
Proceedings of SemEval-2016, pages 425–431,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

DeepStance at SemEval-2016 Task 6: Detecting Stance in Tweets Using
Character and Word-Level CNNs

Prashanth Vijayaraghavan, Ivan Sysoev, Soroush Vosoughi and Deb Roy
MIT Media Lab, Massachusetts Institute of Technology

Cambridge, MA 02139
pralav@mit.edu, isysoev@mit.edu,

soroush@mit.edu, dkroy@media.mit.edu

Abstract

This paper describes our approach for the De-
tecting Stance in Tweets task (SemEval-2016
Task 6). We utilized recent advances in short
text categorization using deep learning to cre-
ate word-level and character-level models.
The choice between word-level and character-
level models in each particular case was in-
formed through validation performance. Our
final system is a combination of classifiers us-
ing word-level or character-level models. We
also employed novel data augmentation tech-
niques to expand and diversify our training
dataset, thus making our system more robust.
Our system achieved a macro-average preci-
sion, recall and F1-scores of 0.67, 0.61 and
0.635 respectively.

1 Introduction

Stance detection is the task of automatically deter-
mining whether the authors of a text are against or
in favour of a given target. For instance, take the fol-
lowing sentence: ”It has been such a cold April, so
much for global warming.” This sentence’s author
is most likely against the concept of global warm-
ing (i.e., does not believe in it). The work presented
here is specifically targeted towards detecting stance
in tweets. The noisy and idiosyncratic nature of
tweets make this a particularly hard task.

Automatic identification of stance in tweets has
practical applications for a range of domains. For
instance, it can be used as a sensor to measure
the attitude of Twitter users on various issues, such
as: political issues, candidates, brand names, TV
shows, etc.

There has been extensive research done on mod-
elling and automatic detection of stance in politi-
cal arenas (e.g., debates) (Thomas et al., 2006) and
on online forums (Somasundaran and Wiebe, 2009;
Murakami and Raymond, 2010). However, as we
alluded to earlier, the peculiar nature of tweets make
techniques that have been developed for other plat-
forms unsuitable. The field closest to this work is
the field of Twitter sentiment classification, where
the task is to detect the sentiment of a given tweet,
usually as positive, negative, or neutral. Nonethe-
less, it is important to note that there are substan-
tial differences between sentiment classification and
stance detection. Sentiment classifiers determine
the polarity of a given tweet, without considering
any targets (see Vosoughi et al. (Vosoughi et al.,
2015) for an example of a Twitter sentiment classi-
fier). For instance, consider the tweet: ”I love Don-
ald Trump”, this tweet has a positive sentiment, and
the author of the tweet has a positive stance towards
Donald Trump, but it can also be inferred that the
author is most likely against or at best neutral to-
wards Bernie Sanders. In this paper, we present a
system for automatic detection of stance in Tweets.

2 Our Approach

We trained a different model for each of the five tar-
gets. Models for some of the targets used character-
level convolutional neural networks(CNN), while
other used word-level models. In one particular tar-
get (Hillary Clinton), a combination of character-
level and word-level models was used. Though
Character-level models are robust to the idiosyn-
cratic and noisy nature of tweets, they require a
larger dataset compared to word-level models. Our

425

choice between the models was informed by valida-
tion performance (as explained in section 5). The
character and word-level models are explained in
the section below.

2.1 Character-Level CNN Tweet Model
Character-level CNN (CharCNN) is a slight vari-
ant of the deep character level convolutional neu-
ral network introduced by Zhang et al (Zhang and
LeCun, 2015), based on the success of CNNs in im-
age recognition tasks (Girshick et al., 2014) (Hinton
et al., 2012). In this model, we perform temporal
(one-dimensional) convolutional and max-pooling
operations. Given a discrete input function f(x) ∈
[1, l] 7→ R, a discrete kernel function k(x) ∈
[1,m] 7→ R and stride s, the convolution g(y) ∈
[1, (l−m+1)/s] 7→ R between k(x) and f(x) and
pooling operation h(y) ∈ [1, (l −m + 1)/s] 7→ R
of f(x) is calculated as:

g(y) =
m∑

x=1

k(x) · f(y · s− x+ c) (1)

h(y) = maxm
x=1f(y · s− x+ c) (2)

where c = m − s + 1 is an offset constant. In our
implementation of the model, the stride s is set to 1.

This model is illustrated in Figure 1. We adapted
this model for the size limit of tweets (140 charac-
ters). The character set includes English alphabets,
numbers, special characters and unknown character.
There are 70 characters in total, given below:

abcdefghijklmnopqrstuvw
xyz0123456789-,;.!?:’"/
\| #$%&ˆ*˜‘+-=<>()[]{}

Each character in the tweet can be encoded using
one-hot vector xi ∈ {0, 1}70. Hence, a tweet is rep-
resented as a binary matrix x1..150 ∈ {0, 1}150x70

with padding wherever necessary, where 150 is the
maximum number of characters in a tweet plus
padding and 70 is the size of the character set. Each
tweet, in the form of a matrix, is now fed into a deep
model consisting of four 1-d convolutional layers. A
convolution operation employs a filter w, to extract
l-gram character feature from a sliding window of l
characters at the first layer and learns abstract tex-
tual features in the subsequent layers. This filter

15
0

70

15
0-

l+
1

f

(1
50

-l+
1)

/p

f

1D Convolution 1D Max pooling Conv & Max
pooling

…

Fully connected

Flatten

Figure 1: Illustration of CharCNN Model

w is applied across all possible windows of size l
to produce a feature map. A sufficient number (f)
of such filters are used to model the rich structures
in the composition of characters. Generally, with
tweet s, each element c(h,F)

i (s) of a feature map F
at the layer h is generated by:

c
(h,F)
i (s) = g(w(h,F) � ĉ(h−1)

i (s) + b(h,F)) (3)

where w(h,F) is the filter associated with feature
map F at layer h; ĉ(h−1)

i denotes the segment of out-
put of layer h−1 for convolution at location i (where
ĉ
(0)
i = xi...i+l−1 — one-hot vectors of l characters

from tweet s); b(h,F) is the bias associated with that
filter at layer h; g is a rectified linear unit and � is
element-wise multiplication. The output of the con-
volutional layer ch(s) is a matrix, the columns of
which are feature maps c(h,Fk)(s)|k ∈ 1..f .

The output of the convolutional layer is followed
by a 1-d max-overtime pooling operation (Collobert
et al., 2011) over the feature map and selects the
maximum value as the prominent feature from the
current filter. Pooling size may vary at each layer
(given by p(h) at layer h). The pooling operation
shrinks the size of the feature representation and fil-
ters out trivial features like unnecessary combina-
tion of characters (in the initial layer). The window
length l, number of filters f , pooling size p at each
layer can vary for each classification task.

The output from the last convolutional layer is
flattened and passed into a series of fully connected
layers. The output of the final fully connected layer
(sigmoid or softmax) gives a probability distribution
over categories in our classification task. For regu-
larization we apply a dropout (Hinton et al., 2012)
mechanism after the first fully connected layer. This
prevents co-adaptation of hidden units by randomly
setting a proportion ρ of the hidden units to zero
(Generally, we set ρ = 0.5). CharCNN can be ro-
bust to misspellings and noise, provided there is suf-
ficiently large dataset to train the model.

426

n-
l+

1

1

n

d

2D Convolution

f f

f
2D Max pooling

f x
 L

1

L=3 i.e l={2,3,4}

L

Fully connected

Flatten

Figure 2: Illustration of Word-Embedding Convolutional
Model

2.2 Convolutional Word-Embedding Model
The convolutional embedding model (see Figure 2)
assigns a d dimensional vector to each of the n
words of an input tweet resulting in a matrix of size
n×d. Each of these vectors are initialized with uni-
formly distributed random numbers i.e. xi ∈ Rd.
The model, though randomly initialized, will even-
tually learn a look-up matrix R|V |×d where |V | is
the vocabulary size, which represents the word em-
bedding for the words in the vocabulary.

A convolution layer is then applied to the n × d
input tweet matrix, which takes into consideration
all the successive windows of size l, sliding over the
entire tweet. A filter w ∈ Rh×d operates on the
tweet to give a feature map c ∈ Rn−l+1. We apply a
max-pooling function (Collobert et al., 2011) of size
p = (n − l + 1) shrinking the size of the resultant
matrix by p. In this model, we do not have several
hierarchical convolutional layers - instead we apply
convolution and max-pooling operations with f fil-
ters on the input tweet matrix for different window
sizes (l).

The vector representations derived from various
window sizes can be interpreted as prominent n-
gram word features for the tweets. These features
are concatenated to give a vector of size f × L,
where L is the number of different l values which
is further compressed to a size k before passing it to
a fully connected softmax or a sigmoid layer whose
output is the probability distribution over different
categories of our classification task.

3 Model Training

We trained the CharCNN model and the Word-
Embedding convolutional model for different tar-
gets and selected the best model for each of them.
In our task, the tweets are classified into three cat-
egories: Favor, Against, and None. We defined the
ground truth vector p as a one-hot vector. The com-

monly used hyperparameters for the convolutional
layers of our CharCNN are: f = 256, l = 7 (first
two layers) and l = 3 (other 3 layers). The sizes of
the fully connected layers in our CharCNN model
are 1,024 and 512.

Similarly, the commonly used hyperparameters
of the Convolutional Word-Embedding model are:
l = 2, 3, 4, f = 200, d = 300, k = 256. Softmax
layer takes the output from the penultimate layers
of the corresponding models, thereby generating a
distribution over the three classes in our task. The
class with the maximum probability is the label for
the given input tweet.

To learn the parameters of the model we mini-
mize the cross-entropy loss as the training objective
using the Adam Optimization algorithm (Kingma
and Ba, 2014). It is given by

CrossEnt(p, q) = −
∑

p(x) log(q(x)) (4)

where p is the true distribution (1-of-C representa-
tion of ground truth) and q is the output of the soft-
max. This, in turn, corresponds to computing the
negative log-probability of the true class. Each of
the classifiers were trained for approximately 8-10
epochs.

In order to deal with the imbalance in the data,
we used a simple balancing technique: to choose a
sample on each training step, we randomly picked a
class and then randomly selected a tweet associated
with this class.

4 Training Set Expansion

We expanded the training set by collecting addi-
tional tweets for each target-stance pair from the
Twitter historical archives. To form a query for
the historical API, we automatically selected 40
representative hashtags for each target-stance pair
and manually filtered the resulting hashtags lists.
The total amount of additional tweets was 1.7 mil-
lion. Since number of collected tweets vastly ex-
ceeded the size of the official dataset, we decided
to abstain from using the latter for training and in-
stead use it for validation purposes. For some tar-
gets (mentioned in the section 5.2), we augmented
the collected set with tweets obtained by replacing
some words and phrases with similar ones, using
Word2Vec.

427

4.1 Identifying Representative Hashtags
We found hashtags well-suited for forming a data
expansion query. Hashtags are commonly used to
represent a “topic” or “theme” of a tweet and thus
often convey information of both the target and the
stance (e.g. #stophillary2016).

We measured the strength of association between
a hashtag and a particular target-stance pair by com-
puting mutual information between them. More
precisely, we defined two indicator variables for
hashtag occurrences in tweets:

1. Whether the current hashtag is equal to the
hashtag of interest.

2. Whether the tweet has the target and the stance
of interest.

The mutual information between two random
variables is computed as:

I(X,Y) =
∑

x∈X,y∈Y

p(x, y)log
p(x, y)
p(x)p(y)

(5)

We estimate mutual information between our in-
dicator variables using a Bayesian approach. We
find the expected value of mutual information, as-
suming an uninformed Dirichlet prior on the joint
distribution of the two variables. It can be approx-
imately computed using the formula provided in
(Hutter, 2002):

E[I] ≈
∑

i,j∈{0,1}

nij

n
log

nijn

ni+n+j
+

0.5
n

(6)

Where nij is the count of samples with indicator
variables assuming values i and j respectively, cor-
rected by a pseudo-count of 0.5; ni+ =

∑
j nij and

n+j =
∑

i nij .
To get a more reliable estimation of hashtag fre-

quencies for tweets unrelated to the targets, we
collected a “background” sample of 1.2 million
English-language tweets. We treated these tweets
as having no stance in relation to any of the targets
and used them in computation of the counts above.

For each target-stance pair, we selected 40 hash-
tags with highest mutual information for further
manual filtering. Samples of selected hashtags can

be seen in Table 1. The manual filtering step was
necessary, since the statistical association with a
target-stance pair could only serve as a proxy for
the fact that the tag explicitly expresses the target
and the stance. For example, #tcot (standing for
“top conservatives on Twitter”) was highly associ-
ated with the stance “AGAINST” for the target “Cli-
mate Change is a Real Concern”, but not explicitly
expressing this stance. Although we did not make
the identification of representative hashtags com-
pletely automatic, we found that hashtag filtering
is a very manageable task for the annotator, taking
only an hour of time for all five targets, making it an
ideal place to introduce minimal human input.

Target FAV OR (F) AGAINST (A)
Abn. #antichoice #prolifeyouth
Ath. #fuckreligion #teamjesus
Cl. Ch. #cfcc15 #carbontaxscam
Fem. #yesallwomen #gamergate
H. Cl. #hillary4women #nohillary2016

Table 1: Samples of representative hashtags

4.2 Collecting and Preprocessing Tweets

Target FAV OR (F) AGAINST (A)
Abortion 23,228 274,769

Atheism 3,041 551,193

Climate Change 355,763 60,238

Feminism 124,760 178,834

Hillary Clinton 40,060 82,294
Table 2: Number of collected tweets per target and stance

As can be seen in Table 2, the collected tweets
are very unevenly distributed between target-stance
pairs. There are two causes for this: the uneven dis-
tribution of different stances on Twitter in general,
and uneven number of representative hashtags that
we were able to associate with each target-stance
pair. For instance, the pair “Climate Change is a
Global Concern: AGAINST” was represented by
only 15 tweets in the training data that was pro-
vided, limiting us to only two representative hash-
tags. Since our deep learning models require bal-
anced amount of samples, we used the balancing
technique described in the previous section.

To eliminate the possibility that resulting clas-
sifiers would only learn the hashtags in the query,

428

we removed these hashtags from the majority of the
collected tweets, keeping them only in 25% of the
tweets.

4.3 Augmenting Data Using Word2Vec

Data augmentation techniques are widely used to
enhance generalization of models with respect to
input transformations that are known to not affect
the output significantly. An example application of
data augmentation in NLP can be found in (Zhang
and LeCun, 2015), where they used thesaurus-based
synonym replacement (WordNet (Fellbaum, 1998))
to generate additional training samples. We applied
the technique used by Zhang et al (Zhang and Le-
Cun, 2015) to our task, with the difference that we
used Word2Vec (Mikolov et al., 2013) instead of a
thesaurus to find similar words. The underlying in-
tuition was that Word2Vec can provide better cover-
age for phrases related to our targets.

The algorithm of the data augmentation is as fol-
lows. At every step, we randomly selected a tweet
from the non-augmented training set. We sampled
a number r of words/phrases we would like to re-
place from a geometric distribution with parameter
p. We then randomly sampled r words/phrases, that
are part of the Word2Vec vocabulary from the cur-
rent tweet. (if r was larger than number of avail-
able words/phrases n, we used r mod n.) For
each of these words/phrases, we retrieved a list of
most similar ones in terms of cosine similarity of
Word2Vec vectors. We ordered the list in decreas-
ing order of similarity and truncated it to not in-
clude items with similarity less than threshold t.
We then sampled index s of selected replacement
from another geometric distribution with parameter
q (again, we used modulo if s was too big). The
original words/phrases were then replaced, and the
tweet was added to the augmented dataset. The
particular values of p, q and t were 0.5, 0.5 and
0.25 respectively. Using this method, we generated
500,000 extra tweets for each target-stance pair.

5 Evaluation

5.1 Baseline

To have a better sense of our approach’s perfor-
mance, we compared results against a simple base-
line. We built a set of Naive Bayes classifiers us-
ing bag-of-word features and optimized their pa-

rameters using 20-fold cross validation on origi-
nal training data. We experimented with different
thresholds on word count for a word to be included
into vocabulary. We also set up separate thresholds
for hashtags and at-mentions. After selecting the
most promising values of thresholds, priors and the
smoothing parameter, we ran the Naive Bayes clas-
sifiers on the test data to obtain results shown in Ta-
ble 3.

5.2 Validation Results

We trained the models using the collected dataset
and validated them on the training set provided for
the task. The validation results informed the choice
between the word-level and the character-level clas-
sifiers for each target. Without Word2Vec augmen-
tation, character-level classifier achieved the best
performance only for the target “Feminist Move-
ment”. When Word2Vec augmentation was intro-
duced, the character-level model achieved the best
performance for the target “Climate Change” and
the stance ”FAVOR” of the target ”Hillary Clinton”.
The word-level model performed better for the tar-
gets: “Legalization of Abortion”, “Atheism” and
the stance ”AGAINST” of the target “Hillary Clin-
ton”. We were able to achieve better average perfor-
mance for the target ”Hillary Clinton” by combin-
ing character-level and word-level classifiers with
a simple heuristic: whenever character-level model

Target St. Precision Recall F1
Abortion F 0.44 0.35 0.39
Abortion A 0.73 0.85 0.79
Atheism F 0.34 0.28 0.31
Atheism A 0.79 0.86 0.82
Clinton F 0.42 0.22 0.29

Clinton A 0.64 0.90 0.75

Climate F 0.80 0.73 0.77

Climate A N/A 0 N/A

Feminism F 0.24 0.64 0.35

Feminism A 0.72 0.43 0.54

All F 0.44 0.35 0.39

All A 0.73 0.85 0.79

Macro-Avg - 0.59 0.64 0.61

Table 3: Baseline performance (Naive Bayes classifiers, test
data), St. - Stance

429

Target St. Precision Recall F1 Precision Recall F1
(Word) (Word) (Word) (CharCNN) (CharCNN) (CharCNN)

Climate A 1.00 0.27 0.42 0.55 0.41 0.47
Climate F 0.80 0.67 0.73 0.69 0.80 0.74
Clinton A 0.72 0.83 0.77 0.76 0.71 0.73
Clinton F 0.63 0.11 0.18 0.54 0.46 0.50
Feminism A 0.71 0.625 0.66 0.73 0.64 0.68
Feminism F 0.51 0.38 0.44 0.51 0.40 0.45

Table 4: Performance of Word-Level Classifiers for Climate Change, Hillary Clinton and Feminist Movement.

predicts “AGAINST”, use that decision, otherwise
resort to the decision of word-level model.

Table 4 compares the performance of the
character-level and word-level classifiers for the tar-
gets where character-level classifiers yielded an ad-
vantage. The macro-average F1 validation score
was 0.65.

5.3 SemEval Competition Results
Our model was able to achieve a Macro F-score of
0.6354 (placing us eighth out of 19 teams), while
the best performing model had a Macro F-score of
0.6782. Table 5 details results on the test data for
each target and stance.

Target (rank) St. P R F1

Abn. (1)
F 0.54 0.67 0.60
A 0.86 0.54 0.66

Ath. (12)
F 0.33 0.25 0.29
A 0.82 0.73 0.77

H. Cl (9)
F 0.37 0.53 0.43
A 0.68 0.66 0.67

Cl. Ch. (12)
F 0.80 0.82 0.81
A N/A 0 N/A

Fem. (8)
F 0.37 0.40 0.38
A 0.79 0.58 0.67

All (8)
F 0.56 0.61 0.58
A 0.78 0.61 0.68

Macro-Avg - 0.67 0.61 0.635
Table 5: Results on test data, with rank out of the 19 teams.

6 Discussion and Future Work

An interesting result of our work was that given
enough data, character-level models outperformed
word-level models for tweet classification (with a

dramatic improvement in case of ”Hillary Clin-
ton: FAVOR”). Due to the lack of data, it was
necessary to resort to a data augmentation tech-
nique to generate sufficient amount and diversity of
data for character-level model to show its advan-
tage. Another interesting finding from our work is
the suitability of word2vec-based substitution as a
data augmentation technique. As far as we know,
word2vec has not previously been used for data aug-
mentation in this manner.

As can be seen in Table 5, our system did not per-
form too well for certain target-stance pairs (e.g.,
Atheism-Against). We hypothesize that the reason
for this is the noise and the limited size of the col-
lected training data. Thus, we believe that the per-
formance of the system can be improved through
better data expansion and cleaning techniques.

We see several avenues for future improvements.
First, it might be beneficial to use unsupervised pre-
training for our models (e.g., using autoencoders
for Twitter (Vosoughi et al., 2016)). Second, data
cleaning can potentially be improved using boot-
strapping. This would entail using our current mod-
els (optimized for high precision) to gather cleaner
data for the second tier of models. It could be re-
peated while validation performance improves. Fi-
nally, because of the constraints of this SemEval
task, we did not manually select hashtags or terms
commonly associated with target-stance pairs. In-
clusion of such hashtags can potentially boost the
quality of the dataset, leading to better performance
of our models.

References

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.

430

Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2014. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Marcus Hutter. 2002. Distribution of mutual informa-
tion. Advances in neural information processing sys-
tems, 1:399–406.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing sys-
tems, pages 3111–3119.

Akiko Murakami and Rudy Raymond. 2010. Support or
oppose?: classifying positions in online debates from
reply activities and opinion expressions. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics: Posters, pages 869–875. Associ-
ation for Computational Linguistics.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceedings
of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
1-Volume 1, pages 226–234. Association for Compu-
tational Linguistics.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
the 2006 conference on empirical methods in natural
language processing, pages 327–335. Association for
Computational Linguistics.

Soroush Vosoughi, Helen Zhou, and Deb Roy. 2015.
Enhanced twitter sentiment classification using con-
textual information. In 6TH Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis (WASSA 2015), page 16.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2vec: Learning tweet embeddings
using character-level cnn-lstm encoder-decoder. In

Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Infor-
maion Retrieval. ACM.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

431

