.3 Analysis of Errors

Although the overall performance of the system improves with integration of visual
context in speech recognition/understanding, there are shortcomings in the system
that cause it to fail for a certain percentage of utterances. Mistakes in spoken language

understanding occur due to several causes:

e Automatic Speech Segmentation Errors: The speech segmentation module in
our real time speech recognition system sometimes merges utterances into one
that should have been separate utterances. This attributes the combination of

two descriptions to a single object identity.

e Descriptions with more than one landmark object: The system assumes that a
complex referring expression consists of a target object description, a landmark
object description and a relative spatial phrase connecting the two descriptions.
The system can not handle cases where the referring expressions contain descrip-
tions of more than one landmark objects in conjunction or groups of landmark

objects.

e Error Propagation: Some errors are due to the fact that the attention dis-
tribution gets propagated frame by frame over the search space. Due to the
feed-forward behavior of the algorithms, errors that creep in during the initial

stages get propagated throughout the entire utterance.

e Visual Segmentation Errors: Some errors in understanding occur due to imper-
fect image segmentations performed by the visual system. Such segmentations
may merge more than one objects or divide an object into two or more parts.

These cause mismatch among descriptions and the corresponding objects
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e Visual-Semantics Acquisition: A few errors are due to the fact that the visually
grounded word models are not generalizable enough to capture variances in
object related properties due to the absence of sufficient training data. These

result in ambiguities in the visual attention model.
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Chapter 8

Conclusion

This chapter presents a brief summary of the thesis along with suggestions for future
work on the research. It also enumerates possible deliverables of the thesis and

contributions in specific application scenarios.

8.1 Thesis Summary

This thesis demonstrates a visual context-aware speech processing (recognition un-
derstanding) system, Fuse, which supports natural human-computer conversational
interaction in a simple situated non-mobile world consisting of configurations of ob-
jects placed between a robot and its human partner. The thesis explores a novel
method of predicting occurrences of words and phrases (statistical language model-
ing) using visual contextual knowledge from a physical environment. Fuse receives
visual input from a colored video camera and audio input from a microphone head-
worn by the user. During the onset of an utterance, Fuse performs dynamic language
modeling based on the visual information contained in the immediate environment.
Fuse uses these models to drive a medium vocabulary speech recognizer search to
interpret more likely sequences of word strings corresponding to an input utterance.
For the purposes of the thesis, it is assumed that the spoken language utterances
refer to individual target objects in the environment. Fuse also performs spoken lan-

guage understanding to select target objects that are referred to in the user speech.
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The word and phrase predictions are dynamically updated in real-time as the hu-
man participant changes the configuration of the environment by adding, removing
or substituting new objects in the environment.

The main components in Fuse are listed below:

e Visual Scene Analysis: This component is responsible for extracting object
properties (color, shape, size) and spatial relations from an input camera image.

The extracted information is passed to the language modeling components.

e Speech Recognizer: The speech recognition component performs searches for
the most likely word strings embedded in speech segments using acoustic knowl-

edge as well dynamic language models derived from the visual environment.

e Visually Driven Language Model Generator: This component generates
probability distributions of occurrences of object-level words and phrases as well

as relative spatial clauses based on the visual information.

e Visual Attention Generator: This component provides probability distri-
butions of attention spread over all the objects in the scene. As the speech
recognizer provides partially decoded hypotheses, the distributions are dynam-
ically updated to prioritize objects that match the partial descriptions more

than the others.

e Spoken Language Understanding: This component selects an object from

the visual scene based on the speech recognition output.

8.2 Future Directions

The system presented in the thesis has several limitations. One of the primary limita-
tions is that Fuse is able to handle only two classes of utterances referring to individual
objects in a visual scene, simple expressions describing single objects and complex
expressions containing descriptions of target objects along with individual landmark

objects. Human participants can use various different strategies to describe objects in
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a visual scene. Another drawback of the system is that the visual processing handles
objects of simple shapes and uniform colors. Future work may assist in increasing
visual complexity that will result in an increase in spoken language complexity. The
visual attention generation module uses simple feed-forward propagation of attention
based on partial linguistic evidence. More complex models of attention need to be
derived as the task complexity increases. We are performing initial experiments to
study human eye movement behavior patterns during on-line spoken language com-
prehension. Detailed study of human eye movements at various levels of sub word

granularity may lead to develop more sophisticated visual attention models in Fuse.

8.3 Deliverables

e A novel language modeling interface that

— generates dynamic predictions of words and phrases from visual informa-
tion,
— biases speech recognition search towards more likely interpretations

e A dynamic computational model of visual attention that dynamically propa-

gates object priorities based on linguistic input.

e A medium vocabulary speech recognition system that can deal with more than

1000 words.

8.4 Application Scenarios

The research presented in this thesis may find applications in various areas. Some of

them are described below:

e Human-robot interaction: The proposed approach or framework is primar-
ily meant to assist human-robot interaction through spoken language conver-

sations. The approach will be particularly useful in a manipulator robot that
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performs spoken language interaction with a human partner in a shared visual

environment.

Context-sensitive assistive aids: Besides supporting visual context, the
framework allows support for other sources of contextual cues such as geograph-
ical information and commonsense information. These sources of information
may be integrated with the main framework in order to develop context-aware
assistive aids. Context-sensitive medical transcription is a well-defined task
that may use a visual context-aware spoken language understanding approach

to assist flawless interpretations of health-related queries and solutions.

Behavioral studies: The eye movement data processing interface can serve
as a computational tool to automatically record and process eye movements
of human participants. The tool may assist cognitive science researchers in

studying human behaviors.
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