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Rumor Gauge: Predicting the Veracity of Rumors on Twitter
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The spread of malicious or accidental misinformation in social media, especially in time-sensitive situations,
such as real-world emergencies, can have harmful effects on individuals and society. In this work, we
developed models for automated verification of rumors (unverified information) that propagate through
Twitter. To predict the veracity of rumors, we identified salient features of rumors by examining three
aspects of information spread: linguistic style used to express rumors, characteristics of people involved
in propagating information, and network propagation dynamics. The predicted veracity of a time series of
these features extracted from a rumor (a collection of tweets) is generated using Hidden Markov Models.
The verification algorithm was trained and tested on 209 rumors representing 938,806 tweets collected from
real-world events, including the 2013 Boston Marathon bombings, the 2014 Ferguson unrest, and the 2014
Ebola epidemic, and many other rumors about various real-world events reported on popular websites that
document public rumors. The algorithm was able to correctly predict the veracity of 75% of the rumors
faster than any other public source, including journalists and law enforcement officials. The ability to track
rumors and predict their outcomes may have practical applications for news consumers, financial markets,
journalists, and emergency services, and more generally to help minimize the impact of false information on
Twitter.
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1. INTRODUCTION

In the last decade, the Internet has become a major player as a source of news. A study
by the Pew Research Center has identified the Internet as the most important resource
for the news for people under the age of 30 in the United States and the second most
important overall after television [Center 2008]. More recently, the emergence and rise
in popularity of social media and networking services, such as Twitter, Facebook, and
Reddit, have greatly affected the news reporting and journalism landscapes. While
social media is mostly used for everyday chatter, it is also used to share news and other
important information [Java et al. 2007; Naaman et al. 2010]. Now more than ever,
people turn to social media as their source of news [Laird 2012; Stassen 2010; Kwak
et al. 2010]; this is especially true for breaking-news situations, where people crave
rapid updates on developing events in real time. As Kwak et al. [2010] have shown, over
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85% of all trending topics1 on Twitter are news [Kwak et al. 2010]. Moreover, the ubiq-
uity, accessibility, speed, and ease of use of social media have made them invaluable
sources of first-hand information. Twitter, for example, has proven to be very useful
in emergency and disaster situations, particularly for response and recovery [Vieweg
2010]. However, the same factors that make social media a great resource for dissemi-
nation of breaking-news, combined with the relative lack of oversight of such services,
make social media fertile ground for the creation and spread of unsubstantiated and
unverified information about events happening in the world.

This unprecedented shift from traditional news media, where there is a clear distinc-
tion between journalists and news consumers, to social media, where news is crowd-
sourced and anyone can be a reporter, has presented many challenges for various
sectors of society, such as journalists, emergency services, and news consumers. Jour-
nalists now have to compete with millions of people online for breaking-news. Often
times this leads journalists to fail to strike a balance between the need to be first and
the need to be correct, resulting in an increasing number of traditional news sources
reporting unsubstantiated information in the rush to be first [Center 2009, 2012].
Emergency services have to deal with the consequences and the fallout of rumors and
witch-hunts on social media, and finally, news consumers have the incredibly hard
task of sifting through posts in order to separate substantiated and trustworthy posts
from rumors and unjustified assumptions. A case in point of this phenomenon is the
social media’s response to the Boston Marathon bombings. As the events of the bomb-
ings unfolded, people turned to social media services like Twitter and Reddit to learn
about the situation on the ground as it was happening. Many people tuned into police
scanners and posted transcripts of police conversations on these sites. As much as this
was a great resource for the people living in the greater Boston area, enabling them
to stay up-to-date on the situation as it was unfolding, it led to several unfortunate
instances of false rumors being spread, and innocent people being implicated in witch-
hunts [Kundani 2013; Lee 2013; Valdes 2013]. Another example of this phenomenon is
the 2010 earthquake in Chile, where rumors propagated in social media created chaos
and confusion amongst the news consumers [Mendoza et al. 2010].

Motivated by these problems, we identified salient characteristics of rumors on Twit-
ter by examining three aspects of diffusion: linguistics, the users involved, and the
temporal propagation dynamics. We then identified key differences in each of the three
characteristics in the spread of true and false rumors. A time series of these features
extracted for a rumor can be classified as predictive of the veracity of that rumor
using Hidden Markov Models (HMMs). In this paper, we present Rumor Gauge, a sys-
tem for automatically predicting the veracity of rumors that spread on Twitter during
real-world events.

1.1. What is a Rumor?

In general, we define a rumor to be an unverified assertion that starts from one or more
sources and spreads over time from node to node in a network. On Twitter specifically,
a rumor is a collection of tweets, all asserting the same unverified assertion (however,
the tweets could be, and almost certainly, are worded differently from each other),
propagating through Twitter, in a multitude of cascades.

A rumor can end in three ways: it can be resolved as either true (factual), false
(non-factual), or remain unresolved. There are usually several rumors about the same
topic, any number of which can be true or false. The resolution of one or more rumors
automatically resolves all other rumors about the same topic. For example, take the

1Trending topics are those topics being discussed more than others on Twitter.
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number of perpetrators in the Boston Marathon bombings; there could be several
rumors about this topic:

(1) Only one person was responsible for this act.
(2) This was the work of at least two or more people.
(3) There are only two perpetrators.
(4) It was at least a team of five that did this.

Once rumor number (3) was confirmed as true, it automatically resolved the other
rumors as well. (In this case, rumors (1) and (4) resolved to be false and rumor (2)
resolved to be true.)

2. APPROACH

We approached the problem of veracity prediction on Twitter as a real-time verification
task. Specifically, we attempted to predict the veracity of rumors about real-world
emergencies faster than any other public source. None of the previous works on veracity
prediction take this approach.

The input to our system, Rumor Gauge, is a rumor. Recall that a rumor about an event
is a collection of tweets that have spread through Twitter, all making similar assertions
about the event in question. For example, a rumor that spread on Twitter about the
Boston Marathon bombings was that there were bombs in Harvard Square. There were
thousands of tweets making the same statement, each maybe worded differently. All
of these tweets bundled together would constitute a rumor. The rumors used to train
and validate Rumor Gauge were manually identified and annotated. The footprint of
these rumors on Twitter (i.e., the tweets containing the unverified assertions) were
extracted and clustered from the Twitter historical API using a semi-autonomous tools
developed specifically for this purpose [Vosoughi and Roy 2015, 2016a, 2016b].

The function of Rumor Gauge is to correctly predict the veracity of rumors before
verification by trusted channels, where trusted channels are defined as trustworthy
major governmental or news organizations. The intuition behind Rumor Gauge is that
even before trusted verification, there are signals, however weak, that are predictive
of the veracity of rumors. Based on previous research on spread of gossips in networks
[Bordia and Rosnow 1998; Foster and Rosnow 2006], and the study of gossips and
rumors from the fields of psychology and sociology [Shibutani 1966; Rosnow 1991],
we have identified salient characteristics of rumors by examining three aspects of
diffusion: linguistics, the users involved, and the temporal propagation dynamics. Each
of these aspects is composed of several features. These features are explained in detail
in later sections of this paper.

Since rumors are temporal in nature (i.e., the tweets that make up a rumor are
tweeted at different times), time series of these features are extracted. These time-
series are extracted from 209 manually annotated rumors and used to train two HMMs,
one for true and one for false rumors. It is necessary to train two separate HMMs
for false and true rumors since it is our hypothesis that the temporal dynamics of
our features differ between false and true rumors. Each HMM captures the temporal
dynamics of one type of rumor, thus allowing us to predict the veracity of new rumors
by comparing their fit with respect to the false and true HMMs.

Note that the features are extracted only from data before trusted verification. By
treating each feature as a time-series, we capture the “ebb and flow” of different features
of rumors as they spread. This “ebb and flow,” which is ignored in other works dealing
with veracity prediction on social media, can reveal a lot about the nature of a rumor,
specifically, it tends to be predictive of the veracity of a rumor. When a new rumor
is passed to Rumor Gauge, the same time-series features are extracted at regular
intervals as the rumor spreads. At every timestep, the temporal features are passed
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Fig. 1. An overview of the approach used for predicting the veracity of rumors. As a rumor spreads, at every
timestep several time-series features are extracted from the rumor and passed to HMMs trained on false
and true rumors. Each HMM measures the fitness of the data to its model and returns a probability score.
These probability scores are then compared to predict the veracity of the rumor for each timestep. Over time
the system generates a veracity curve.

Table I. Distribution of Manually Annotated Rumors used for Training and Evaluating
the Rumor Verification System

Source/Event False rumors True rumors Total
2013 Boston Marathon Bombings 16 6 22
2014 Ebola Pandemic 11 9 20
2014 Ferguson Unrest 10 7 17
Snopes.com & Factcheck.org 76 74 150
All 113 96 209

to the false and true HMMs. Each HMM measures the fitness of the data to its model
and returns a probability score. These probability scores are then compared to predict
the veracity of the rumor. As described earlier, the goal is to get a correct veracity
prediction for a rumor before trusted verification. Figure 1 shows a graphical overview
of our method.

3. DATA COLLECTION AND DATASETS

Our model was trained and evaluated on 209 rumors collected from several real-world
events: the 2013 Boston Marathon bombings, the 2014 Ferguson unrest, and the 2014
Ebola epidemic, plus many other rumors about other events reported on Snopes.com
and FactCheck.org (websites documenting rumors). These rumors were manually se-
lected and annotated. Table I shows the distribution of the rumors. Out of the 209
rumors, 113 (54%) were false and 96 (46%) were true. Below, we provide a brief de-
scription of each of the events or sources of the 209 rumors:

—2013 Boston Marathon bombings: The 2013 Boston Marathon bombings were a series
of attacks and incidents that began on April 15, 2013, when two pressure cooker
bombs exploded during the Boston Marathon at 2:49 pm EDT, killing three people
and injuring an estimated 264 others. The events after the bombing led to an MIT
police officer being killed, a manhunt for the suspects, and the lockdown of the city
of Boston and neighboring towns.2

2http://en.wikipedia.org/wiki/Boston_Marathon_bombings.
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Table II. The Average Duration of Rumors (In Hours) for Each Class of Rumors,
for Each Event

Source/Event All rumors False rumors True rumors
2013 Boston Marathon Bombings 17.3 19.7 10.9
2014 Ebola Pandemic 87.1 131.8 32.4
2014 Ferguson Unrest 30.5 28.1 33.9
Snopes.com & Factcheck.org 53.9 71.6 30.0
All 51.3 66.7 29.2

—2014 Ferguson unrest: The 2014 Ferguson unrest was a series of protests that began
the day after Michael Brown was fatally shot by Darren Wilson, a policeman, on
August 9, 2014, in Ferguson, Missouri.3

—2014 Ebola epidemic: The 2014 Ebola epidemic was the first Ebola outbreak to
reach epidemic proportions. It originated in several West African countries, causing
significant mortality, with reported case fatality rates of up to 70%. Imported cases
in the United States and Spain led to secondary infections of medical workers but
did not spread further.4

—Snopes.com: Snopes.com is a website that documents Internet rumors, urban legends,
and other stories of unknown or questionable origin. It is a well-known resource for
validating and debunking rumors.5

—FactCheck.org: FactCheck.org is a website that documents inaccurate and misleading
claims. The website also documents and verifies online rumors in its Ask FactCheck
section.6

The rumors selected from these events and sources were manually annotated. This
entailed not only identifying the rumors, but also creating boolean queries using terms
describing each rumor that could be used to select tweets that talked about that rumor.
For example, if the rumor in question was that “there is a bomb at Harvard square,” the
query “bomb AND Harvard” could be used to extract tweets talking about that rumor.
For this project, we were granted access to the full Twitter fire-hose, which enabled us to
capture all the tweets that talked about the rumors we were interested in, enabling us to
have full picture of the rumors as they spread, going back to their genesis. Additionally,
the trusted verification time of each rumor was also manually annotated. We used sites,
such as Wikipedia, Snopes.com, and FactCheck.org, that aggregate and cite trustworthy
external sources (major governmental or news organizations) for verification of rumors.
A rumor was annotated as true or false if at least three trustworthy sources confirmed
it as such. The earliest confirmation time was taken as the trusted verification time
of that rumor. From this point on in the document, unless otherwise stated, a rumor
refers to the tweets that have propagated over Twitter until the trusted verification
time. Therefore, the duration of a rumor refers to the time elapsed from its very first
tweet to the trusted verification time of that rumor.

The distribution of the duration of the 209 rumors can be seen in Figure 2(a). Table II
shows the average duration of rumors in hours for each class of rumors, for each event.
As seen with the count, false rumors on average are longer than true rumors. One
possible explanation for this could be that proving a negative (i.e., verifying a false
rumor) is a much harder and more time consuming task than proving a positive (i.e.,
verifying a true rumor).

3http://en.wikipedia.org/wiki/Ferguson_unrest.
4http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa.
5www.snopes.com.
6www.factcheck.org.
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Fig. 2. Empirical kernel distribution (histogram) of 209 rumors obtained using a Gaussian kernel
(σ 2

Duration = 7, σ 2
Count = 500). (a) False rumors tend to have a longer duration. (b) False rumors have a

slightly larger count. (c) Joint KDE over count and duration. (d) Difference between joint KDEs in Figure c.

Table III. The Rounded Average Number of Tweets for Each Class of Rumors,
for Each Event

Source/Event All rumors False rumors True rumors
2013 Boston Marathon Bombings 9,334 11,002 4,887
2014 Ebola Pandemic 2,835 3,136 2,467
2014 Ferguson Unrest 3,011 3,274 2,635
Snopes.com & Factcheck.org 2,170 2,421 1,912
All 3,056 3,782 2,203

The count (number of tweets) and the duration (time) distribution of the 209 rumors
can be seen in Figure 2(b). It was made certain that all of the rumors have at least
1,000 tweets. Any rumor that was identified with less than 1,000 tweets was discarded.
Table III shows the rounded average number of tweets for each class of rumors, for each
event. Note that false rumors on average have more tweets than true rumors. This is
mostly due to the fact that false rumors generally take longer to be verified by trusted
sources, compared to true rumors.
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Figure 2(c) shows the tweet count and duration of false and true rumors in one plot.
To better understand the difference between the tweet count and duration of false and
true rumors, we plot their difference in Figure 2(d). It should be noted that though we
only have 209 distinct rumors, these rumors contain on average 3,056 tweets and a
minimum of 1,000 tweets (see Table III), enabling us to capture statistically significant
differences between false and true rumors (similar to datasets used by other works
that are closely related to ours, e.g., Castillo et al. [2011] and Kwon et al. [2013]).

Note that as shown in Figure 2(d), false and true rumors have generally different
counts and durations across all rumors. False rumors tend to be longer and contain
more tweets.

4. FEATURES

A rumor can be described as a temporal communication network, where nodes cor-
respond to users, the edges correspond to communication between nodes, and the
temporal aspect captures the propagation of messages through the network. The in-
tuition is that there are measurable differences between the temporal communication
networks corresponding to false and true rumors. In order to capture these differences,
we identified characteristics of rumors. It makes sense that these characteristics would
be related to either the nodes (i.e., users) in the network, the edges (i.e., messages) in
the network or the temporal behavior of the network (i.e., propagation).

Using this insight, we identified salient characteristics of rumors by examining three
aspects of diffusion: linguistics, the users involved, and the temporal propagation
dynamics. Using insights gained from the related fields of psychology and sociology
[Shibutani 1966; Rosnow 1991], meme-tracking [Leskovec et al. 2009; Ratkiewicz et al.
2011a], diffusion and virality in social networks [Matsubara et al. 2012; Friggeri et al.
2014; Goel et al. 2012], and information credibility estimation [Castillo et al. 2011;
Kwon et al. 2013], we composed a list of interesting features for each of the three cat-
egories. Overall, we studied 15 linguistic, 12 user-based, and 10 propagation features,
for a total of 37 features. The contribution of each of these features to the prediction of
veracity was studied and not all were found to be significant. To measure the contri-
bution of each feature, we ranked them by the probability of the Wald chisquare test
[Harrell 2001]. The null hypothesis is that there is no significant association between
a feature and the outcome after taking into account the other features in the model.
Measuring the statistical significance of the features is especially important since our
dataset contains only 209 rumors. Table IV shows the set of all significant features
determined from the chi-square test at 0.05-level(p < 0.05).

After removing all features that did not significantly contribute to the outcome of
our model, we were left with 4 linguistic, 6 user-based and 7 propagation features (see
Table IV), for a total of 17 features. The contributions of each feature will be explored
later in the evaluation section. Below, each of the 17 features from the three categories
are explained in detail.

4.1. Linguistic

The linguistic features capture the characteristics of the text of the tweets in a rumor.
A total of four linguistic features were found to significantly contribute to the outcome
of our model. In the descending order of contribution these features are as follows:
ratio of tweet containing negations, average formality & sophistication of the tweets,
ratio of tweets containing opinion & insight, and ratio of inferring & tentative tweets.
We will now describe each of these features in detail.

4.1.1. Ratio of Tweets Containing Negation. This feature measures the ratio of tweets
containing negation over the total number of tweets in a rumor. Figure 3 shows two
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50:8 S. Vosoughi et al.

Table IV. The Set of All Statistically Significant
Features Determined Using Chi-Square Test

(p < 0.05)

Fraction of low-to-high diffusion
Average depth-to-breadth ratio
Fraction of nodes in LCC
Ratio of tweets containing negation
User controversiality
Ratio of new users
Ratio of original tweets
User credibility
User originality
Fraction of tweets with outside links
Average formality
User influence
Ratio of Tweets containing tentatives
Ratio of tweets containing opinion
User engagement
User role
Fraction of isolated nodes

Fig. 3. Two example tweets from the same rumor, both containing assertions. Tweet (b), however, contains
a negation, while tweet (a) does not.

example tweets containing references to the same rumor. The tweet shown in Fig-
ure 3(b), however, contains a negation while the tweet shown in Figure 3(a) does not.

Negations are detected using the Stanford NLP parser [Chen and Manning 2014]
to generate typed dependencies of tweets. For example, the sentence, “Sunil Tripathi
is NOT the Boston Marathon suspect.” from the tweet in Figure 3(b) has the following
typed dependencies:

nn (Tripathi-2, Sunil-1)
nsubj (suspect-8, Tripathi-2)
cop (suspect-8, is-3)
neg (suspect-8, NOT-4)
det (suspect-8, the-5)
nn (suspect-8, Boston-6)
nn (suspect-8, Marathon-7)
root (ROOT-0, suspect-8)

From the typed dependencies it can be inferred that the sentence contains a negation
(shown in bold red) and that it is applied to the noun suspect. Note that the noisy and
unconventional nature of Twitter reduce the performance of standard NLP parsers, like
the Stanford parser. This is an area that improved upon in the feature (for instance, by
normalizing the language in tweets as was suggested by Kaufmann and Kalita [2010]).
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Fig. 4. The dependency tree and the part of speech tags of a sample tweet.

In addition to detecting negations using syntactic analysis, a more nuanced approach
to finding negations would be to use relational semantic databases like WordNet [Miller
and Fellbaum 1998] and ConceptNet [Liu and Singh 2004] to identify antonyms of
terms in tweets. For example, the syntactic approach for identifying negations cannot
correctly detect that innocent is, from a semantic standpoint, a negation of guilty. This
is an area that can be explored further in future extensions to this system.

4.1.2. Average Formality & Sophistication of Tweets. This feature measures the sophisti-
cation and formality (or rather the informality) of tweets in a rumor. There are five
indicators of formality & sophistication of a tweet:

—Vulgarity: The presence of vulgar words in the tweet.
—Abbreviations: The presence of abbreviations (such as b4 for before, jk for just kidding

and irl for in real life) in the tweet.
—Emoticons: The presence of emoticons in the tweet.
—Average word complexity: Average length of words in the tweet.
—Sentence complexity: The grammatical complexity of the tweet.

Each tweet is checked against collections of vulgar words, abbreviations, and emoti-
cons. These collections were assembled using online dictionaries7 (and in the case of
abbreviations, also Crystal’s book on language used on the internet [Crystal 2006]).
There were a total of 349 vulgar words, 362 emoticons, and 944 abbreviations.

The average word complexity of a tweet is estimated by the average number of
characters in each word in a tweet. For example, the tweet, “There is another bomb
at Harvard” has 6 words, containing 5,2,7,4,2,7 characters, respectively. The average
word complexity of the tweet is therefore 4.5.

The sentence complexity of a tweet is estimated by the depth of its dependency parse
tree. We used Kong et al.’s [Kong et al. 2014] Twitter dependency parser for English to
generate dependency trees. A sample dependency tree can be seen in Figure 4. In this
example, the tweet,“our hearts go out to those effected by the marathon bombings,” has
a depth of 5.

7http://www.noswearing.com/dictionary, http://pc.net/emoticons/, http://www.netlingo.com/category/
acronyms.php.
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4.1.3. Ratio of Tweets Containing Opinion & Insight. We collected a list of opinion and insight
words from the Linguistic Inquiry and Word Count (LIWC).8 The LIWC dictionary pro-
vides psychologically meaningful categories for the words in its collection [Pennebaker
et al. 2003]. One of these categories is opinion & insight words. This includes words
like, know, consider, think, and so on. Each tweet is checked against the opinion &
insight words from LIWC.

4.1.4. Ratio of Inferring & Tentative Tweets. Another category in the LIWC is the inferring
& tentative words. This includes words like, perhaps, guess, maybe, and so on. Each
tweet is checked against the inferring & tentative words from LIWC.

4.2. User Identities

The user features capture the characteristics of the users involved in spreading a ru-
mor. A total of six user features were found to significantly contribute to the outcome of
our model. In the descending order of contribution these features are as follows: contro-
versiality, originality, credibility, influence, role, and engagement. Below, we describe
each of these features in detail.

4.2.1. Controversiality. The controversiality of a user is measured by analyzing the
replies to the user’s tweets. The replies to the last 1,000 tweets of a user are col-
lected. These replies are then run through a state-of-the-art Twitter sentiment classi-
fier [Vosoughi et al. 2015], which classifies them as either positive, negative, or neutral.

The number of all positive and negative replies are counted and used to calculate a
controversiality score for the user. The formula for this is shown in Equation (1). In
that equation, p is the total number of positive replies and n is the total number of
negative replies. This formula was motivated by the way the Reddit (an online social
media and discussion website) identifies controversial threads9 based on up-votes and
down-votes (Reddit’s code is open sourced and freely available10).

Controversiality = (p + n)min( p
n , n

p )
. (1)

Figure 5 illustrates how the controversiality score is distributed for different number
of positive and negative replies. Note that this is an example illustration so the number
of positive and negative replies do not exceed 100, which is not necessarily the case
for the users in our dataset. As you can see in the figure, controversiality of a user is
dependent on two factors: the number of replies to the user, and the ratio of replies
with different sentiments. To score highly on controversiality a tweet needs both. In
other words, the higher the number and the closer to 1.0 the ratio, the higher the
controversiality score. This makes intuitive sense, since a controversial user would be
someone whose tweets generate a lot of replies, with around half agreeing with (liking)
and half disagreeing with (disliking) the user’s tweets.

Another way to think of this is that the controversiality equation is comparing the
number of paired positive and negative replies to the number of unpaired replies. A
tweet with 500 positive and 50 negative replies has 50 pairs, but 450 unpaired positive
replies, so its controversiality score would be low (i.e., the system would be rather
confident that the tweet is not controversial). On the other hand, a post with 200
positive and 250 negative replies has 200 pairs and only 50 unpaired replies, so it
would score very highly on the controversiality scale.

This method is almost the same as scoring tweets with similar number of positive
and negative replies as controversial, but it also has the advantage of considering

8http://www.liwc.net/descriptiontable1.php.
9https://www.reddit.com/controversial.
10https://github.com/reddit/reddit.
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Fig. 5. Controversiality values for different number of positive and negative replies. This is an example to
illustrate the distribution of controversiality scores as a function of positive and negative replies. Note that
this is an example illustration so the number of positive and negative replies do not exceed 100, which is not
necessarily the case for the users in our dataset.

the number of replies a tweet has received. Therefore, most controversial tweets, as
measured by this method, tend to be the ones that have received a lot of replies,
with almost a 50:50 split in positive and negative replies. Simply looking for a 50:50
split, without considering the total number of replies, would have meant that the most
controversial tweets would be the relatively insignificant ones, with a few positive
replies and equal number of negative replies (which is something we wanted to avoid).

4.2.2. Originality. Originality is a measure of how original a user’s communications are
on Twitter. Originality is calculated by the ratio of the number of original tweets a user
has produced, to the number of times the user just retweeted someone else’s original
tweet. The greater this ratio, the more inventive and original a user is. Conversely,
a lower ratio indicates an unoriginal and parrot-like behavior by the user (i.e., just
repeating what others say).

4.2.3. Credibility. The credibility of a user is a binary feature measured by whether the
user’s account has been officially verified by Twitter or not.

4.2.4. Influence. Influence is measured simply by the number of followers of a user.
Presumably, the more followers a user has, the more influential he or she is.

4.2.5. Role. Role measures the ratio of followers to followees of a user. A user with a
high follower to followee ratio is a broadcaster. Conversely, a user with a low follower
to followee ratio is a receiver.

4.2.6. Engagement. Engagement measures how active a user has been on Twitter ever
since joining. Equation (2) shows how this is calculated.

Engagement = #Tweets + #Retweets + #Replies + #Favourites
Account Age

. (2)
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Fig. 6. (a) The retweet tree of a tweet as provided by the Twitter API. Each node represents a user and
the x-axis is time. The Twitter symbol on the top left represents an original tweet and the arrows represent
retweets. (b) The time-inferred retweet tree.

Fig. 7. Using Twitter’s follower graph to infer the correct retweet path of a tweet. Panel (a) shows the
retweet path provided by the Twitter API. Panel (b) shows that the bottom user is a follower of the middle
user but not that of the top user (the user who tweeted the original tweet). Panel (c) shows that using this
information, and the fact that the bottom user retweeted after the middle user, we can infer that the bottom
person retweeted the middle person and not the top person.

4.3. Propagation Dynamics

The propagation features capture the temporal diffusion dynamics of a rumor. A total of
seven propagation features were found to significantly contribute to the outcome of our
model. In the descending order of contribution these features are as follows: fraction of
low-to-high diffusion, fraction of nodes in largest connected component (LCC), average
depth to breadth ratio, ratio of new users, ratio of original tweets, fraction of tweets
containing outside links, and the fraction of isolated nodes. All of these features are
derived from a rumor’s diffusion graph. Before we describe these features in detail, we
describe how the diffusion graph was created.

4.3.1. Time-Inferred Diffusion. A rather straight-forward way to capture the diffusion of
tweets is through analyzing the retweet path of those tweet. Since each tweet and
retweet is labeled with a time-stamp, one can track the temporal diffusion of messages
on Twitter. However, the Twitter API does not provide the true retweet path of a tweet.
Figure 6(a) shows the retweet tree that the Twitter API provides. As you can see, all
retweets point to the original tweet. This does not capture the true retweet tree since
in many cases a user retweets another user’s retweet, and not the original tweet. But
as you can see in Figure 6(a), all credit is given to the user that tweeted the original
tweet, no matter who retweeted who.

Fortunately, we can infer the true retweet path of a tweet by using Twitter’s follower
graph. Figure 7 shows how this is achieved. The left panel in the figure shows the
retweet path provided by the Twitter API. The middle panel shows that the bottom
user is a follower of the middle user but not of the top user (the user who tweeted the
original tweet). Finally, the right panel shows that using this information, and the fact
that the bottom user retweeted after the middle user, it can be inferred that the bottom
user most likely retweeted the middle user and not the top user. If the bottom user was
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Fig. 8. A rumor is composed of many retweet trees. This figure is a simplified illustration of what the
diffusion of a rumor might look like. Note that the diffusion is composed of several time-inferred diffusion
trees.

a follower of the top user, then the original diffusion pattern shown in the left panel
would stand (i.e., it would have been inferred that both the middle and bottom users
were retweeting the top user). This method of reconstructing the true retweet graph is
called time-inferred diffusion and is based on work by Goel et al. [2012].

Using this method, we can convert our example retweet tree shown in Figure 6(a) to
a more accurate representation of the true retweet tree, shown in Figure 6(b). Note that
a rumor is composed of many retweet trees. Figure 8 is a simplified illustration of what
the diffusion of a rumor might look like. As it is shown, the diffusion is composed of
several time-inferred diffusion trees. Using these time-inferred diffusion trees, we can
trace a rumor’s propagation through Twitter and extract informative features about
the nature of the rumor’s diffusion. Next, we will explain these features in detail.

4.3.2. Fraction of Low-to-High Diffusion. Each edge in the propagation graph of a rumor
(such as the one shown in Figure 6(b)) corresponds to a diffusion event. Each diffusion
event takes place between two nodes. Diffusion events are directional (in the direction
of time), with the information diffusing from one node to another over time. We shall
call the node that pushes the information out (i.e., influences), the sender and the node
that receives the information (i.e., the one being influenced), the receiver.

The fraction of low-to-high diffusion feature measures the fraction of diffusion events
where the diffusion was from a sender with lower influence to a receiver with higher
influence (see Equation (3)). Influence of a user corresponds to the user’s number of
followers (as defined earlier). To illustrate this further, Figure 9 shows an enhanced
version of the diffusion tree shown in Figure 6(b), where the size of the nodes cor-
responds to the influence of the users. Here, we can more clearly see the concept of
low-to-high diffusion. For example, the diffusion between the second and third nodes
(from left).

%Low-High Diffusion = #Low-high diffusions
#All diffusion events

. (3)

Figure 10 shows a real example of a low-to-high diffusion from the Boston Marathon
bombings. As you can see, the user on the left, with 19.8K followers, was retweeted
by the person on the right, with 178K followers (roughly one order of magnitude more
influential than the other user).
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Fig. 9. This figure illustrates an enhanced version of the diffusion tree shown in Figure 6(b), where the
size of the nodes corresponds to the influence of the users. Here, we can more clearly see the concept of
low-to-high diffusion. For example, the diffusion between the second and third nodes (from left). As with
Figure 6(b), the x-axis represents time.

Fig. 10. This figure shows a real example of a low-to-high diffusion from the Boston Marathon bombings.
As you can see, the user on the left, with 19.8K followers, was retweeted by the person on the right, with
178K followers (roughly one order of magnitude more influential than the other user).
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Fig. 11. Two example diffusion trees with same number of nodes, (a) with a large fraction of nodes in LCC,
and (b) with a relatively lower fraction of nodes in LCC. The blue nodes represent the nodes in the LCC.

This feature is very informative as it captures the eye-witness phenomenon that is
prevalent during real-world events (i.e., ordinary people being in the right place at
the right time). It also highlights the role of Twitter as a source for breaking-news
through eye-witnesses on the ground. As explained later in this paper, this feature is
most predictive of the veracity of rumors compared to any other feature by itself.

4.3.3. Fraction of Nodes in Largest Connected Component. A connected component of a
graph is a subgraph where every node is reachable from any other node. The LCC of
a graph is the connected component with the highest number of nodes. In a Twitter
diffusion graph, the LCC corresponds to an original tweet with the highest number of
retweets.

The fraction of nodes in LCC feature measures the ratio of nodes in the LCC of a
rumor’s diffusion graph, over the total number of nodes in the diffusion graph (see
Equation (4)). This feature captures the longest conversation chain of a rumor on
Twitter. To illustrate this feature, Figure 11 shows two example diffusion trees with
the same number of nodes (54). The tree in Figure 11(a) has a large fraction of nodes
in LCC ( 32

54 = 0.6), and the tree in Figure 11(b) has a relatively lower fraction of nodes
in LCC ( 9

54 = 0.16).

%Nodes in LCC = #Nodes in LCC
#All Nodes

. (4)

4.3.4. Average Depth to Breadth Ratio. The shape of a diffusion graph can reveal a lot
about the nature of the diffusion. The feature, average depth to breadth ratio is an
attempt to quantify the shape of the diffusion graphs of rumors. The depth of a diffusion
tree is defined as the longest path from the root (i.e., original tweet) to a leaf. The
breadth of a tree is defined as the total number of nodes it contains. Since each rumor
diffusion graph is composed of many diffusion trees (see Figure 8), we average the
depth to breadth ratio of all the diffusion trees in a rumor. Equation (5) shows exactly
how this feature is calculated for a rumor (here N refers to the number of diffusion
trees in a rumor).

Average %depth-to-breadth =
∑N #Nodes in largest chain

#All Nodes

N
. (5)

To illustrate this feature, Figure 12 shows two example diffusion trees with the same
number of nodes (42). The tree in Figure 12(a) has a low depth to breadth ratio (i.e.,
is shallow) ( 7

42 = 0.16), and the tree in Figure 12(b) has a relatively higher depth to
breadth ratio (i.e. is deeper) ( 12

42 = 0.28).
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Fig. 12. Two example diffusion trees with the same number of nodes, (a) with shallow chains, and (b) with
deep chains. The blue nodes represent the nodes in the deepest chain.

Fig. 13. A sample tweet about the Boston Marathon bombings with a link to an outside source (CNN).

4.3.5. Ratio of New Users. This is a measure of the diversity of users engaged in the
conversation about a rumor. Recall that all of the features are temporal, meaning that
each feature is calculated at every timestep (e.g., every hour), resulting in a time-series
for each feature. Note that without the temporal aspect, this feature is meaningless.
However, by measuring the number of new users that enter the conversation about a
rumor over time, this feature becomes meaningful. Equation (6) shows how this feature
is calculated.

%New Users(ti) =
∑ {

users(ti) | users(ti) �∈ users(t0...ti−1)
}

∑{
users(ti)

} . (6)

4.3.6. Ratio of Original Tweets. This is a simple measure of how captivating, engaging,
and original the conversation about a rumor is. This is measured by the ratio of new
tweets and replies (i.e. not retweets) in the diffusion graph of a rumor. Equation (7)
shows the exact formula used to calculate this feature.

%Original Tweets = #Tweets + #Replies
#Tweets + #Replies + #Retweets

. (7)

4.3.7. Fraction of Tweets Containing Outside Links. Tweets can contain links to sources
outside of Twitter. It is very common for tweets that talk about real-world emergencies
and events to have links to news organizations or other social media. Figure 13 shows
an example tweet about the Boston Marathon bombings with a link to an outside
source.

When studying rumors on Twitter, it makes intuitive sense to see whether tweets
that are making assertions contain links to other sources (i.e., if there are other sources
corroborating the claims). Though we do not currently track the diffusion of rumors
outside of Twitter, through this feature we can have a very rough approximation of the
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Fig. 14. Two example diffusion trees with same number of nodes, (a) with a large fraction of isolated nodes,
and (b) with a relatively lower fraction of isolated nodes. The blue nodes represent the isolated nodes.

corroboration factor. Equation (8) shows how this feature is calculated.

%Tweet-with-URL = #Tweets containing a URL
#All Tweets

. (8)

4.3.8. Fraction of Isolated Nodes. Not all tweets get retweeted or get a reply . According
to a study by the social media analytics company Sysomos, about 71% of tweets never
get a response (retweet or reply).11 Tweets that get no response can be indicators of
a user that’s uninfluential, a message that is uninteresting, or the over saturation of
similar messages on Twitter. All of these factors reveal something about the nature
of the tweet, and when analyzed for all the tweets contained in a rumor, it can reveal
something about the nature of the rumor.

A tweet that is not retweeted or replied to shows up as an isolated node (a node
without any edges) in a rumor’s diffusion graph. This feature captures the fraction of
all nodes in a rumor’s diffusion graph that are isolated. Equation (9) shows exactly
how this feature is calculated. To illustrate this feature, Figure 14 shows two example
diffusion trees with the same number of nodes (54). The tree in Figure 14(a) has a large
fraction of isolated nodes ( 19

54 = 0.35), and the tree in Figure 14(b) has a relatively lower
fraction of isolated nodes ( 6

54 = 0.11).

%Isolated Nodes =
∑{

nodes | degree(nodes) = 0
}

∑ {nodes} , (9)

5. MODELS

Recall that all the features described in the last section are temporal, meaning that
each feature is calculated at every timestep, resulting in a time-series for each feature.
The temporal aspect of the features is very important for two main reasons. First,
with a few exceptions, it is the case that the magnitude (i.e., the values without the
temporal dynamics) of our features are not very predictive of the veracity of rumors.
It is mainly the temporal dynamics of these features that can signal the falsehood or
truthfulness of rumors. Second, different rumors have vastly different footprints on
Twitter. Some contain tens of thousands of tweets, retweets, and replies, while others
might contain as little as only a thousand responses (see Figure 2 for the distribution
of the size the 209 rumors in our dataset). The temporal dynamics of our features are
mostly invariant to the size of the rumors, allowing our model to generalize to events
and rumors of various sizes.

11http://sysomos.com/insidetwitter/engagement/.
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Fig. 15. An example sketch of dynamic time warping applied to two curves. The non-linear alignment aspect
of DTW can clearly be seen.

Given that our features are temporal, we selected models best suited for dealing with
temporal features. Moreover, the models had to be invariant to time. This is crucial since
in addition to containing different volumes of tweets, rumors have varying durations,
ranging from a few hours to days (see Figure 2 for the distribution of the duration
of the 209 rumors in our dataset). Inspired by the field of speech recognition where
similar constraints apply (e.g., the speed at which people talk can be different, but
that should not affect the outcome of the speech recognition), we selected two models:
Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). Below, we explain
these models in detail.

5.1. Dynamic Time Warping

Originally developed for speech recognition, DTW is a time-series alignment algorithm.
DTW can find an optimal non-linear alignment between two time-series [Sakoe and
Chiba 1978]. The non-linear alignment makes this method time-invariant, allowing
it to deal with time deformations and different speeds associated with time-series. In
other words, it can match time-series that are similar in shape but out of phase, or
stretched, or elongated in the time axis. Figure 15 shows a sketch of DTW applied to
two curves. The non-linear alignment aspect of DTW can be clearly seen in the figure.

The input to the DTW model is two time-series. The models return the minimum
distance between the series (amongst other things). We set the cost measure used
by the DTW to be the standard L1 norm (i.e., Manhattan Distance). The L1 distance
between two points is the sum of the absolute differences of their Cartesian coordinates
(see Equation (10)).

�1(p, q) = ||p − q||1 =
n∑

i=1

|pi − qi|. (10)

We used DTW to measure the similarity between rumors. Since each rumor is com-
posed of 17 features, we needed to average over the similarity between all 17 time-series
in the rumors. Equation (11) shows how this is done. Here, S(Rc, Ri) is the similarity
between two rumors, Ri which is the input rumor, and Rc which is an annotated rumor
of class c (either false or true). The similarity is the average of one minus the normal-
ized distance, as measured by DTW, between each of the 17 time-series that make up
the rumors.

S(Rc, Ri) =
∑17

f =1(1 − DT W(Rf
c , Rf

i ))

17
. (11)
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For the purposes of training a classifier, DTW can be used as the distance measure for
a Nearest Neighbors (NN) classifier [Ding et al. 2008]. Specifically, we used S(Rc, Ri)
shown in Equation (11) as the distance measure for a NN classifier. The similarity
between an input rumor and a class of rumors is shown in Equation (12). Here, S(Ri, C)
is the similarity between an input rumor, Ri and the class of rumors, C (note that there
are two classes for C: false and true). N is the equivalent of the number neighbors, K
in a K-NN classifier. We set N to be 10.

S(Ri, C) =
N∑

j=1

S(Rc
j, Ri)

N
. (12)

Using the S(Ri, C) function, the veracity of an input rumor, Ri can be calculated as
shown in Equation (13).

Veracity =
{True if S(Ri, True) > S(Ri, False)

False if S(Ri, True) < S(Ri, False)
Indecisive Otherwise

. (13)

Finally, since the output of the similarity function, S(Ri, C), is normalized, we can
approximate the confidence of the prediction using Equation (14). Note that this is
not a probabilistic confidence score and is not statistically rigorous, it is meant as an
approximation of the confidence of the prediction. The HMM explained in the next
section provide a much more rigorous estimation of confidence.

Confidence =| Strue − Sfalse. (14)

5.2. Hidden Markov Model

DTW is limited by the fact that it assumes that all of the time-series are independent
of each other. However, this is an assumption that does not hold for our features, since
many of our features are in fact coupled. Moreover, the DTW model shown in the last
section assigns equal weight to all 17 features. This is also an incorrect assumption
since certain features are much more correlated with the veracity of rumors (this is
explored in detail in the evaluation section of this paper). HMM address both of these
shortcomings in DTW.

HMM are generative and probabilistic. In an HMM, a sequence of observable vari-
ables, X, is generated by a sequence of internal hidden states, Z, which cannot be
directly observed. In an HMM, it is assumed that the transitions between the hid-
den states have the form of a Markov chain [Rabiner 1989]. An HMM can be fully
determined by three parameters: a start probability vector, �, a transition probability
matrix, A, and the emission probability of the observable variable (e.g., Gaussian, Pois-
son, etc.), �i, which is conditioned on the current hidden state (i). HMM also allows for
multiple observable variables by using multivariate emission probability distributions
(e.g., multivariate Gaussian distribution).

Generally speaking, there are three problems for HMMs [Rabiner 1989]:

(1) Given the model parameters and observed data, estimate the optimal sequence of
hidden states.

(2) Given the model parameters and observed data, calculate the likelihood of the data.
(3) Given just the observed data, estimate the model parameters.

In our case, we started with multivariate observations for false and true rumors. We
used HMMs to model the temporal dynamics of these multivariate observations. The
hidden states capture the different events that drive the dynamics of the time-series
(e.g., sudden influx of trustworthy sources, which would correspond to an increase in

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 50, Publication date: July 2017.



50:20 S. Vosoughi et al.

influential and verified users). We experimented with different number of states and
found that 20 states were sufficient for our purposes.

We trained two HMMs, one on observed data from false rumors and one on observed
data from true rumors. We first addressed item number 3 from the list: given the
observed data, estimate the model parameters. This was done using the standard,
iterative Expectation-Maximization (EM) algorithm, also known as the Baum–Welch
algorithm [Rabiner 1989]. The emission probabilities, �i, were set to be multivariate
Gaussian. We used a full covariance matrix (as opposed to a diagonal matrix), as to
allow for correlation between different features. A diagonal matrix, on the other hand,
would have treated each of the features as independent variables.

In order to predict the veracity of a new rumor, we solve item number 2: given the
model parameters and observed data, calculate the likelihood of the data. We calculated
the likelihood of the new observed data for the false and true HMMs. This is achieved by
using the standard Forward-Backward algorithm [Rabiner 1989]. We then compared
the likelihood of the new data under the false HMM and true HMM. The veracity is
predicted to be true if the likelihood under the true HMM is higher and vice-versa (see
Equation (15)).

Veracity =
{True if P(Xnew | �t, At,�t) > P(Xnew | � f , Af ,� f )

False if P(Xnew | �t, At,�t) < P(Xnew | � f , Af ,� f )
Indecisive Otherwise

. (15)

The confidence of the prediction can be estimated by dividing the greater likeli-
hood probability by the smaller likelihood probability. Since likelihoods are usually
extremely small, we move to logarithmic space to avoid possible floating point inaccu-
racies. In logarithmic space, the confidence is estimated by the absolute value of two
log-likelihoods subtracted from each other, as shown in Equation (16).

Confidence =| log(P(Xnew | �t, At,�t) − log(P(Xnew | � f , Af ,� f ) | . (16)

6. EVALUATION

The evaluation paradigm used for Rumor Gauge is shown in Figure 16. The figure
shows a sample rumor diffusion in Twitter. The purple vertical lines correspond to
the times at which the rumor was verified by trusted sources. Recall that trusted
verification is defined to be verification by trusted channels (trustworthy major
governmental or news organizations). All the 209 rumors in our dataset were verified
by at least three sources. We used Wikipedia, Snopes.com, and FactCheck.org (websites
that aggregate external sources) to retrieve the trusted verification sources. The
timestamps of the trusted verifications (e.g., dates on news articles or press releases)
were used to place the verifications in the time-frame of the rumors’ diffusion.

Given this framing, there were four main goals in the evaluation of Rumor Gauge:

(1) Measure the accuracy at which our model can predict the veracity of a rumor
before the first trusted verification (i.e., using the pre-verification signal shown in
Figure 16).

(2) Measure the contribution of each of the linguistic, user, and propagation categories
as a whole.

(3) Measure the contributions of each of the 17 features individually.
(4) Measure the accuracy of our model as a function of latency (i.e., time elapsed since

the beginning of a rumor).

Given the relative sparsity of our dataset (209 annotated rumors), we used the
leave-one-out evaluation method (also known as jackknife evaluation [Efron 1982]) to
validate our model. At each evaluation step, a data point is held-out for testing, while
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Fig. 16. The evaluation paradigm for rumor verification. This figure illustrates a sample rumor diffusion in
Twitter. The purple vertical lines correspond to the times at which the rumor was verified by trusted sources.
We want to evaluate how accurately our models can predict the veracity of a rumor before the first trusted
verification (i.e., using the pre-verification signal).

Table V. Accuracy of Rumor Gauge Models and a Few Baselines

Model All rumors False rumors True rumors
Majority .54 1. .0
Retweet .56 .61 .50
N-Gram .59 .61 .58
CAST .64 .68 .60
SVM .67 .69 .65
LR .68 .69 .67
KWON .69 .70 .69
DTW .71 .73 .69
HMM .75 .77 .73

the other data points (208 in this case) are used to train the model. The model is tested
on the held-out data point; this process is repeated for all the available data points
(209 times for our dataset).

6.1. Model Performance

The first evaluation task measured the overall performance of our models in comparison
with certain baselines. The task with which these models were evaluated, was the
correct prediction of the veracity of rumors just before the trusted verification time.
Recall that out of the 209 rumors, 113(54%) were false and 96(46%) were true. Table V
shows the performance of the DTW and HMM models compared to four baselines.
These baselines are as follows: a majority classifier, a retweet classifier, an N-gram
classifier, a classifier trained on features used by Castillo et al. [2011], called CAST,
and a classifier trained on the features used by Kwon et al. [2013], called KWON. The
majority classifier always predicts the veracity to be of the majority class (in this case
the false class). The retweet classifier predicts the veracity of rumors purely based on
the number of times they have been retweeted. The N-Gram classifier is trained on the
1,000 most common unigrams, bigrams, and trigrams in false and true rumors. The
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Table VI. Accuracy of Rumor Gauge using Each of the Three Feature
Categories Independently

Feature category All rumors False rumors True rumors
Linguistic .64 .70 .58
User .65 .64 .66
Propagation .70 .72 .66
All .75 .77 .73

Table VII. The Performance of the Model Trained on Each of
the 17 Features Individually. The First Letter Corresponds

to the Type of the Feature: “P” Corresponds to Propagation
Features, “U” to user Features, and “L” to Linguistic Features

Feature Accuracy
P – Fraction of low-to-high diffusion .68
P – Average depth-to-breadth ratio .63
P – Fraction of nodes in LCC .63
L – Ratio of tweets containing negation .61
U – User controversiality .61
P – Ratio of new users .60
P – Ratio of original tweets .59
U – User credibility .58
U – User originality .58
P – Fraction of tweets with outside links .58
L – Average formality & sophistication .57
U – User influence .57
L – Ratio of Tweets containing tentatives .56
L – Ratio of tweets containing opinion .56
U – User engagement .56
U – User role .56
P – Fraction of isolated nodes .56

retweet and N-Gram classifiers represent simple linguistic and propagation features
and the CAST and KWON classifiers are the veracity prediction models most related to
our work. We also trained two standard non-temporal models – an SVM and a logistic
regression (LR) – using our features to better understand the contributions of the
temporal models. These models are referred to as SVM and LR, respectively.

As it can be seen in Table V, both the DTW and HMM models greatly outperform the
baseline models, with the HMM model performing the best with an overall accuracy
of 0.75. Since HMM is the best performing model, from this point on, unless otherwise
noted, the model being discussed is the HMM model. Note that both non-temporal mod-
els (SVM and LR) performed considerably worse than the temporal models, showcasing
the advantage of using temporal models for this task. We analyze this phenomenon in
more details later in this paper (Section 6.3).

Table VI shows the performance of the HMM model for each of the three categories of
features. As you can see, the model trained on the propagation features outperformed
the linguistic and user models by a sizeable margin. Table VII shows the performance
of the model trained on each of the 17 features individually. It is clear from this
table that the propagation features do most of the heavy lifting, with one particular
feature, the fraction of low-to-high diffusion contributing a great deal to the model.
However, as we show in the next section, all three categories of features contribute to
the performance of the model at different times.
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Fig. 17. ROC curves for the HMM model trained on different sets of features.

In order to get a better understanding of the performance of the model, we can look
at their receiver operating characteristic (ROC) curves. Figure 17 shows four ROCs
curves, for the HMM model trained on all the features, the propagation features, the
user features, and the linguistic features.

Depending on the application, the user can pick different points on the ROC curve
for the model to operate on. For example, the user could be a financial markets expert
who needs to have a list of most of the true rumors spreading on Twitter about an
event of interest, so that he or she could use the information to make stock trades. This
user could perhaps tolerate some false rumors being mistakenly identified as true. The
optimal operating point for this user would be around 0.6 on the false-positive axis (x-
axis), which corresponds to .97 on the y-axis. At that point, the model would correctly
identify 97% of the true rumors, but also getting a sizeable (around 60%) of the false
rumors mistakenly classified as true. On the other hand, if the user was a journalist
who had limited resources and wanted a list of true rumors that he or she could trust,
the journalist would perhaps pick a point on the curve with the false positive rate closer
to zero. For example, the journalist could perhaps pick the point x = .16, y = .70. At
this point, the model would correctly identify 70% of the true rumors, with only getting
around 16% of the false rumors mistakenly classified as true. These two examples are
just to illustrate how one might use our system for real-world applications.

6.2. Accuracy vs. Latency

Next, we measured the accuracy of our model as a function of latency (i.e., time elapsed
since the beginning of a rumor). The goal of this evaluation was to assess how well our
system would function for time-sensitive tasks. Additionally, through this evaluation,
we understand which category of features perform best at which times during the life
of a rumor. Since the 209 rumors have varying durations, we study latency as the
percentage of time passed from the beginning of a rumor to the trusted verification
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Fig. 18. Accuracy of the model as a function of latency. All 209 rumors have been aligned by using the
percentage of duration instead of hours. The dashed red line represents trusted verification of the rumors.

of that rumor. So 0% latency refers to the very beginning of the rumors, and at 100%
latency is the time at which they were verified by trusted sources, and 200% latency
is when the time from the beginning of rumors to their trusted verification equals the
amount of time passed since the trusted verification.

Figure 18 shows the accuracy versus latency for the model using all the features,
the propagation features, the user features, and the linguistic features. The dashed
red line in the figure represents trusted verification of the rumors. The model reaches
75% accuracy right before trusted verification. Several interesting observations can
be made from this figure. First, the model barely performs better than chance (54%)
before 50% latency. Second, the contributions of the different categories of features
vary greatly over time. Different categories of features kick-in and plateau at different
times. For example, the propagation features did not contribute much until around
65% latency. The early performance of the model seems to be fuelled mostly by the
linguistic and user features, which then plateau at around 55% latency, as the amount
of information they can contribute to the model saturates. Finally, the plot shows the
overall performance of the model and the performance of the model trained only on the
propagation features to be tightly correlated. This is not surprising since earlier we
saw that the propagation features do most of the heavy lifting in our model (refer to
Table VI).

6.3. Temporal vs. Non-Temporal Models

We showed in the evaluation section that the temporal models outperform non-
temporal models; in this section, we analyze this phenomenon further. Table VIII
breaks down the performance of the top performing temporal and non-temporal
models (HMM and LR, respectively) by each of the three categories of features (the
values for the HMMs are the same as the ones reported in Table VI. It can be seen that
the model trained on propagation features took the biggest hit when switching from a
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Table VIII. Accuracy of the HMM and LR Models Using Each of the Three
Feature Categories Independently

Feature category All rumors (HMM/LR) False rumors True rumors
Linguistic .64/.63 .70/.71 .58/.54
User .65/.62 .64/.62 .66/.62
Propagation .70/.65 .72/.67 .66/.63
All .75/.68 .77/.69 .73/.67

temporal model to a non-temporal one, dropping by 5%. The linguistic model was the
least affected. This makes intuitive sense since the it is the propagation features that
are most dependent on time.

For instance, while the overall fraction of low-to-high diffusion events in a cascade
might be informative as a proxy for the “trustworthiness” of the information being
spread (since influential people have a lot to lose if they spread untrustworthy in-
formation from someone less influential than them), it is the change in this ratio over
time that best captures the response of people to the information being propagated. For
example, if this ratio is high in the beginning but suddenly drops, it might signal the
arrival of new information that has put the validity of the assertion being in doubt. On
the other hand, while the overall fraction of low-to-high diffusion events might be low-
ered because of the new information, the change might be extremely small, especially
if the initial response was very big.

The user features were the second most hit when switching from temporal to non-
temporal models. This was also not unexpected since for several of the user features
(e.g., number of influential users involved in a cascade), it is the movement of the
people in and out of a cascade that seems to be informative of the trustworthiness of
the information being spread. For instance, there might be a massive rush of credible
(i.e., verified) users joining the cascade of a true assertion later in the game, when
there is more confidence that the assertion is indeed true. Similarly, there might be a
rush of credible people out of cascades of assertions that at first seem true but as time
passes seem more likely to be false.

Next, we compared the accuracy of the temporal and non-temporal models as a func-
tion of latency. We discussed accuracy as a function of latency for our temporal model
in detail in the last section, here we regenerated the accuracy vs. latency curves for the
non-temporal models as well. Figure 19 shows these curves for the temporal and non-
temporal models using all the features, the propagation features, the user features, and
the linguistic features. Note that before the propagation features kick in for the tem-
poral model, at around 70% latency, the performance of the non-temporal model tracks
that of the temporal model very closely; in fact, during that period the non-temporal
model performs slightly better than the temporal model. Moreover, the performance of
the non-temporal model converges much faster than the temporal model, which again
can be attributed mostly to the delayed effect of the propagation features in the tem-
poral model. The non-temporal linguistic and user models track their corresponding
temporal models fairly closely, with the linguistic models being the most similar.

6.4. Near Real-Time Veracity Prediction

One of the contributions of this work is the ability to do predict the veracity of rumors
in time-sensitive situations. Our system is able to achieve that since the HMM model
capture the temporal dynamics of different features of rumors, meaning that it is
able to issue a verdict on the veracity of a rumor at any stage of the rumor as it
is spreading (though we showed in the last section that the accuracy of the system
increases the higher the latency). Furthermore, our system can operate in near-real
time. As tweets about a particular rumor come in, they are immediately processed
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Fig. 19. Accuracy of the temporal and non-temporal models as a function of latency.

(i.e., have their features extracted). At set timesteps (e.g., every 5 minutes), the system
issues a new verdict on the veracity of the rumor based on the tweets collected and
processed so far. Of the three types of features, the bottleneck for processing speed
are the propagation features. Specifically, because of the Twitter API restrictions, the
time-inferred diffusion required for several of the propagation features is not quite
real-time.

In order to test the operational speed of our system, we measured the average (me-
dian) feature extraction time for each of the three feature categories. The features
extraction was done at 30 minutes time intervals using the 209 rumors in our dataset.
Figure 20 shows the results. As can be seen, the majority of the 30-minute batches can
be processed very quickly. Though our system is not quite real-time, it is near real-
time, with the greatest latency coming from extracting the propagation features (note
that since the three type of features can be extracted in parallel, the overall feature
extraction time is the same as the slowest category, which is propagation). The overall
median latency is around 12 minutes for analyzing the 30-minute batches. This is not
really a problem since the system can simultaneously extract the features from a batch
of data whilst capturing the next batch of data. Given the diversity of our dataset (our
rumors from many different events), we expect the feature extraction time shown here
to be representative of the speed of our system in the wild.

Since the propagation features are essential to the performance of our model and
since they are most time-intensive features to calculate, below we explain exactly how
these features are computed for a given rumor. This process is independent for each
rumor, meaning that all rumors can be processed in parallel. As we explain below, the
computation power required for computing the features is minimal, the real bottle-
neck, is the Twitter API limit.

As described earlier in the paper, a rumor is composed of multiple original tweets and
their retweet cascades (see Figure 8). At every pre-set timestep (e.g., every 5 minutes),
all tweets and retweets belonging to a rumor are captured using Twitter’s streaming
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Fig. 20. The processing time of 30-minute long rumor batches for each of the three feature categories.

API. Python’s NetworkX12 is used to create a graph of the retweet cascades for the
given rumor. Each cascade is represented as a tree, with the root being the original
tweet. Each node represents a user and the edges represent retweet events. The nodes
are attributed, meaning that they store captured and calculated information (such as,
username, time of retweet, number of followers, number of followees, whether the user
is verified, etc.). As we show later in this section, by saving these attributes in the
nodes, the propagation features can all be computed in maximum O(N) time.

As new tweets and retweets are captured, they are added to the appropriate tree.
If it is a new tweet, then it is used to create a new tree. If it is a new retweet, it
is added to the diffusion tree of the original tweet that it belongs to. The linguistic
and the user features of the new node are captured and calculated on the spot and
added as attributes to the node (note that the linguistic features are computed for the
original tweets only, since retweets have the same linguistic content as the original
tweet). Next, if the new data is a retweet, its diffusion path is inferred. Finally, the
propagation features are calculated. Below you can see a simplified pseudo code of the
process:

Algorithm: create-or-update diffusion trees
Input: A new tweet or retweet
if new-data is tweet then

create new tree
add new-data as root node
extract linguistic features and add to node as attributes
extract user features and add to node as attributes

else if new-data is retweet then
add new-data as node to appropriate tree

12https://networkx.github.io.
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extract user feature and add to node as attributes
infer-diffusion of new-data
extract propagation features

The first step in computing the propagation features is to infer the diffusion paths
of the retweets as they are captured. We used the exists_friendship function provided
by Tweepy13 (a Twitter Python API) to quickly infer the diffusion pattern using the
method explained in Section 4.3.1. Below you can see the pseudo code for how this is
done. Note that the running time of this algorithm is O(N) as the retweet nodes are
visited maximum once.

Algorithm: Infer-diffusion
Input: A new retweet of an original tweet
for each retweet in retweets-captured

if exists_friendship between retweet.user and new-retweet.user then
add-edge between retweet and new-retweet
break

append new-retweet to retweets-captured

Once the diffusion path is inferred, an edge is added between the two nodes involved
in the diffusion. The diffusion trees can be updated as new information comes in and
do not need to be recreated. After the trees are updated, the propagation features are
calculated for that timestep. With the information saved as attributes in the nodes,
all propagation features can be calculated in either O(1) (constant time) or O(N) time.
Here, we go over each of the seven propagation features and explain how they can be
calculated in O(1) or O(N).

—Fraction of low-to-high diffusion: As a new retweet node is added to a cascade tree
after its diffusion path has been inferred, we compare the number of followers of the
new user to the number of followers of the parent user (this information is saved as
an attribute of the node) and use that to determine whether the diffusion was low-to-
high or high-to-low. We keep track of the total low-to-high and high-to-low diffusions,
this is used to calculate the fraction of low-to-high diffusions. The running time for
this calculation (shown in Equation (3)) is O(1) as it involves a simple division.

—Ratio of new users: We keep a set of all unique users that have tweeted or retweeted
about a rumor. As a new node is added, we use this set to determine whether the
user is new (and update the set accordingly). This information is used to calculate
the ratio of new users, using Equation (6). The running time for this calculation is
O(N) (with N being the number of unique users in the set).

—Ratio of new tweets: This is calculated by comparing the number of root nodes (tweets)
to all nodes (tweet and retweets). As new tweets and retweets are added to the trees,
this information is updated. Calculating this ratio can thus be done in O(1), using
Equation (7).

—Fraction of tweets with outside links: We keep track of how many original tweets
contain and do not contain a URL. As a new tweet node is added, these variables are
updated. With these variables, we can calculate the fraction of tweets with outside
links in O(1), using Equation (8).

—Fraction of isolated nodes: This corresponds to the number of trees with just one node.
As with previous features, we keep track of this number as new nodes are added. If
a node is added to a tree with previously only one node, we reduce the number by
one and if a new tree is created with just one node, we increase the number by one.

13www.tweepy.prg.
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We also keep track of the total number of nodes. With these variables, the fraction of
isolated nodes can be calculated in O(1), using Equation (9).

—Average depth-to-breadth ratio: As a new node is added to a cascade tree, it stores
as an attribute the number of ancestors that it has. It does that by extracting the
number of ancestors of its parent node (which the parent node has stored as an
attribute) and adding one to that number and storing it. Since we are dealing with
trees, each node can only have one parent, so the number of ancestors corresponds
to the depth of the node. As the nodes are added, we also keep track of the node with
the largest number of ancestors for each cascade. This number corresponds to the
depth of the cascade. We also keep track of the number of nodes in a cascade as nodes
are added. This way, the depth-to-breath ratio of a cascade can be calculated in O(1),
using Equation (5).

—Fraction of nodes in LCC: The LCC of a rumor is the cascade with the largest number
of nodes (or retweets). Since we keep track of the number of nodes in each cascade,
the LCC can easily be identified and the fraction of nodes in LCC can be calculated
using Equation (4) in O(1) time.

In brief, by updating the trees and the node attributes and several global variables
in real-time as the tweets and retweets are captured, we can calculate all propagation
features in maximum O(N) time (this includes the time required for inferring the
diffusion paths of the retweets). Since the features for each rumor can be computed
independently of other rumors, a new feature extraction process can be launched for
every unique rumor that is being tracked. The only bottle-necks are memory for storing
the cascades (which is minimal, so one should be able to analyze thousands of rumors
in parallel) and the Twitter API limit. In practice, the most time-intensive part of
calculating the propagation features is inferring the diffusion paths of retweets. As
mentioned, the speed of this part is bottle-necked by the Twitter API limits (the running
time of the algorithm by itself is O(N)). That is the reason why there is a drop in the
processing speed of propagation features for very large cascades, as shown in Figure 20.

Two observations can be made about this, first, as Figure 20 shows, the propagation
features for most rumor batches can be processed in less than an hour, with only a very
small number of batches taking more than 2 hours to process, so for the vast majority
of the rumors, the Twitter API limit is not an issue. Case in point, it is shown in Table
III and Table II that the average number of tweets and retweets per rumor is around
3,056, with the average duration being 51.3 hours. Even taking the most extreme
case in our data, the Boston Marathon bombings, the average number of tweets and
retweets per rumor was 9,334, with the average duration being 17.3 hours. This is well
within the Twitter API limits, which means that on average the limits should not be an
issue. Second, this is not an algorithmic bottle-neck, it is a data access limit imposed
by Twitter’s public API. This can be resolved by either having multiple API keys or by
paying for “elevated access” to the Twitter firehose14; this would only be necessary if
planning to scale the system to analyse tens of thousands of rumors at the same time.

7. ANATOMY OF RUMORS ON TWITTER

Through our work on Rumor Gauge we were able to identify salient characteristics
of rumors in Twitter by examining the language of rumors, the users involved in
spreading rumors and the propagation dynamics of rumors. Crucially, we were able to
identify key differences in each of the three characteristics in the spread of false and
true rumors. In addition to enabling the creation a state-of-the-art rumor verification
system, these features also shed some light on the anatomy of rumors on Twitter.

14https://dev.twitter.com/streaming/firehose.
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Many insights about the nature of rumors on Twitter can be gained from our work.
Here, we will discuss several of more interesting ones. First of all, the diffusion of
information from users with low influence to users with high influence is a phenomenon
which is seen much more frequently when the information is true. The reason for
this is perhaps because the user with the high influence would not risk retweeting a
less known user’s information unless the person had very good reasons to believe the
information is true. Second, the formality and sophistication of the language used to
describe false rumors seems to be bimodal. The language on average tends to be either
more formal and sophisticated or less formal and sophisticated than other language
used about an event (this bimodality is also seen in language used in spams). Our
hypothesis is that false rumors with a high level of linguistic sophistication correspond
to malicious rumors (to make the rumor look more legitimate and believable), while
the ones with a low level of sophistication are mostly careless but not malicious rumors
(i.e., information that has not been poorly researched). Third, not surprisingly perhaps,
false rumors are more likely to be spread by users who are influential with a high
controversiality score, while true rumors are more likely spread by users who are
influential and credible (i.e., verified), with a low controversiality score. Finally, from
the very genesis of false rumors, there tends to be people refuting these rumors (as
captured by our negation detection), much more so than for true rumors. Though
unfortunately, their collective voice is usually muffled by the much louder voice of the
people spreading the rumor.

8. RELATED WORK

Works related to this paper include work on the role of Twitter in real-world emer-
gencies, work from the field of network science about the diffusion and propagation of
information in social networks, work on detecting suspicious behavior in online social
networks, and finally, the relatively new work on veracity prediction on Twitter and
other domains.

8.1. Role of Twitter in Real-World Emergencies

In addition to being a medium for conversation and idle chatter, Twitter is also used
as a source of news for many people [Java et al. 2007; Analytics 2009; Naaman et al.
2010]. A study by Kwak et al. [2010] showed that the majority of trending topics on
Twitter are news-related. Several bodies of work have shown that Twitter can be used
to detect and locate breaking news [Sakaki et al. 2010; Sankaranarayanan et al. 2009],
and to track epidemics [Lampos et al. 2010]. Moreover, the use of Twitter during real-
world emergencies has also been studied. These studies have shown the effectiveness
of Twitter for reporting breaking news and response and recovery efforts during floods
[Vieweg 2010; Vieweg et al. 2010; Starbird et al. 2010], earthquakes [Kireyev et al. 2009;
Earle et al. 2010], forest fires [De Longueville et al. 2009], and hurricanes [Hughes and
Palen 2009]. One particular study about wildfires in California [Poulsen 2007] outlined
the great value Twitter has as a medium to report breaking news more rapidly than
mainstream media outlets. Inspired by the close correlation between Twitter activity
and real-world events (especially in the case of earthquakes) a new term, Twicalli
scale,15 was created by researchers for measuring the Twitter impact of real-world
events.

8.2. Modeling Cascades in Networks

There has been extensive work done on modeling the spread of information in networks.
The research in this area has mainly focused on modeling various diffusion and cascade

15http://mstrohm.wordpress.com/2010/01/15/measuring-earthquakes-on-twitter-the-twicalli-scale.
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structures [Cowan and Jonard 2004; Goel et al. 2012], the spread of “epidemics” [Pastor-
Satorras and Vespignani 2001; Newman 2002; Ganesh et al. 2005; Lampos et al. 2010;
Karsai et al. 2014], knowledge [Cowan and Jonard 2004], behavior [Centola 2010],
and propaganda [Ratkiewicz et al. 2011b]. Work has also been done on identifying
influential players in spreading information through a network [Watts and Dodds
2007; Bakshy et al. 2011; Zhao et al. 2014; Aral and Walker 2012] and identifying
sources of information [Shah and Zaman 2011].

In a work more directly related to our research direction, Mendoza et al. have looked
at the difference between propagation behavior of false rumors and true news on
Twitter [Mendoza et al. 2010]. Additionally, Friggeri et al. [2014] and Jin et al. [2014]
have analyzed the cascade and propagation structures of rumors on social networks.
Jin et al. analyzed the spread of rumors surrounding the Ebola pandemic and found
that rumors can spread just like true news. Friggeri et al. provided an anatomy of
rumor cascades in Facebook.

8.3. Detecting Suspicious Behavior in Online Social Networks and Services

A vast body of research exists on detecting whether a particular user behavior, such
as liking, sharing, reviewing/rating, or following as well as generating targeted con-
tent is done by fake or ill-intended users. Such behaviors are generally referred to
as “suspicious behaviors” [Jiang et al. 2016b] or “fake engagement” [Li et al. 2016]
and the techniques used for detecting them have many aspects in common with our
work. The common theme in this field of research is finding dense clusters of User-
[Action,Time]→ Entity edges in the adjacency tensor of the engagement network of
the users and entities (e.g., pages, tweets, users, products, etc.) (see Beutel et al. [2013]
and Jiang et al. [2014, 2016a]). Generally speaking, every user interaction of this type
can be specified by features of the user (including their social network), the type, con-
tent and time of the action and the type, content, and network properties of the entity.
Another method, used by Li et al. [2016], tracks fake engagement activities on YouTube
by analyzing the engagement behavior pattern between users and videos on YouTube.
Their method looks for patterns of behavior similar to a set of known spammer seeds.
Their method can be deployed using MapReduce, making it extremely fast at catching
“fake users.” The general insight acquired from these models is that a remarkable
increase in accuracy of detection can be achieved by the combination of all features,
usually summarized as content, network, and behavior. The behavior of users in our
work is encapsulated and taken into account under our definition of dynamic network
features where the suspiciousness of behavior has an implicit effect on our prediction of
the veracity of rumor. Moreover, as Li et al. demonstrate, for real-time applications (or
near real-time systems such as ours), the scalability of the approach is of paramount
importance. As shown in Section 6.4, our system can run in near real-time.

8.4. Veracity Prediction on Social Media

The field of veracity prediction on social media is a relatively new one. There have so
far been only a handful of works that address this problem. A relevant early work on
veracity prediction on Twitter data is due to Qazvinian et al. [2011] that ignores the
identity of rumors and their temporal dependency and provides a tweet-level classifier
for veracity. Most relevant are the works of Castillo et al. [2011] and Kwon et al. [2013].
Castillo et al. studied the credibility of rumors for real-world emergencies and were able
to predict the veracity of rumors retrospectively (i.e., after the events), while Kwon et al.
studied the propagation of urban legends (such as bigfoot) on Twitter. Both Castillo
et al. and Kwon et al. proposed a combination of linguistics and propagation features
that can be used to approximate credibility of information on Twitter. However, Kwon
et al.’s work does not deal with rumors surrounding real-world events and Castillo
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et al.’s work only approximates users’ subjective perceptions of credibility on Twitter
(i.e., whether users believe the tweets they are reading); they do not focus on objective
credibility of messages. Given the proximity of works by Castillo et al. and Kwon
et al to our own, we used the models proposed by them as baselines in our evaluation.
Note that all of these works focus on predicting the veracity of rumors “after the fact,”
whereas our system is near real-time and can be used to predict the veracity of rumors
as they are spreading. Also, note that the work presented in this paper is based on and
shares similarities with the first author’s PhD thesis [Vosoughi 2015].

There has also been research done on verification of information on domains other
than Twitter. Yang et al. [2012] and Liang et al. [2016] have both done work similar to
Castillos work on Sina Weibo, Chinas leading micro-blogging service. Liang et al. have
also proposed a new method for annotating collected data from Weibo automatically,
allowing for creation of large datasets. The Washington Posts TruthTeller3, which
attempts to fact check political speech in real time, utilizes various natural language
processing techniques to retrieve relevant information from text (or transcribed speech)
and compares the information against a database of known facts.

On the whole, our work considers more features (such as the previous history and
behavior of the users that are involved in spreading a rumor, and novel linguistic
and propagation features) in comparison to the previous works, utilizes the temporal
dynamics of these features in order to boost veracity prediction, provides an event
level, near real-time, objective and collective prediction of veracity that surpasses the
accuracy of other works (when evaluated on a balanced dataset). Our work also provides
insights on the anatomy of rumor cascades on Twitter.

9. CONCLUSIONS AND FUTURE WORK

This paper described Rumor Gauge, a system for automatic verification of rumors
about real-world events on Twitter. We identified salient characteristics of rumors by
examining three aspects of diffusion: linguistic, the users involved, and the temporal
propagation dynamics. A time-series of these features extracted for rumors was demon-
strated to be predictive of the veracity of that rumor using HMM. Rumor Gauge was
tested on 209 rumors from several real-world events. The system predicted the verac-
ity of 75% of the rumors correctly, before verification by trusted channels (trustworthy
major governmental or news organizations). The ability to automatically predict the
veracity of rumors can have real-world applications for news consumers, financial mar-
kets, journalists, and emergency services.

The work presented in this paper is different than other works in the area of social
media veracity prediction in several aspects. First, we approached this problem as
a real-time verification task, specifically we were interested in the prediction of the
veracity of rumors about real-world emergencies, faster than any other public source.
None of the previous works on veracity prediction take this approach. Moreover, we
discovered several novel features that are predictive of the veracity of information on
Twitter. Finally, by treating the features as time-series and using HMMs, our models
take into account the “ebb and flow” of the features of rumors as they spread. This “ebb
and flow,” which is ignored in other works dealing with veracity prediction, is highly
predictive of the veracity of rumors.

Our work can be extended in several ways. First, we would like to extend our system
to cover other media platforms. As the title of the paper implies, the work presented
here is focused on rumors on Twitter. However, similar techniques and algorithms could
potentially be applied to other online and publicly available social media platforms (e.g.,
Reddit, Facebook, etc.). Though some of the features described in this paper are Twitter-
specific, many of the features are platform-agnostic and can readily be extracted and
processed from different platforms.
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Second, our current work currently is focused on English-language tweets and ru-
mors, it would be relatively easy to extend our work to handle rumors in other lan-
guages as well. Two of our most predictive categories of features (propagation and user
characteristics) are language-agnostic. The third category of features (the linguistic
features), however, needs to be reimplemented for every new language. To extract our
linguistic features in a new language one needs the following for the target language:
parser part-of-speech tagger; and a lexicon of vulgar, opinion, and tentative words.

Third, the current system does not differentiate between malicious and accidental
misinformation. For obvious reasons, being able to distinguish between the two types of
rumors would be of great use. Our preliminary studies have shown their to be distinct
features that separate the two types of rumors. For instance, the sophistication of the
language used in malicious misinformation is much higher than the language used in
accidental misinformation.

Fourth, in addition to predicting the veracity of rumors, we would like to predict
the impact the rumors would have on individuals and society. There are many ways
one can define impact; for example, the total reach of a rumor (i.e., how many people
are exposed to the rumor) can be an estimate of impact. By predicting the impact of
rumors, one can better assign priorities to rumors to be addressed. This is especially
relevant for emergency services who might want to respond to false rumors that might
have a large negative impact.

Fifth, the rumors used in this study were obtained by a semi-autonomous tool that
utilizes manual annotation as well as hierarchical clustering [Vosoughi and Roy 2015].
As shown by Zhao et al. [2015], early detection of rumors can be enhanced and auto-
mated by detecting clusters of trending topics that occasionally express disputed claims
and skepticism through signature phrases such as “Is this true?,” “Really?,” “What?,”
and the like. Moreover, progress in automatic early detection of rumors can help with
integration of other real-time platforms such as Reddit, Facebook, and Yik Yak.

Finally, a natural extension of our work is to develop a strategy that can be used
to dampen the effects of false rumors. This would be of great use to the emergency
services dealing with real-world emergencies as they are the ones that usually have
to deal with the consequences and the fallout of rumors on social media. For example,
in the case of Boston Marathon bombings, there were several unfortunate instances
of innocent people being implicated in witch-hunts [Kundani 2013; Lee 2013; Valdes
2013], one of which became the Boston Marathon bombings’ largest rumor. This rumor
was that a missing Brown University student, named Sunil Tripathi, was one of the
suspects the police were looking for. This led to a great amount of confusion and
heartache for the family of the accused. By having strategies to dampen the effects of
such rumors, our system can be used to actively reduce the amount of harm done by the
rumors. Strategies for dampening rumors could be something as simple as requesting
influential users to publicly rebuke the rumors, or it could be something much more
sophisticated and surgical.

We plan to release our dataset to other researchers working on this area. If interested,
please contact the corresponding author.
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Márton Karsai, Gerardo Iñiguez, Kimmo Kaski, and János Kertész. 2014. Complex contagion process in
spreading of online innovation. Journal of The Royal Society Interface 11, 101 (2014), 20140694.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 50, Publication date: July 2017.



Rumor Gauge: Predicting the Veracity of Rumors on Twitter 50:35

Max Kaufmann and Jugal Kalita. 2010. Syntactic normalization of Twitter messages. In Proceedings of the
International Conference on Natural Language Processing. Kharagpur, India.

Kirill Kireyev, Leysia Palen, and K. Anderson. 2009. Applications of topics models to analysis of disaster-
related Twitter data. In NIPS Workshop on Applications for Topic Models: Text and Beyond. Amherst,
MA.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris Dyer, and Noah A. Smith.
2014. A dependency parser for tweets. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP’14). ACL, 1001–1012.

Lalit Kundani. 2013. When the Tail Wags the Dog: Dangers of Crowdsourcing Justice. Retrieved from http://
newamericamedia.org/2013/07/when-the-tail-wags-the-dog-dangers-of-crowdsourcing-justice.php/.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a
news media? In Proceedings of the 19th International Conference on World Wide Web. ACM, 591–600.

Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei Chen, and Yajun Wang. 2013. Prominent features of rumor
propagation in online social media. In Proceedings of the 13th International Conference on Data Mining
(ICDM). IEEE, 1103–1108.

Sam Laird. 2012. “How Social Media Is Taking Over the News Industry”. (April 2012). http://mashable.com/
2012/04/18/social-media-and-the-news/[mashable.com; posted 18-April-2012].

Vasileios Lampos, Tijl De Bie, and Nello Cristianini. 2010. Flu detector-tracking epidemics on Twitter. In
Machine Learning and Knowledge Discovery in Databases. Springer, 599–602.

Dave Lee. 2013. Boston bombing: How internet detectives got it very wrong. Retrieved from http://www.
bbc.com/news/technology-22214511/.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-tracking and the dynamics of the news
cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 497–506.

Yixuan Li, Oscar Martinez, Xing Chen, Yi Li, and John E. Hopcraft. 2016. In a world that counts: Clustering
and detecting fake social engagement at scale. In Proceedings of the 25th International Conference on
World Wide Web. International World Wide Web Conferences Steering Committee, 111–120.

Gang Liang, Jin Yang, and Chun Xu. 2016. Automatic rumors identification on Sina Weibo. In Proceedings
of the12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD’16). IEEE, 1523–1531.

Hugo Liu and Push Singh. 2004. ConceptNeta practical commonsense reasoning tool-kit. BT Technology
Journal 22, 4 (2004), 211–226.

Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, and Christos Faloutsos. 2012. Rise and fall
patterns of information diffusion: Model and implications. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 6–14.

Marcelo Mendoza, Barbara Poblete, and Carlos Castillo. 2010. Twitter under crisis: Can we trust what we
RT? In Proceedings of the 1st Workshop on Social Media Analytics. ACM, 71–79.

George Miller and Christiane Fellbaum. 1998. Wordnet: An electronic lexical database. (1998).
Mor Naaman, Jeffrey Boase, and Chih-Hui Lai. 2010. Is it really about me? Message content in social

awareness streams. In Proceedings of the 2010 ACM Conference on Computer Supported Cooperative
Work. ACM, 189–192.

Mark E. J. Newman. 2002. Spread of epidemic disease on networks. Physical review E 66, 1 (2002), 016128.
Romualdo Pastor-Satorras and Alessandro Vespignani. 2001. Epidemic spreading in scale-free networks.

Physical Review Letters 86, 14 (2001), 3200.
James W. Pennebaker, Matthias R. Mehl, and Kate G. Niederhoffer. 2003. Psychological aspects of natural

language use: Our words, our selves. Annual Review of Psychology 54, 1 (2003), 547–577.
The Pew Research Center. 2008. Internet Overtakes Newspapers As News Outlet. (December 2008).

http://pewresearch.org/pubs/1066/internet-overtakes-newspapers-as-news-source[pewresearch.org; pos
ted 23-December-2008].

The Pew Research Center. 2009. Public Evaluations of the News Media: 1985-2009. Press Accuracy
Rating Hits Two Decade Low. Retrieved from http://www.people-press.org/2009/09/13/press-accuracy-
rating-hits-two-decade-low/.

The Pew Research Center. 2012. Further Decline in Credibility Ratings for Most News Organizations. Re-
trieved from http://www.people-press.org/2012/08/16/further-decline-in-credibility-ratings-for-most-new
s-organizations/.

Kevin Poulsen. 2007. Firsthand reports from California wildfires pour through Twitter. Available: www.
wired.com/threatlevel/2007/10/firsthand. Accessed 2009 Feburary 15.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 50, Publication date: July 2017.

http://www.bbc.com/news/technology-22214511/
http://www.bbc.com/news/technology-22214511/
http://www.people-press.org/2009/09/13/press-accuracy-rating-hits-t
http://www.people-press.org/2009/09/13/press-accuracy-rating-hits-t
http://www.people-press.org/2012/08/16/further-decline-in-credibility-ratings-for-most-news-organizations/.
http://www.people-press.org/2012/08/16/further-decline-in-credibility-ratings-for-most-news-organizations/.


50:36 S. Vosoughi et al.

Vahed Qazvinian, Emily Rosengren, Dragomir R. Radev, and Qiaozhu Mei. 2011. Rumor has it: Identify-
ing misinformation in microblogs. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 1589–1599.

Lawrence Rabiner. 1989. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE 77, 2 (1989), 257–286.

Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Alessandro Flammini, and Filippo
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