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Abstract

Making systems that understand language has long been a dream of artificial intel-
ligence. This thesis develops a model for understanding language about space and
movement in realistic situations. The system understands language from two real-
world domains: finding video clips that match a spatial language description such
as “People walking through the kitchen and then going to the dining room” and fol-
lowing natural language commands such as “Go down the hall towards the fireplace
in the living room.” Understanding spatial language expressions is a challenging
problem because linguistic expressions, themselves complex and ambiguous, must be
connected to real-world objects and events. The system bridges the gap between
language and the world by modeling the meaning of spatial language expressions hi-
erarchically, first capturing the semantics of spatial prepositions, and then composing
these meanings into higher level structures. Corpus-based evaluations of how well the
system performs in different, realistic domains show that the system effectively and
robustly understands spatial language expressions.

Thesis Supervisor:
Deb Roy
Associate Professor
Program in Media Arts and Sciences

3



4



Natural Language and Spatial Reasoning

by

Stefanie Anne Tellex

The following people have served as readers for this thesis:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Boris Katz

Principal Research Scientist

MIT Computer Science and Artificial Intelligence Laboratory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yuri Ivanov

Senior Research Scientist

Mitsubishi Electric Research Laboratories

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cynthia Breazeal

Associate Professor

Program in Media Arts and Sciences

5



6



Acknowledgments

There’s no way I could have made it this far on my own. Most of all, I want to thank
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Chapter 1

Introduction

When we study human language, we are approaching what some might

call “the human essence,” the distinctive qualities of mind that are, so

far as we know, unique to man and that are inseparable from any critical

phase of the human experience, personal or social.

– Noam Chomsky

Building a computer that can understand natural language has been a dream of

artificial intelligence since the Turing test was first proposed in 1950. Language is

uniquely human: through language humans unify and integrate many disparate abili-

ties. One fruitful strategy when faced with a large problem is to divide it into smaller

subproblems. This approach has been hugely successful, leading to amazing progress

in individual problem areas of artificial intelligence, from web search to autonomous

robotic navigation. However there has been less work towards integrating results

from different subfields into a consistent and coherent framework. Models from com-

putational linguistics often model only words, and not the non-linguistic components

of semantics. In this thesis I will divide the problem of language understanding not

horizontally, but vertically. In other words, I will focus on a narrow subset of lan-

guage, grounding that language in data collected from a real world. This strategy has

two benefits. First, it decreases the scope of the language understanding problem,
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making it more tractable. Second, by choosing a semantically deep core domain, it

offers an opportunity to explore the connection between linguistic and non-linguistic

concepts. A model that spans domains may be more powerful and generalizable to

new situations and contexts, a key challenge in creating intelligent systems.

When pursuing this strategy, the choice of sub domain is key. In this thesis I

developed systems that understand spatial language. Reasoning about movement

and space is a fundamental competence of humans and many animals. Humans

use spatial language to tell stories and give directions, abstracting away the details

of a complex event into a few words such as “across the kitchen.” A system that

understands spatial language could be directly useful to people by finding video that

matches spatial language descriptions, or giving natural language directions. In order

to reason in this domain, the system must somehow map information from language

into the world. This thesis describes a model for one way that this mapping could be

carried out and applies the model to two realistic domains.

Applying the model to a realistic domain is important to show that it works.

Working with more than one domain means the model must be more generalizable,

making it more likely the ideas will apply in a wide array of contexts. Moreover, a

system that works in a realistic domain is useful in its own right, making it more

likely that the ideas behind it will have impact. The choice of domains depends on

several factors. First, the applications should be compelling. Second, the scope of the

problem should be neither too small nor too large. Finally, the two domains should

be similar enough to reuse the same modeling machinery, but different enough to

require interesting generalizations. In this thesis I focus on natural language video

retrieval and direction giving and understanding for robots.

Video retrieval is a compelling application: in the United States alone, there are

an estimated 30 million surveillance cameras installed, which record four billion hours

of video per week [Vlahos, 2008]. Analyzing and understanding the content of video

data remains a challenging problem. A spatial language interface to video data can

help people naturally and flexibly find what they are looking for in video collections.

For example, a system installed in a store could help analysts design better layouts

20



(a) humanoid (b) helicopter (c) wheelchair

Figure 1-1: Robot platforms used in this thesis.

and understand shopper behavior.

Studying language used to give directions could enable a robot to understand nat-

ural language directions. People talk to robots even if they do not have microphones

installed [Kinzer, 2009], and it makes sense to build systems that understand what

they say. A robot that understands natural language is easy for anyone to use without

special training. In complex environments, human operators may not have the cog-

nitive or sensory resources to use keyboard-and-mouse interfaces. Natural language

keeps the hands and eyes free for other tasks. Figure 1-1 shows platforms that have

used the natural language interface described in part in this thesis.

Both these domains require a system that can connect language to concrete non-

linguistic contexts. To explore these connections, I obtained corpora of language

where each utterance was paired with non-linguistic contextual information. In the

case of video retrieval, I have collected a corpus of natural language descriptions

of video clips. The video corpus consists of data recorded from a fish-eye camera

installed in the ceiling of a home. Sample frames from the video corpus, retrieved by

the system for the query “across the kitchen,” are shown in Figure 1-2. To associate

video clips with a natural language description, annotators were asked to write a short

phrase describing the motion of a person in the clip. Using this corpus of descriptions

paired with video clips, I trained models of the meanings of some spatial prepositions

and explored their semantics by analyzing which features are most important for
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(a) (b)

Figure 1-2: Frames from two clips returned for the query “across the kitchen.”

good classification performance. I implemented systems for two versions of this task:

a restricted corpus limited to one prepositional phrase for each video clip, and an

open-ended corpus in which annotators described a person’s movement in video using

whatever language seemed most natural to them. Figure 1-3 shows the most frequent

descriptions that appeared in the restricted corpus. These corpora provide a way

to train and evaluate models of spatial semantics in a restricted, but still realistic

context.

For robotic language understanding, I worked with a corpus collected by Nicholas

Roy and his students at MIT CSAIL [Kollar et al., 2010]. Subjects were given a tour

of a room and asked to write down directions between two locations inside a building.

The corpus consists of paragraph-length route instructions. One set of directions

from the corpus is shown in Figure 1-4. In order to enable an offline evaluation, the

dataset includes a log of a robot’s observations of the environment. The dataset was

collected by a mobile robot instrumented with a LIDAR and camera. The log thus

contains odometry, laser scans, and camera images. A SLAM module used the laser

scans and odometry to create a map as the robot explored the environment [Grisetti

et al., 2007], while the camera detected baseline objects in order to create a semantic
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Figure 1-3: Histogram of descriptions of video clips. Annotators watched a several
second long clip and completed the sentence “The person is going ...” with one
prepositional phrase.
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With your back to the windows, walk straight through the door near the elevators.
Continue to walk straight, going through one door until you come to an intersection just
past a white board. Turn left, turn right, and enter the second door on your right (sign
says “Administrative Assistant”).

Figure 1-4: A typical set of directions from the corpus described in Chapter 5.

map. The log enables testing models at following directions from the corpus offline,

without the overhead of deploying a physical robot in a user study. This data offers

an opportunity to map the language to the nonlinguistic spatial context.

Spatial language is modeled as a sequence of structured clauses called spatial

description clauses or SDCs, developed jointly with Thomas Kollar and introduced

in this thesis. SDCs consist of a figure, a verb, a spatial relation and a landmark. The

SDCs for the sentence “Walk down the hall towards the elevators” are [V: Walk, SR:

down, L: the hall] and [SR: towards, L: the elevator.] Here, the figure is an implied

“you.” SDCs are automatically extracted from input text using a conditional random

field chunker. Language is modeled as an independent sequence of SDCs using a novel

probabilistic model, with factors corresponding to the fields of the SDC. This model

allows each component of the SDC to be grounded separately and combined back

together to ground spatial language discourse.

Overall the system performs quite well. For direction understanding, the system

correctly follows between 50% and 60% of directions in the corpus, compared to 85%

for human performance. Furthermore, spatial relations improve performance when

using only local information in the map to follow the directions. When performing

video retrieval with the open-ended corpus, the system effectively retrieves clips that

match natural language descriptions: 58.3% were ranked in the top two of ten in a

retrieval task, compared to 39.9% without spatial relations.

The rest of this document is organized as follows: Chapter 2 reviews related

work. Chapter 3 describes how to model the meanings of spatial prepositions in

isolation. Chapter 4 describes how to compose these individual meanings to model

spatial language discourse. Chapter 5 describes how this model is used to follow

natural language route instructions through realistic environments. Chapter 6 applies

the model to spatial language video retrieval. Chapter 7 describes extensions to the
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model that allow it to model spatio-temporal verbs such as “follow” and “meet.”

Finally, Chapter 8 concludes with ongoing and future work and contributions.
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Chapter 2

Related Work

This thesis develops a framework for understanding spatial language. Related work

includes work from cognitive science about the spatial reasoning and work from cogni-

tive semantics about the linguistics of spatial language. In addition, many in artificial

intelligence have worked directly on route direction understanding and video search.

2.1 Cognitive Semantics

There is a long history of systems that understand natural language in small domains,

going back to Winograd [1970] and his work building a natural language interface to

a robot that manipulated blocks in a virtual environment. This thesis builds on

previous work by bringing the system in contact with realistic data: it is trained and

evaluated using data from a corpus of naive annotators who are not otherwise involved

with the development of the system. The language is about real situations, describing

routes in office buildings and people’s movement. The system must tackle unsanitized

language not tuned and filtered by author of the system. A constant theme in the

work is the struggle to balance open-ended natural language understanding with the

limitations arising from the sensing and understanding capabilities of the system.

The linguistic structure extracted from spatial language expressions and many of

the features in the model for spatial relations are based on the theories of Jackendoff

[1983], Landau and Jackendoff [1993] and Talmy [2005]. This work aspires to be a
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computational instantiation of some of the ideas in their theories. For example, Talmy

[2005] says that for a figure to be across a particular ground, among other things,

the axes of the two objects must be “roughly perpendicular.” The implementation

of “across” in this work extends his definition by giving an algorithm for computing

the axes a figure imposes on a ground, and a set of features which quantify “roughly

perpendicular,” using a machine learning algorithm to fine-tune the distinctions by

training on labeled data.

Others have implemented and tested models of spatial semantics. Regier [1992]

built a system that assigns labels such as “through” to a movie showing a figure

moving relative to a ground object. Bailey [1997] developed a model for learning

the meanings of verbs of manipulation such as “push” and “shove.” Kelleher and

Costello [2009] and Regier and Carlson [2001] built models for the meanings of static

spatial prepositions such as “in front of” and “above.” Building on their paradigm

of testing the semantics of spatial prepositions against human judgements, this work

focuses on realistic situations, requiring the model to be robust to noise, and enabling

an analysis of how the semantics of spatial prepositions change in different real-world

domains.

Siskind [2001] created a system for defining meanings for words such as “pick

up” and “put down.” His framework defined words in terms of event logic, a for-

malism that is an extension of Allen relations [Allen, 1983]. The framework reasons

about formal temporal relations between primitive force-dynamic properties such as

“supports” and “touches” and uses changes in these properties to define meanings

for verbs. His framework focuses on word-level event recognition and features. In

contrast, the work described in this thesis describes more open-ended types of spatial

language, and for composing individual word models together.

2.2 Applications

This section reviews work related to video retrieval, route direction understanding,

and GIS applications.
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2.2.1 Video Search

Katz et al. [2004] built a natural language interface to a video corpus which can answer

questions about video, such as “Show me all cars leaving the garage.” Objects are

automatically detected and tracked, and the tracks are converted into an intermediate

symbolic structure based on Jackendoff [1983] that corresponds to events detected in

the video. My work focuses on handling complex spatial prepositions such as “across”

while they focus on understanding a range of questions involving geometrically simpler

prepositions.

Fleischman et al. [2006] built a system that recognizes events in video recorded in

the kitchen. Their system learns hierarchical patterns of motion in the video, creating

a lexicon of patterns. The system uses the lexicon to create feature vectors from video

events, which are used to train a classifier that can recognize events in the video such

as “making coffee.” The system also uses classifiers to recognize events but focuses

on events that match natural language descriptions rather than finding higher level

patterns of activity.

Black et al. [2004] describe a system that tracks objects in video surveillance data

and stores the results in a database for analysis and retrieval. Their database stores

the trajectories of moving objects as they move between multiple nearby cameras. The

output of the vision system is a database of three dimensional motion trajectories

of moving objects. Next, a meta-data layer produces a semantic description of an

object’s activity, including entry and exit point, along with routes taken through the

field of view and time spent at each node. They focus on building a system that can

retrieve object motions in regions of the video. My work extends this idea to add a

natural language interface on top of a database of object trajectories.

More generally, Naphade et al. [2006] describe the Large-Scale Concept Ontol-

ogy for Multimedia (LSCOM), an effort to create a taxonomy of concepts that are

automatically extractable from video, that are useful for retrieval, and that cover a

wide variety of semantic phenomena. Retrieval systems such as the one described by

Li et al. [2007] automatically detect these concepts in video and map queries to the
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concepts in order to find relevant clips. This work describes a complementary effort

to recognize fine-grained spatial events in video by finding movement trajectories that

match a natural language description of motion.

Researchers have developed video retrieval interfaces using non-linguistic input

modalities which are complementary to linguistic interfaces. Ivanov and Wren [2006]

describe a user interface to a surveillance system that visualizes information from a

network of motion sensors. Users can graphically specify patterns of activation in the

sensor network in order to find events such as people entering through a particular

door. Yoshitaka et al. [1996] describe a query-by-example video retrieval system

that allows users to draw an example object trajectory, including position, size, and

velocity, and finds video clips that match that trajectory. The natural language query

interface that is developed in this work complements these interfaces: language can

succinctly express paths such as “towards the sink,” which would need to be drawn as

many radial lines to be expressed graphically, while queries for complicated, intricate

trajectories can be drawn. Furthermore, queries expressed as text strings are easily

repeatable; in contrast, it is difficult to draw (or tell someone else to draw) the exact

same path twice in a pen-based system. The combination of a pen-based interface

and a natural language interface is more powerful than either interface on its own.

2.2.2 Understanding Natural Language Directions

Many authors have proposed formalisms similar in spirit to spatial description clauses

for reasoning about the semantics of natural language directions. Many of these

representations are more expressive than SDCs, but correspondingly more difficult

to automatically extract from text, to the point where many authors sidestep this

problem by using human annotations. SDCs capture many of the semantics of natural

language directions, while still being simple enough to extract and reason about

automatically.

For example, Levit and Roy [2007] describes a probabilistic model for finding likely

paths described by dialogs from the MapTask corpus [Thompson et al., 1993], which

consists of two people engaging in dialog about a path drawn on a map. Semantic
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units called navigational informational units (NIUs) are annotated in the text, and

the system finds paths given a sequence of NIUs. This formulation is the most similar

to SDCs of the frameworks reviewed here. For a phrase like “move two inches towards

the house,” an NIU contains a path descriptor (“move... towards”), a reference ob-

ject (“the house”), and a quantitative description (“two inches”). Spatial description

clauses break down the instruction in a similar way, separating the path descriptor

into a verb and spatial relation, but not explicitly modeling the quantitative descrip-

tion, since it appears so infrequently in the corpus. The possible path descriptors of

their formalism correspond to spatial relations in the current framework. The SDC

formalism explicitly represents the structure common to any spatial referring expres-

sion, whether it refers to a position, an orientation, a move, or a compound reference

to a landmark such as “the doors near the elevators.”

Bugmann et al. [2004] identified a set of 15 primitive procedures associated with

clauses in a corpus of spoken natural language directions. Example primitives include

“go,” “location is,” and “enter roundabout.” This work follows their methodology of

corpus-based robotics, working with natural language directions given by a human

for another human. An individual spatial description clause in the current framework

could correspond to one of their primitives actions. Spatial description clauses explic-

itly represents a more general structure common to all of their primitives, enabling a

factorization of the system into a spatial-relation processing module, and a landmark

processing module, both of which can be used in other applications.

Macmahon [2006] built a system that follows natural language directions created

by a human for another human through a simulated environment. His system rep-

resents each clause in a set of directions as one of four simple actions: move, turn,

verify, and declare-goal. A parser extracts these simple actions from text, and forms

compound actions, consisting of a simple action plus pre-conditions, while-conditions,

and post-conditions. A compound action in his formalism is roughly equivalent to

an SDC. This framework is more expressive than SDCs: a compound action can

have more than one pre-, post-, and while-conditions. For example for “Follow the

atrium all the way to the right,” “follow the atrium” can be seen as a while-condition,
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while “all the way to the right” describes a post-condition for the path segment. In

the corpus used in this thesis, clauses involving more than one pre-, post-, or while-

conditions are relatively rare in the corpus; when they occur, they are modeled as

separate spatial description clauses.

Klippel et al. [2005] created a formalism for representing route knowledge called

wayfinding choremes. At each decision point in the route, a possible direction to

take is discritized into one of seven equidistant directions. These directions can be

lexicalized as sharp right, right, half right, straight, half left, left, sharp left. (Back is

a special case.) A sequence of wayfinding choremes can be chunked together to create

higher-order direction elements. Like Klippel et al. [2005], the model described here

discritizes orientation into one of four possible orientations. However, rather than

treating turning as primitive, in the model described in this thesis, landmarks are

the key feature used to connect between natural language directions and the external

world. Each SDC describes a transition between two viewpoints, almost always with

respect to a landmark: only 21% of the SDCs in the corpus appear without an

associated landmark. Landmarks are a key part of natural language directions and

are represented explicitly in the formalism described here.

Wei et al. [2009] addressed the direction understanding problem by modeling di-

rections as a sequence of landmarks. The work in this thesis builds on the previous

system by adding spatial relation understanding, rather than using landmarks alone.

This enables the system to more completely model the natural language, while still

exploiting the structure of landmarks in the map to follow the directions.

Matuszek et al. [2010] created a system that follows directions by learning mean-

ings for phrases like “the third door” from a corpus of route instructions paired with

routes. Their system uses a machine translation-based approach to translate from

natural language to paths through the environment. The work described in this the-

sis takes a different approach to the problem, by imposing a semantic structure on

the language (spatial description clauses), then exploiting that structure to factor the

resulting probability distribution.

Dzifcak et al. [2009] created a language understanding system that simultaneously
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builds semantic structures representing both the goal of a sentence such as “Go to

the break room,” as well as the action needed to achieve that goal. A combinatory

categorial grammar (CCG) parser extracts both structures from the input text. The

CCG formalism enables the robot to understand complex commands going beyond

following directions, such as “Go to the break room and report the location of the blue

box.” The work described in this thesis takes a different strategy: rather than trying

to extract the entire linguistic structure from natural language input, the system

described in this thesis extracts a simplified, domain-specific representation. The

extraction is robust to ungrammatical sentences such as “go to hallway,” and can

follow directions from untrained users with high accuracy.

Others have created systems for enabling robots to understand natural language.

For example, Skubic et al. [2004] described a system for enabling robots to describe

their environment as in “There is a desk in front of me and a doorway behind it,”

as well as to obey commands like “go to the elevator.” Hsiao et al. [2008] made a

table-top robot that obeyed commands such as “Group the red one and the green

one” using a planning-based approach. The current work focuses on spatial language

describing trajectories, using a model that can robustly understand natural language

commands and descriptions.

Ren et al. [2009] review video retrieval methods based on matching spatio-temporal

information. They describe symbolic query languages for video retrieval, trajectory-

matching approaches, and query-by-example systems.
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Chapter 3

The Meanings of Spatial Words

This chapter describes how the system grounds the meaning of spatial prepositions,

culminating in a phrase-based spatial language understanding system. The following

chapter describes how to use these models to understand more open-ended spatial

language sentences and paragraphs: the thesis starts with models for words and

phrases, and moves on to discourse. Spatial relations are modeled as probabilistic

distributions for recognizing words paired with scenes. The distributions are trained

from labeled examples using a set of geometric features that capture the semantics of

spatial prepositions: the identification of these features is a key contribution of this

thesis.

The distribution being modeled is the probability of a particular spatial relation sr

given a trajectory t and an object in the environment o, p(sr|t, o). This distribution

corresponds to the probability that a spatial relation such as “across” or “to” describes

a particular trajectory and landmark. These distributions are trained using labeled

path examples. Continuous geometric paths are converted into a set of features

motivated by theories of human spatial language [Talmy, 2005, Jackendoff, 1983,

Landau and Jackendoff, 1993]. The input to the model is the geometry of the path

and landmark object; the output is a probability that the spatial relation can be used

to describe this scene. Probabilities output by the model for two different trajectories

are shown in Figure 3-1.

To build models for spatial relations, the system needs to compute how well a
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p(to|path, sink) = 0.99 p(to|path, sink) = 0.10

Figure 3-1: Probabilities output by the model for two different scenes for “to the
sink.”

phrase such as “past the door” describes a particular path segment, t. I conceive

of spatial relations as two-argument functions that take a figure and a landmark.

For dynamic spatial prepositions, the figure is a path, represented as a sequence of

points, and the landmark is a point or a polygon. This schematization is illustrated

in Figure 3-2.

I use binary distributions of the form p(sr|t, o) to model the meaning of spatial

prepositions for two reasons. First, a binary distribution can be directly used for

video retrieval by simply returning all clips in order of probability. Second, binary

distributions naturally capture the fact that a given situation can have more than

one correct description. For example, the clip shown in Figure 3-2 could be described

as “across the island” or “past the island.”

3.1 Models for Spatial Prepositions

The system learns distributions for spatial relations using a naive Bayes probabilistic

model. To model this distribution, I use features fi that capture the semantics of

spatial prepositions. These features are functions of the geometry of the path and
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Figure 3-2: Frame from a video clip in the corpus, plus the schematic representation
of the event, used for computing p(sr|t, o).
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displacementFromGround=d2 - d1{ d1

{d2

Figure 3-3: Illustration of the computation of the feature displacementFromGround.

landmark. For example, one of the features utilized for the spatial preposition “to”

is the distance between the end of the path and the landmark’s location.

p(sr|t, o) =p(sr|f1 . . . fN) (3.1)

Next, we use Bayes’ rule to rewrite the distribution, and then make the Naive

Bayes assumption, that features are independent of each other.

p(sr|t, o) =
p(f1 . . . fN |sr)p(sr)

p(f1 . . . fN)
(3.2)

p(sr|t, o) =

∏
i p(fi|sr)p(sr)∑

srk
p(fi|srk)p(srk)

(3.3)

In this section I describe the features used for each spatial relation. The features

were selected from a large set of candidate features based on how well they captured

the semantics of the particular spatial relation. Some features are reused for more

than one spatial relation. In this case the feature definition is repeated twice for

clarity: in this way the reader can look up a word and find the complete set of

features used for that word without having to flip to other parts of the document.

3.1.1 across

An important underlying concept inherent in the meaning of many spatial preposi-

tions is the idea of coordinate axes. “Across” has been defined as a spatial relation

that takes a linear figure and planar ground, and requires the figure to be perpen-
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dicular to the major axis of the ground [Talmy, 2005, Landau and Jackendoff, 1993].

However this definition does not specify how to find the major axis of the ground.

In many contexts, there is no single set of axes: for example, there are many paths

across a square room. The system solves this problem by finding the unique axes that

the figure imposes on the ground, and then quantifying how well those axes match

the ground. These axes are computed by finding the line that connects the first and

last point in the figure, and extending this line until it intersects the ground. This

computation is illustrated in Figure 3-2. The origin of the axes is the midpoint of

this line segment, and the endpoints are the two points where the axes intersect the

ground. Once the axes are known, the system computes features that capture how

well the figure follows the axes, and how well the axes fit the ground.

• figureCenterOfMassToGroundCentroid: The distance between the center

of mass of the figure and the centroid of the ground.

• distAlongGroundBtwnAxes: The distance along the ground between the

start and end of the minor axis.

• ratioFigureToAxes: The ratio between the distance between the start and

end points of the figure and the axes.

3.1.2 along

The axes for “along” is computed by taking a subset of the boundary of the ground

object. The start of the axes is the point on the ground closest to the start of the

figure; the end of the axes is the point on the ground closest to the end of the figure.

The axes itself is the boundary of the ground between these two points.

• peakDistanceToAxes: The maximum distance between the figure and the

axes it imposes, for the part of the figure that is inside the ground.

• standardDeviation: The standard deviation of the distance between the fig-

ure and the ground.
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• averageDistStartGroundDistEndGround: The average of distEndGround

and distStartGroundBoundary.

• angleBetweenLinearizedObjects: The angular difference of the slope of a

line fit to the figure and the ground.

3.1.3 around

• averageDistStartGroundDistEndGround: The average of distEndGround

and distStartGroundBoundary.

• distStartGroundBoundary: The distance of the start of the figure to the

ground.

• figureStartToEnd: The distance between the start of the figure and the end.

3.1.4 away from

As in “walk away from the door.”

• displacementFromGround: This feature measures the net distance traveled

by the figure towards the ground. It is illusrated in Figure 3-3.

• distFigureEndToGround: The distance from the end point of the figure to

the ground.

• distFigureStartToGround: The distance from the start point of the figure

to the ground.

3.1.5 down

As in “down the hall” or “down the road.”

• standardDeviation: The standard deviation of the distance between the fig-

ure and the ground.
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• figureCenterOfMassToAxesOrigin: The distance between the center of

mass of points in the figure and the axes origin.

• distAlongGroundBtwnAxes: The distance along the ground between the

start and end of the minor axis.

• eigenAxesRatio: The ratio between the eigenvectors of the covariance matrix

of the ground when represented as an occupancy grid.

3.1.6 out

• figureCenterOfMasssToGroundCentroid: The distance between the cen-

ter of mass of the figure and the centroid of the ground.

• averageDistance: The average distance between the figure and the axes.

• displacementFromGround: This feature measures the net distance traveled

by the figure towards the ground. It is illustrated in Figure 3-3.

3.1.7 past

• distFigureStartToGround: The distance from the start point of the figure

to the ground.

• distFigureEndToGround: The distance from the end point of the figure to

the ground.

• distFigureStartToGround: The distance from the start point of the figure

to the ground.

• angleFigureToAxes: The angle between the linearized figure and the line

perpendicular to the closest point on the ground.

• axesLength: The length of the axes, normalized.
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3.1.8 through

Features for “towards” are borrowed from “across.”

• figureCenterOfMassToGroundCentroid: The distance between the center

of mass of the figure and the centroid of the ground.

• distAlongGroundBtwnAxes: The distance along the ground between the

start and end of the minor axis.

• ratioFigureToAxes: The ratio between the distance between the start and

end points of the figure and the axes.

3.1.9 to

• distFigureEndToGround: The distance from the end point of the figure to

the ground.

• displacementFromGround: This feature measures the net distance traveled

by the figure towards the ground. It is illustrated in Figure 3-3.

3.1.10 towards

• distFigureEndToGround: The distance from the end point of the figure to

the ground.

• displacementFromGround: This feature measures the net distance traveled

by the figure towards the ground. It is illustrated in Figure 3-3.

3.1.11 until

• distFigureEndToGround: The distance from the end point of the figure to

the ground.

• startPointsInGroundBoundingBox: Is the starting point of the ground in-

side the figure’s bounding box?
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3.2 Performance in Schematic Domain

The distributions are trained and evaluated on a corpus of examples of each spatial

relation. In this evaluation I report the performance on this test set overall, and for

each individual feature. The system learns the distribution in Equation 3.3 from a

dataset created by hand-drawing examples of paths that matched a natural language

description such as “through the door.” In this data set, positive examples of one

spatial relation were taken to be negative examples of others. Some pairs of spatial

relations, such as “to” and “towards,” which are very similar, were excluded from

each other’s training sets. I trained classifiers for eleven spatial prepositions: “across,”

“along,” “through,” “past,” “around,” “to,” “out,” “towards,” “down,” “away from,”

and “until.” “Until” is not a spatial relation in general, but I modeled it as one here

because it almost always refers to an arrival event in the direction understanding

corpus, as in “until you come to an intersection just past a whiteboard.”

The resulting distribution is treated as a classifier for a particular spatial relation,

and I report performance on a held-out test set from in Figure 3-4. This figure shows

that a high-accuracy classifier was learned for each spatial relation.

The distributions can be used for information retrieval by searching a dataset of

trajectories and landmarks for high and low scoring examples. Figure 3-20 shows

the results of this search over a database of trajectories in a topological map of an

environment completely separate from the training set. This figure shows that the

system is correctly recognizing good and bad examples for each spatial relation.

Many features involve distances. However spatial relations are scale invariant:

a snail can crawl across a leaf, and a spaceship can travel across the solar system.

Despite the huge difference in scale, “across” can be used to describe both trajectories.

This problem is solved by normalizing all distances by the size of either the ground,

the figure, or the bounding box of the scene.

Finally, a key contribution of this work is to analyze the contribution of individual

features to the performance of the full model. In some cases this analysis lead to just

one or two features that work well for a particular spatial relation; in other cases
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Figure 3-4: The performance on the corpus of examples drawn for a particular path,
when treating the spatial relation probability as a classifier. On the horizontal axis
of the ROC curve is the false positive rate (FP) and on the vertical axis is the true
positive rate (TP).
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Figure 3-5: Performance of “to” and “towards,” overall, and on each feature individ-
ually.

more than one feature is necessary to capture the semantics.

Figure 3-5 shows the performance of features for “to” and “towards.” The most

important feature for both is displacementFromGround. The raw distance of the end-

point of the trajectory from the ground works less well, because it captures examples

where the figure remains near the ground object for the entire trajectory (such as the

example shown in Figure 3-1).

Figure 3-7 shows the performance for “across” and “through.” The key feature

ratioFigureToAxes works well for both. distAlongGroundBtwnAxes works better for

“across” than “through” because it captures the constraint that the path should bisect

the ground, which does not exist for “through.”

3.3 Phrase-based Spatial Language Video Retrieval

In order to evaluate the models in the context of phrase-based video retrieval, I

collected a corpus of prepositional phrases that annotators used to describe a person’s

motion in surveillance video. An evaluation of video retrieval with more open-ended,

complex spatial language discourse is described in Chapter 6.

Annotators watched a video clip from a surveillance camera installed in the kitchen

of a home. I collected data from five different annotators. Annotators were shown
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Figure 3-6: Performance of “along” and “down” overall and on each feature individ-
ually.

Figure 3-7: Performance of “across” and “through,” overall and on each feature
individually.
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Figure 3-8: Performance of “past” and “away from” overall and on each feature
individually.

video clips from two days of video. To focus on prepositions describing movement,

annotators saw only tracks that were longer than four seconds, and where the distance

between the first and last points in the track was larger than 200 pixels. Clips were

shown in random order drawn from two days of data, and each clip appeared in the

data set three times in order to collect multiple descriptions from the same annotator

for the same clip.

A person’s location in the video was marked automatically by a tracker. I used

a motion-based tracker that I developed using the SwisTrack free software tracking

pipeline [Lochmatter et al., 2008]. When a person moves in the video, the tracker

detects the location of the motion, and either creates a new track, or adds the de-

tected point to an existing track. When a person stops moving, the track is ended.

These boundaries are often, but not always, reasonable places to start and stop video

playback, since they correspond to the start and stop of a person’s motion.

The video was overlayed with labels marking the location of non-moving objects

such as the refrigerator, doors, and cabinets. Annotators were asked to try to use

those labels in their descriptions, but were not required to use them.

After annotation, each clip in the data set had up to fifteen descriptions associated

with it, with an average of 10.7. Figure 3-9 shows a frame from a clip in our corpus,

together with some descriptions. Figure 3-10 shows a histogram of the frequency of the
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(a) Clip.

to the counter.
along the east side of the island.
from the refrigerator.
to the cabinet.
across the kitchen.

(b) Annotations.

Figure 3-9: Annotations for a video clip from the restricted corpus. Annotators
completed the sentence “The person is going...” with one prepositional phrase.

descriptions that appeared in the corpus, color coded by annotator, while Figure 3-11

shows the distribution of prepositions in the corpus. From the histograms, it seems

that annotators tend to reuse descriptions, rather than inventing an entirely new one

for each track. Despite this tendency, a diverse set of spatial prepositions appears in

the corpus.

Figure 3-12 shows the distribution of ground objects used in the corpus. Ambigu-

ous ground objects such as “the door” and “the counter,” which appeared more than

once in the kitchen are resolved through manual annotations. Descriptions which re-

solved to more than one ground object were excluded from the evaluation. Examples

of descriptions rejected for this reason include “from one counter to the other,” “back

and forth,” and “through both doors.”

All descriptions that the system successfully parsed and had associated ground

objects were included in the evaluation. Table 3.1 shows the number of tracks that

annotators skipped, and the number of parse failures for the tracks used in the eval-

uation.
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Corpus Size

tracks left blank 971
grounding and parsing failures 393
parse successes 7051

total 8415

Table 3.1: The size of the corpus, together with numbers of tracks excluded for various
reasons.

Results

I used the restricted corpus to train classifiers for spatial prepositions and evaluate

the performance of the classifiers. In order to train classifiers for prepositions in the

corpus, each description was converted into a training example. If the description used

a preposition, it was treated as a positive training example for that preposition, and

if the description used some other preposition, it was treated as a negative training

example, following Regier [1992]. For example, the description “around the island”

paired with a video clip was treated as a positive example of “around” and a negative

example of “to.” This heuristic is imperfect: a track that is “along the island”

may also be “around the island.” In some of these ambiguous cases, I excluded

similar spatial prepositions from the training and test sets. For example, for “to,” I

excluded examples labeled with “towards,” “out,” “through,” and “into” because a

track labeled “out the door” was often a good example of “to the door.” Data was

separated into training and testing by track: all descriptions associated with a track

appeared either in the training set or the test set. 80% of the tracks were used as

training data, and the rest as test data.

Unique objects that rarely move such as “the kitchen” or “the coffee maker” are

resolved to pre-annotated regions in the video. Some noun phrases such as “the door”

or “the counter” can not be automatically resolved in this way because there is more

than one in the room being recorded. For example, in Figure 3-13, if an annotator

labeled the clip “past the counter,” the proper ground object is the east counter;

on the other hand, if the label was “to the counter,” it probably refers to the north
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Figure 3-10: Histogram of the frequencies of various descriptions in the restricted
video retrieval corpus.

counter. To sidestep this issue, I manually labeled ambiguous objects with the proper

ground.

To visualize classifier performance, I report ROC curves. All results use the naive

Bayes classifier in the Orange Data Mining library [Demsar and Zupan, 2004]. I

measured the performance of a classifier trained using all features, as well as one

trained on each feature in isolation, to see how well each feature works on its own.

It is possible a classifier would perform even better with a subset of the features.

Although the aim is to use models to support video retrieval, this evaluation does not

directly measure retrieval performance, but rather the effectiveness of the classifiers
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Figure 3-11: Histogram of the prepositions in the corpus.

at capturing the semantics of spatial prepositions that might be used in natural

language queries. An evaluation of end-to-end video retrieval performance on open-

ended queries is presented in Chapter 6.

Figure 3-14 shows the performance of various binary classifiers for the spatial

preposition “to.” The classifier trained using all the features clearly performs the

best. An alternative interface to search for people going “to the sink” is to manually

specify a region of interest, for example by drawing a bounding box. The two fea-

tures, numInteriorPoints and endpointsInGroundBoundingBox, capture this

heuristic, and perform quite poorly on their own. This result implies that a user

searching for people going “to the sink” would be better served by an explicit model

of the meaning of “to,” implemented in terms of a combination of features, than they
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Figure 3-12: Histogram of ground objects used to label tracks in the corpus. Each
ground corresponds to a specific object in the camera’s visual field; the mapping was
determined from human annotations.

Figure 3-13: A frame from a clip in the corpus. Descriptions for this clip included
“to the counter,” “along the east side of the island,” “from the refrigerator”, “to the
cabinet,” and “across the kitchen.”

would be by a query interface in which they drew a bounding box around a region of

interest.

In an earlier paper [Tellex and Roy, 2009], I analyzed “across” based on binary
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Figure 3-14: Performance of classifiers for “to,” with examples containing “out,”
“through,” “towards,” and “into” excluded.

annotations, in which annotators marked whether a video clip matched a query such

as “across the kitchen.” There I found that the feature ratioFigureToAxes was

critical to good performance, and other features performed poorly on their own. In

this corpus, the feature figureCenterOfMassToGroundCentroid is also effective

on its own. Possibly the difference is due to the different tasks in the two papers:

the methodology of collecting natural language descriptions for clips yields fewer

borderline “across” examples, changing which features work the best.

“Through” and “out” use a subset of the features used by the “across” classifier.

For “out”, the feature ratioFigureToAxes performed the best. This feature cap-

tures the degree to which the figure moves from one point on the boundary of the

ground to another point. Both of these spatial prepositions are somewhat problem-

atic in this domain because the tracks do not extend beyond a single camera. When
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Figure 3-15: Performance of classifiers for “across.”

an annotator wrote “through the door,” the system saw a track that extended to the

door and then stopped. The following chapter will explore the usage of these words in

a corpus of natural language directions, leading to a more satisfying representation.

The results for “along” are shown in Figure 3-18. I report the performance of

a classifier trained on all features, and on all features except visibleProportion-

FigureGround. This feature is the only feature (so far) which requires additional

context from the environment besides the geometry of the figure and ground: it must

know about obstacles in the environment which can prevent the figure from being

visible from the ground. I added this feature because a classifier for “along” trained

on a corpus of explicitly labeled positive and negative examples of “along the right

side of the island” sometimes returned tracks that were along the left side of the

island. I hoped that adding features that referred to obstacles in the environment

would alleviate this problem, but so far have not found an effect.
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Figure 3-16: Performance of classifiers for “through.”

Figure 3-19 shows the performance of the classifier for “around.” As it turned out,

the most common use of “around” was “around the island,” so although the system

performs well, it probably does not generalize well to other examples. Interestingly,

the feature distStartToGround performs much better than distEndToGround,

despite the bias in the corpus for the spatial preposition “to” compared to “from,”

and despite evidence that people pay more attention to the goal of a spatial motion

event [Regier and Zheng, 2007].

Overall these results are promising. I have identified a set of features that can suc-

cessfully classify examples in the corpus. The performance on this task is encouraging

because it indicates that the features are capturing important aspects of the semantics

of spatial prepositions. A major remaining issue is that in a retrieval context, even

a low false positive rate can yield poor retrieval performance if there are many more

negative examples in the corpus than positive examples. Despite this issue, models
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Figure 3-17: Performance of classifiers for “out,” with examples containing “towards,”
“through,” and “to” excluded.

for the meanings of spatial prepositions are a promising path forward to a natural

language video retrieval. Chapter 6 describes an end-to-end retrieval evaluation of a

model for understanding not just phrases but spatial language discourse.
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Figure 3-18: Performance of classifiers for “along.” !visibleProportionFigure-
Ground is a classifier trained on all features except visibleProportionFigure-
Ground.
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Figure 3-19: Performance of classifiers for “around.”
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“past”

High-scoring

Low-scoring

“to”

High-scoring

Low-scoring

“through”

High-scoring

Low-scoring

Figure 3-20: Five high scoring and five low scoring examples that were found in the
direction understanding topological map for several spatial prepositions.
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Chapter 4

Spatial Language Discourse

Spatial language created by untrained users is challenging, containing rich syntactic

structure and unconstrained vocabulary. In order to robustly understand this type of

language, I introduce a novel a semantic structure extracted from the language called

a spatial description clause or SDC for short, developed jointly with Thomas Kollar.

SDCs enable the system to process language in the various corpora used as part of

this research. The following chapter describes a probabilistic model based on SDCs

that finds paths in the environment corresponding to the natural language input.

4.1 Spatial Description Clause (SDC)

Each spatial description clause (SDC) consists of a figure (the subject of the sentence),

a verb (an action to take), a landmark (an object in the environment), and a spatial

relation (a geometric relation between the landmark and the figure). Any of these

fields can be unlexicalized and therefore only specified implicitly. For example, in the

sentence “Go down the hallway,” the figure is an implicit “you,” the verb is “go,” the

spatial relation is “down,” and the landmark is “the hallway.” SDCs are hierarchical.

For the sentence “Go through the set of double doors by the red couches,” the top

level SDC has a verb, “go,” a spatial relation, “through,” and a landmark, “the set

of double doors by the red couches,” while the landmark contains a nested SDC

with figure “the set of double doors,” spatial relation “by” and landmark “the red
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Figure 4-1: Ground-truth and automatically extracted SDCs for the sentence, “Con-
tinue to walk straight, going through one door until you come to an intersection just
past a white board.” Here, S is the entire sentence, SDC is a spatial description
clause, F is the figure, V is the verb, SR is the spatial relation, and L is a landmark.

couches.” Figure 4-1(a) shows the hierarchy of SDCs for a sentence in the route

instruction corpus.

I hand-annotated the text of 300 directions in a corpus of natural language route

instructions through indoor environments in order to verify that SDCs are capable of

capturing the linguistically expressed structure of the natural language [Kollar et al.,
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Figure 4-2: Histogram showing the most frequent words that appear in each of the
fields of an SDC from the route instruction. For Figures and Landmarks, similar
phrases have been grouped together.

2010]. The corpus was collected by Nicholas Roy and his students, and it is described

more completely in Chapter 5. Nearly all of the sentences in the dataset can be

parsed into SDCs that correctly preserve the semantics of each word in the sentence,

with very few (7.29%) orphaned words. Virtually all of the orphaned words are stop

words. Figure 4-2 shows the top ten words that appeared in each field of an SDC in

the route instruction corpus.

Several types of sentences could not be annotated within the SDC framework.

First, multi-argument verbs do not fit in the framework, as in the sentence “Follow

the atrium all the way to the right.” Here both “the atrium” and “all the way to the

right” are arguments to verb “follow.” Second, some phrases such as “in order” do
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not correspond to any of the slots in the SDC, as in “Move past the classrooms 144,

141, and 123 in order.” Third it does not capture disjunction, such as the descriptive

sentence “You must turn right or left.” Fourth, it does not represent negation as in

“Do not go through the glass and wooden doors.” Finally, the framework does not

explicitly represent ambiguous attachment in sentences such as “Go down the hall to

the right of the whiteboard.” This sentence could be about “the hall to the right of

the whiteboard” or alternately could mean “Go... to the right of the whiteboard.”

Both these meanings can be represented as two different SDCs, but the fact that

both are possible is not directly represented. These limitations are part of a long

tail of linguistic phenomena that sometimes occur in natural language directions, and

require a more complex framework. SDCs capture important parts of the semantics

of route instructions in the corpus, and are efficient to extract and use in inference.

4.2 Automatically Extracting SDCs

Although SDCs are hierarchical, like the hierarchical structure of natural language,

inference is simplified if they are modeled sequentially. Section 4.3 describes how to

perform inference for a sequence of SDCs; a full hierarchical model remains future

work.

To automatically extract a sequence of SDCs from natural language text, the

system uses a conditional random field (CRF) model [Kudo, 2009]. The CRF takes

as input a natural language sentence and labels each word in each sentence with one

of the four possible fields (figure, verb, spatial relation and landmark), or none. The

model was trained using an annotated corpus of natural language route instructions.

A greedy algorithm groups continuous chunks together into SDCs. Figure 4-1(b)

shows the SDCs generated by this component for one sentence. Although it lacks

the hierarchical structure of the annotated data (as in Figure 4-1(a)), the SDCs

capture the sequential structure of the directions, and segments the key components

of each phrase. Quantitatively, 60% of the SDCs produced by the CRF correspond

exactly to an SDC in the hand-annotated ground truth. To measure inter-annotator
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agreement, a second person annotated the SDCs in the corpus, and also had 60%

agreement with my annotations. Figure 4-3 shows the performance of the system

against ground truth for exact matches, and for each subfield of the SDC. When the

automatic algorithm makes a mistake, it is usually a boundary problem, for example

including the spatial relation and landmark, but excluding the verb. In these cases,

the annotations still contain structured information that can be used to reason based

on the natural language input.

I used the same SDC extractor for the open-ended route instructions corpus.

The most common error it makes in this corpus is ambiguous prepositional phrase

attachment. For instance, in the example “Go down the hall to the bathroom,” the

extractor creates one SDC (V: “Go”, SR: “down”, L: “the hall to the bathroom”)

instead of two. [(V: “Go”, SR:“down”, L:“the hall”), (SR: “to”, L:“the bathroom”)]

However, overall it appears to work quite robustly.

SDCs provide the structure for decomposing spatial language into components.

Each component can be modeled separately and composed back together using in-

dependence assumptions defined by the SDC. This decomposition enables separate

models to be learned for the meanings of verbs, spatial relations, and landmarks.

By decomposing models in this way, much less training data is required to learn the

models, while a large variety of language can be understood. Because it does not

rely on a full correct parse, the system is more robust to sentence fragments and

ungrammatical language.

4.3 Modeling Spatial Language with SDCs

Spatial description clauses (SDCs) described in the previous chapter provide a con-

ceptual framework that the system uses to understand language. However, to actually

map between language and the world requires more machinery. This chapter describes

a probabilistic model developed jointly with Thomas Kollar that maps between lan-

guage and the world. The factors in this model are based upon the structure of the

spatial description clause, and incorporate the distribution for spatial relations de-
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Figure 4-3: Performance of the model that extracts spatial description clauses from
text on each component of the clause alone, and overall. The model was trained on
directions from floor 1, and tested on directions from floor 8.
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scribed in the previous chapter. The following chapters describe how this model was

actually used to understand language from the two application domains. Language is

mapped to contextual information in the world via a probabilistic model of the joint

distribution of language and contextual information:

p(language, context) (4.1)

The structure and independence assumptions of this model correspond to the

assumption that spatial language corresponds to a sequence of SDCs, as described in

the previous chapter. To compute this distribution, the first step is to rewrite it in

terms of the SDCs extracted from the query, and represent the context as a trajectory

t.

p(language, context) = p(SDC1 . . . SDCN , t) (4.2)

The general inference problem is to find a trajectory t that maximizes this distri-

bution:

arg max
t
p(SDC1 . . . SDCN , t) (4.3)

Assuming SDCs are independent of each other yields the following factorization:

p(SDC1 . . . SDCN , t) =
∏
i

p(SDCi, t) (4.4)

In general, an SDCi may apply to only part of a trajectory t, especially for

longer trajectories. This alignment problem is approximated using a topological map

for direction understanding, and by assuming that each SDC applies to the entire

trajectory for video retrieval.

For natural language direction understanding and video trajectory search, the goal

is to find a trajectory that maximizes this distribution. The system does not know

which physical object in the world o is associated with a particular SDC.
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The model assumes the spatial relation and landmark fields of the SDC are refer-

ring to a particular object in the environment. However, since the correct object is

unknown, the model marginalizes over all the possibilities, O.

p(SDC, t) =
∑
O

p(SDC, t, o) (4.5)

The inner term can be rewritten in terms of the fields of the SDC, figure f , verb

v, spatial relation s and landmark l and then factored:

p(SDC, t, o) = p(f, v, sr, l, t, o) (4.6)

= p(f |t, o)p(v|t, o)p(sr|t, o)p(l|t, o)p(t, o) (4.7)

This factorization assumes that the fields of the SDC are independent of each

other and depend only on the ground object and the trajectory. Because of these

independence assumptions, it is possible to model each factor separately, which re-

quires much less training data than learning a model for the joint directly and yields

models that can be reused in other contexts.

The core of this thesis is models for the meanings of spatial relations p(sr|t, o)

and spatial motion verbs, p(v|t, o). The remainder of this chapter describes how

other terms are modeled. p(f |t, o) is the probability that a phrase like “She” maps to

a trajectory for a description such as “she walked down the hall.” It could be learned

based on features in the video, although as yet I have not built models for it.

p(t, o) is a prior based on trajectories and objects. This term is factored:

p(t, o) = p(t|o)p(o) (4.8)

p(o) is the prior probability on objects and does not affect the inference because

it is constant. p(t|o) is the prior probability of paths given observations of the envi-

ronment, before processing any directions. For example, paths that go down hallways

and pass by many doors might be more likely than a path that goes into an office.

This distribution could be learned from an appropriate corpus. Instead I assume that
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paths are independent of objects in the environment in order to focus on incorporating

information from the language directions into the model.

4.3.1 Landmarks

In order to ground landmark objects, the system needs to estimate the probability

that a landmark noun phrase l such as “the couches in the living room” could be

used to describe a concrete object o with a particular geometry and location in the

environment, given a trajectory t. One wants to estimate:

p(l|t, o) = p(l|o)p(o|t) (4.9)

p(o|t) is a mask based on whether a particular object is visible from the trajec-

tory. I assume that objects not visible from a particular trajectory are never used

as landmark objects in a description. This assumption saves computation during the

inference as all known objects do not need to be considered. A more informed prior

would take into account object saliency: how salient a given object is for a particular

trajectory.

To model p(l|o), the system extracts nouns, adjectives, and verbs from the land-

mark phrase, representing the landmark phrase l as a set of words wi.

p(l|o) =p(w1 . . . wM |o) (4.10)

For example, the words extracted from “the couches in the living room” are

“couch,” “living,” and “room.” This factorization assumes that one of the keywords

is referring to the physical landmark object, and the other keywords are descriptors

or reference objects. For “the couches in the living room,” the grounded keyword is

couches; this word directly grounds out as the object being referred to by the land-

mark phrase, and other extracted words are modifiers. However, the system does

not know which keyword is the root and which are modifiers. To address this prob-

lem the system represents which keyword k is the root with an assignment variable

69



φ ∈ 1 . . .M which selects one of the words from the landmark phrase as the root and

marginalize over possible assignments:

p(k1 . . . kM |o) =
∑
φ

p(k1 . . . kM , φ|o) (4.11)

Expanding the inner term gives:

p(k1 . . . kM , φ|o) = p(k1 . . . kM |φ, o)p(φ|o) (4.12)

=
∏
i

p(ki|φ, o)p(φ) (4.13)

The prior on φ is independent of the physical object o and depends on grammatical

features of the landmark phrase; it is modeled as uniform over all the keywords,

although a more informed prior would use parse-based features to identify the head

noun. The likelihood term can be broken down further depending on the value of φ:

p(ki|φ, o) =

 p(ki is o) if φ = i

p(ki can see o) if φ 6= i
(4.14)

p(ki is o) could be estimated using hypernym/hyponym features from Wordnet

and part of speech information, but here it is based on whether ki matches the

label for o in the semantic map of any object in the environment; if it does, it is

modeled based on whether o has that tag. Otherwise, it backs off to co-occurrence

statistics learned from tags for over a million images downloaded from the Flickr

website [Kollar and Roy, 2009]. For example, using this corpus, the system can infer

which bedroom is “the baby’s bedroom” without an explicit label, since only that

room contains a crib and a changing table. This construction allows the system to

handle expressions such as “the hallway door” and “the room with the fireplace.”

This model uses visibility information as a proxy for detailed spatial-semantic models

of relations such as “in front of” and “in,” and seems to work better than a baseline

that uses
∏

ki
p(ki can see o) to approximate p(k1 . . . kM |o).
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Chapter 5

Natural Language Route

Instructions

One of the two application domains in this thesis is that of natural language route

instructions for robots. Together with video retrieval, these two domains comprise

two key uses of language: obeying commands, and recognizing events based on a

description.

Natural language is an intuitive and flexible modality for human-robot interaction.

A robot designed to interact naturally with humans must be able to understand

instructions without requiring the person to speak in any special way. Understanding

language from an untrained user is challenging because the human is not asked to

adapt to the limitations of the system, i.e., to limit their instructions to a small

vocabulary or grammar. Rather, one wants a system that understands naturalistic

language directly as produced by people.

This work is directed toward understanding naturalistic language as part of a

larger multi-university effort to develop autonomous robot teammates that collabo-

rate naturally and effectively with humans in a civilian response after a mass casualty

event. Two types of robots take part in the scenario: quadrotor helicopters and the

Mobile Dexterous Social robot (MDS), an expressive, mobile humanoid (Figure 5-1).

In the first-responder scenario, robots will need to interact with both trained and

untrained humans to aid the rescue effort. For example, a robot might engage in the

71



(a) humanoid (b) helicopter

Figure 5-1: Robot platforms used as part of a disaster-recovery scenario.

following dialog when it finds a human victim:

• Robot Someone is on the way to get you out of here. Are there any other

people around who need help?

• Victim I saw someone in the main lobby.

• Robot Where is the main lobby?

• Person Exit this room and turn right. Go down the hallway past the elevators.

The lobby is straight ahead.

• Robot Understood.

The system can infer paths through any environment based on natural language

directions. If the robot has explored the entire area a priori and has access to a map of

the environment, global inference searches through all possible paths to find the global

maximum of the joint distribution. When a full map is unavailable, the robot uses a

greedy local inference algorithm that searches for paths using only local information.

The system performs global inference using a Viterbi-style algorithm [Viterbi, 1967]
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With your back to the windows, walk straight through the door near the elevators.
Continue to walk straight, going through one door until you come to an intersection just
past a white board. Turn left, turn right, and enter the second door on your right (sign
says “Administrative Assistant”).

Figure 5-2: A robot such as Nexi (pictured above) takes as input a set of natural
language directions and must find its way through a naturalistic environment such as
the one pictured.

that finds the most probable sequence of viewpoints corresponding to a given sequence

of SDCs. The algorithm takes as input a starting viewpoint, a map of the environment

with some labeled objects, and the sequence of SDCs extracted from the directions.

It outputs a series of viewpoints through the environment, using the model described

above to compute the probability of a transition between two viewpoints.

The local inference algorithm iterates over the SDCs and at each step chooses the

next viewpoint vi+1 that maximizes p(sdci|vi+1, vi, o1 . . . oK)×p(sdci+1|vi+1, vi+2, o1 . . . oK)×

p(vi+1|vi) × p(vi+2|vi+1). In other words, it looks ahead two SDCS, and chooses the

best transition from among the children and grandchildren of the current node. Global

inference performs better because it searches through all possible paths to find the

one that best matches the descriptions. However, the local inference is more practical

for a real robot, because it does not require the robot to have built a complete map

of the environment and objects in it before following directions.
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With your back to the glass entryways, walk toward the question mark sign. You will
continue roughly in this direction as far as you can go, passing: two large white columns,
two smaller grey pillars, under two skylights, until you reach a hanging concrete staircase.
Continue under this staircase, then turn right at the doors and continue forward until you
see elevators. Stop here.

Walk straight for a while. You should pass a computer station on your left, and
then the classroom ’144’ on your right. Keep going as you pass a mural on your right then
the classroom ’124’ on your right. Keep straight with a children’s’ center to the left. Take
a left turn until you get to the elevators on your left.

Walk down the hall to the right of the room. Continue walking straight. Go to the
right of the room labeled MIT Libraries. Continue to walk straight through the halls. The
building will curve and you will walk around a staircase. There is a radar exhibit in your
final location.

Walk toward the large white question mark and pass it such that it’s on the left.
Keep walking in that direction passing a small “MIT Libraries” room on the left and
wooden trash / recycling bins on the right. You’ll come to an open hallway with bulletin
boards and big chalk boards. Walk past those until you reach concrete stairs overhead.
Walk under the stairs, then turn right. Head toward the glass doors. Stop at the elevators
on the left.

Figure 5-3: Example directions from the route instruction corpus.

5.1 Corpus

I used a corpus of natural language route instructions collected by Thomas Kollar,

Emma Brunskill, Sachi Hemachandra, and Nick Roy [Kollar et al., 2010]. Figure 5-3

shows sample directions from this corpus. Directions were collected from an office

environment in two adjoining buildings at MIT. The goal in collecting this corpus

was to obtain examples of natural language directions produced by a human for an-

other human to develop and evaluate a system for automatically following directions.

Fifteen subjects wrote directions between 10 different starting and ending locations,

for a total of 150 directions. Subjects were solicited by placing flyers around MIT

and were selected for inclusion in the study if they were between the ages of 18 and

30 years old, were proficient in English, and were unfamiliar with the test environ-

ment. The pool was made up of 47% female and 53% male subjects from the MIT

community, primarily students and administrators.

When collecting directions, subjects were given a tour of the building to familiarize
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Table 5.1: The performance of the models at 10 meters.

% correct
Algorithm Max Prob Best Path

Global inference w/spatial relations 48.0% 59.3%
Global inference w/o spatial relations 48.0% 54.7%
Local inference w/ spatial relations 28.0% 42.0%
Local inference w/o spatial relations 26.7% 30.7%
Wei et al. [2009] 34.0% 34.0%
Last SDC only 23.0% 24.0%
Random 0.0% –

them with the environment. Then they were asked to write down directions from one

location in the space to another, as if they were directing a friend. Subjects were

allowed to wander around the floor as they wrote the directions and were not told

that this data was for a robotics research experiment. Experimenters did not refer to

any regions in the environment by name, instead using codes labeled on a map.

In order to enable an offline evaluation, the corpus includes a log of a robot’s obser-

vations of the environment. To collect the dataset, a mobile robot instrumented with a

LIDAR and camera drove through the environment. The log thus contains odometry,

laser scans, and camera images. The laser scans and odometry were used by a SLAM

module in order to create a map as the robot explored the environment [Grisetti et al.,

2007]. The log enables the testing of models for following directions from the corpus

offline, without the overhead of deploying a physical robot in a user study.

5.2 Results

To evaluate the technical feasibility of the approach, I performed a component-level

evaluation of the system, measuring its performance at following natural language di-

rections from the corpus. For each set of directions, the system tried all four possible

starting orientations. Two evaluation metrics were used. For the maximum prob-

ability metric, only the highest probability path from the four starting orientations

is evaluated. In the best-path metric, only the path that ended up closest to the

75



true destination is evaluated. For the latter metric, the true starting orientation of

the subject at the beginning of each set of directions was difficult to automatically

determine. Figure 5-4 shows a comparison of the model to three baselines: on the

horizontal axis is the distance from the final location of the inferred path to the correct

destination, on the vertical axis is the percentage correct at that distance. Perfor-

mance differences at 10 meters are shown in Table 5.1. I present performance at a

threshold qualitatively close to the final destination in order to compare to human

performance on this dataset, which is 85%.

The first baseline (Random) is the expected distance between the true destination

and a randomly selected viewpoint. The second (Last SDC ) returns the location

that best matches the last SDC in the directions. The third baseline (Landmarks

Only) corresponds to the method described by Wei et al. [2009], which performs

global inference using landmarks visible from any orientation in a region, and no

spatial relations or verbs. The global inference model significantly outperforms these

baselines, while the local inference model slightly outperforms Wei et al. [2009] despite

not performing global search.

The performance of the model with and without spatial relations is of particular

interest, since spatial relations are a key difference between this model and previ-

ous work. Figure 5-5 shows the performance of these models for all subjects, while

Figure 5-6 shows the performance for the subject whose directions had the highest

performance with the global inference algorithm with spatial relations. Spatial rela-

tions do not contribute much to the performance of the global inference algorithm,

but do increase the performance of the local inference algorithm. For one subject,

they raise the performance of the local search algorithm into the range of the global

inference algorithms. Possibly this effect is because when deciding to go through a

particular door, the global inference algorithm searches on the other side of that door,

and if landmarks farther along in the sequence of SDCs match that path, then it will

go through the door anyway. In contrast, the local search approach benefits more

from spatial relations because it cannot see the other side of the door, so relying on

the geometric features of the path helps to disambiguate where it should go. Fig-
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Figure 5-4: Comparison of our model to baselines. Versions of the model are shown
in red; baselines are in blue.

ure 5-7(a) and Figure 5-7(b) show the paths inferred by the two models for the set of

directions. Without spatial relations, the model is content to stay in the first room,

from which it can see objects, such as a whiteboard and a door, that occur in the

directions. In contrast, the model that uses spatial-relations goes through the first

door when told to “walk straight through the door near the elevators” and ends up at

the correct final destination. This result suggests that the role of spatial relations in

natural language directions is to help the direction follower disambiguate these local

decisions.

The most significant improvement in performance over the system corresponding

to Wei et al. [2009] comes from the model of verbs with viewpoints, suggesting that

the combination of verbs and landmarks is critical for understanding natural language

directions. It is surprising that a relatively simple model of verbs, involving only left,

right, and straight, caused such a large improvement compared to the effect of spatial

relations.
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Figure 5-5: Comparison of global inference algorithm with local inference, with and
without spatial relations, using the best-path metric.

Figure 5-6: Comparison of the global inference algorithm with the greedy approach,
with and without spatial relations for directions from one of the best-performing
subjects, using the best-path evaluation metric.
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(a) Without spatial relations.

(b) With spatial relations.

Figure 5-7: Paths output by the local inference system with and without spatial
relations for the instructions: “With your back to the windows, walk straight through
the door near the elevators. Continue to walk straight, going through one door until
you come to an intersection just past a white board. Turn left, turn right, and enter
the second door on your right (sign says “Administrative Assistant”).” The path
without spatial relations is extremely short and completely incorrect.

79



80



Chapter 6

Video Retrieval

Spatial language video search is the problem of finding a video clip that matches

a natural language description, such as “show me people going across the kitchen.”

Searching video with natural language has many applications in military, health care,

and science. In this thesis the video corpus consists of data recorded from a fish-eye

camera installed in the ceiling of a home, collected as part of the Human Speechome

Project [Roy et al., 2006].

Open-ended language understanding is a challenging problem, requiring the abil-

ity to sense complex events in video and map those events to natural language de-

scriptions. To make progress on this problem I focus on spatial language search

of trajectories which are automatically extracted from video recorded by stationary

overhead cameras. The system takes as input a natural language query, a database

of surveillance video from a particular environment, and the locations of non-moving

objects in the environment. It parses the query into spatial description clauses. SDCs

automatically extracted for a sample query are shown in Figure 6-5. Using a model

for the joint distribution of a natural language query (represented as a sequence of

SDCs) and trajectories, it finds p(query, track) for each trajectory in the corpus and

returns video clips sorted by this score, performing ranked retrieval. The system can

find video clips that match arbitrary spatial language queries, such as “People walking

down the hall into the living room,” by leveraging the decomposition of the language

into SDCs and background knowledge found in large online databases. Video clips

81



“The person walked from the couches in the living room to the dining room table.”

“The woman entered the dining room from the living room.”

“She walks from the hallway into the dining room and stands by the side of the
dining room table that is nearest to the kitchen.”

“The person walked from the couch in the living[sic] to the dining table in the
dining room.”

“The person enters the dining room from the living room and goes to the table
near the entrance to the kitchen.”

“She starts in the living room and walks to in front of the desk.”

“The person enters the dining room from the stairway or living room area. She
goes to the long side of the table nearest to the kitchen doorway.”

“The person walks from the left-bottom side of the dining room table over tot
he[sic] shelves.”

Figure 6-1: Frames from a video clip in the corpus, together with descriptions for that
clip. The person’s starting location is marked in green, the ending location in red,
and the path they took in blue. The same trajectory converted to global coordinate
system is overlayed on the floor plan of the house in the right.

for a sample query returned by the system are shown in Figure 6-3.

In order to perform video retrieval, the system needs to compute p(query, clip) for

each video clip in the database. The system takes as input a database of trajectories
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automatically extracted from surveillance video recorded in a particular environment,

and the locations and geometries of observed objects in the environment, such as

couches, chairs and bedrooms. Although automatic object detection could be used

in conjunction with overhead cameras, this was not the focus of this paper. Thus, it

was practical to manually label the locations of a small set of non-moving objects in

each camera. These explicitly labeled landmarks are used to bootstrap resolution of

landmark phrases that appear in queries; the system infers the locations of unobserved

objects based on observed ones.

6.1 Open-Ended Corpus
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Figure 6-2: Histogram showing the most frequent words in the open-ended video
retrieval corpus for various parts of speech.

In order to train and evaluate models for the meanings of spatial relations, I col-
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lected a corpus of natural language descriptions of video clips. This corpus gives

insight into the types of descriptions humans use when labeling video. The corpus

consists of a person’s movement in a video clip paired with a natural language de-

scription of the movement.

The video corpus used was collected as part of the Human Speechome Project [Roy

et al., 2006]. Video was collected from eleven ceiling-mounted cameras which were

installed in a home as part of an effort to understand a child’s language acquisition.

Video was recorded for more than three years, capturing a large longitudinal record

of a family’s activity in their home. Because cameras and microphones were installed

unobtrusively in the ceiling, the recording became part of their routine rather than a

more invasive shorter-term data collection.

To collect natural language descriptions of activity paired with video, annotators

watched short clips with the location of a person marked in each frame of the clip.

They were asked to write down a natural language description of the motion of a

person in the clip. Annotators were asked to skip the clip if there was a tracking

failure, or if they could not write a description for the clip.

A person’s location was marked automatically by a tracker. The tracker used in

this part of the work was developed by George Shaw. Movement traces, or tracks are

generated using a motion-based tracking algorithm. Pixels representing movement in

each video frame are collected into dense patches, or particles, with these particles

providing probabilistic evidence for the existence of a person. These particle detec-

tions allow models to be built up over time. By correlating each such model from

frame to frame, the system can efficiently and robustly track the movement of people

in a scene.

In the first, more restricted variant of this task, described in Chapter 3, annotators

saw the sentence “The person is going” and were asked to complete that sentence with

whatever made the most sense to them. Here in a more open-ended version, annota-

tors were asked to describe the person’s motion so that a different annotator could

draw the person’s trajectory on a floor plan of the house, using only the description.

These descriptions were much more free-form and complex than the phrase-based
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descriptions collected as part of Chapter 3.

I used a corpus of tracks that was generated to understand lexical acquisition of the

child in the Human Speechome Project. Word births, or the first time a particular

word was used by the child, are located in time by semi-automatic annotation of

the audio portion of the HSP dataset [Roy et al., 2006]. The tracker was launched

10 minutes in advance of each word birth and was allowed to run until 10 minutes

following the word birth, creating a 20 minute window into the context surrounding

the first use of the word by the child. This method was followed for 50 word births,

producing a corpus of approximately 1000 minutes of tracks throughout the entire

house.

In order to collect a corpus of natural language descriptions of tracks, the database

of tracks was sampled to extract two datasets of fifty tracks. The tracks were created

by sampling 10 random 2.5 second clips, 10 random 5 second clips, 10 random 10

second clips, 10 random 20 second clips, and 10 random 40 second clips from the

first five word births. Clips were constrained to end at least two meters from where

they started, to ensure that the clip contained at least some motion. Otherwise,

many tracks consisted of a person sitting at a table or on a couch, and never moving.

The first dataset allowed clips to overlap in time in order to collect more than one

description from the same person for the same track at different granularities. The

second dataset had no overlaps in time to collect a more diverse database. The clips

were collected randomly from all the cameras in the main floor of the house, but each

individual clip was from a single camera.

Fourteen annotators were recruited from the university community to view each

clip and describe the activity of a person in the clip. Annotators viewed each clip,

with the location of the person being tracked marked by a large green dot on each

frame of the clip. They were instructed to describe the motion of the person in

the video so that another annotator could draw their trajectory on a floor plan of

the house. During the initial instructions, I showed each annotator a floor plan of

the house to familiarize them with the layout and how the scenes from each camera

connected. I did not ask them to restrict their language in any way, but rather use
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Query Avg. Precision

People coming out of the bathroom. 0.833

People walking into the baby’s bedroom. 0.917

People walking down the hall. 0.967

People walking around the table in the living room. 1.000

People walking into the kitchen. 1.000

People walking out of the kitchen. 0.704

People walking from the hallway door, around the island, to 0.583
the kitchen sink.

Mean Average Precision 0.858

Table 6.1: Average precision for representative queries.

whatever language they felt appropriate to describe the person’s motion. At times

the automatic person tracker made errors. Annotators were instructed to mark tracks

where the automatic person tracker made significant errors. They skipped on average

6.5/50.0 tracks, implying the tracker worked fairly well most of the time.

Some sample descriptions from the corpus are shown in Figure 6-1. Annotators’

vocabulary was constrained only by the task. They used full sentences, whatever

landmark objects they felt were appropriate, and were not instructed to use a partic-

ular set of verbs or spatial relations. A histogram of the fifteen most frequent words

for different parts of speech appears in Figure 6-2. Annotators used mostly nouns

and spatial relations to specify landmarks, and relatively few adjectives.

6.2 Results

I report the model’s performance in different configurations to analyze the impor-

tance of different spatial relations to the system’s overall performance. In order to
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Highest-ranked clip Low-ranked clips

Figure 6-3: Results from the system for the query “from the couches in the living
room to the dining room table.” The person’s start location is marked with a green
dot; the end location is marked with a red dot, and their trajectory is marked in
white.

assess the system’s performance in different configurations, I developed an evaluation

metric based on a ranked retrieval task. For each natural language description in

the corpus, the system created a dataset of 10 tracks, containing the original track

the annotator saw when creating the description and nine other random tracks. The

system computed p(query, track), using the description as the query for all ten tracks

and sorts the clips by this score. I report the average rank of the original clip in this

list over all 696 descriptions in the corpus. If the description is treated as a query,

the original clip should have a high rank in this list, since it should match the query

better than the other random clips. A system that ranks randomly out of ten would

have an average rank of 5.5, marked with a dotted line on the graph. I report 90%

confidence intervals in all graphs.

For the first experiment, I compared the system’s performance with and without
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“People walking from the hallway
door, around the island, to the kitchen
sink.”

“People walking into the living room,
coming from the dining room.”

Figure 6-4: Frames from highly ranked clips for two queries.

spatial relations. Without spatial relations, it uses only the landmark field to match

the video clip to the person’s trajectory. The results in Figure 6-8 indicate that

spatial relations significantly improved the performance of the overall system. With

spatial relations, 406 (58.3%) of descriptions were ranked one or two; without spatial

relations, only 39.9% were ranked one or two. This result shows that spatial relations

capture an important part of the semantics of the trajectory descriptions.

Next, Figure 6-7 shows the performance of the system when run on only those

descriptions in the corpus that contain the labeled spatial relations. Only spatial

relations for which I have a model, and for which more than 10 examples appeared in

the corpus are shown. In almost all cases, the model of the spatial relation decreases

the average rank, improving retrieval performance. Although this result is often not

significant there is a consistent positive effect for spatial relations; that the overall

trend is significant can be seen in Figure 6-8.

This automatic evaluation metric does not work perfectly. For example, the clas-

sifier for “down” performs well, as measured on its cross-validated training set and

in the results presented in Table 6.1. However, in the corpus, “down” was almost
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Figure 6-5: SDCs automatically extracted for the sentence “The person walked from
the couches in the living room to the dining room table,” created by an annotator
for the clip shown in Figure 6-3. An SDC consists of a figure F, a verb V, a spatial
relation SR, and a landmark L.
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Highly-ranked clips Low-ranked clips

People walking into the kitchen.

People walking from the hallway door, around the island, to the kitchen sink.

She walks past the fireplace, then stands by the bookshelf.

Figure 6-6: Clips returned for various queries. High-scoring examples are shown on
the left; low-scoring examples are shown on the right.
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Figure 6-7: Results with and without models for each spatial relation, using only
descriptions in the dataset that contained the particular relation. Error bars are 90%
confidence intervals.

always used in the context of “down the hallway.” Furthermore, people rarely do

anything in the hallway except walk down it. When they do, the model for “down”

ranks these examples as more likely. Moreover, the overall performance of “down” is

poor according to this metric because there were many examples of people walking

down the hallway in the corpus of video clips. These clips were ranked higher than

the original clip because they also matched the natural language description.

Next I investigated the contribution of individual features in the models for the

meanings of spatial prepositions to the system’s overall performance. I did this com-

parison on the subset of descriptions that contained that particular spatial relation.

The results for “towards” are shown in Figure 6-9. Here it can be seen that the

model using all features outperforms any model trained with a single individual fea-

tures, showing that information is being fused from multiple features to form the

semantics of the spatial relation.
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Figure 6-8: Results with and without models for the semantics of spatial relations,
on the entire corpus.

Figure 6-9: Results with for “towards,” showing all features, no features, and each
feature individually. Error bars are 90% confidence intervals.
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6.2.1 Performance on Particular Queries

In order to assess the performance of the end-to-end system, I ran it on several

representative queries on a dataset of fifty tracks. Tracks were returned in order

according to p(query, track). I report performance using average precision, a measure

commonly used to report the performance of ranked retrieval systems [Manning and

Schütze, 1999]. It is computed by averaging precision at rank r for all r ∈ R, where R

is all relevant documents for a particular query. This metric captures both precision

and recall in a single number and reflects how well the system is ranking results. The

highest possible value in the corpus is 1, if all relevant documents are ranked before

irrelevant documents; the lowest value is 0.02, if there was only one relevant document

that was returned last. In order to compute this metric, I made relevance judgments

for each query: for each of the fifty tracks in the dataset I annotated whether it

matched the query or not. Results are reported in Table 6.1.

I chose queries that seemed to reflect particular information needs. For example,

doctors monitoring the health of elders are interested in renal failure, and might be

concerned with how frequently they use the restroom or how frequently they enter

the kitchen to eat. Social scientists or interior designers might be curious about how

people use the space and how to lay it out better.

Average precision is generally quite high. These results indicate that the system is

successfully retrieving video clips from a large dataset of trajectories for representative

queries that are useful for answering real-world questions.

Finally, Figure 6-6 shows example of high and low-scoring trajectories returned

by the system for various queries. This concretely shows that the system is correctly

making fine distinctions in the semantics of various queries.
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Chapter 7

Space and Time

The system described so far has an important limitation: it cannot handle time-

varying commands. This chapter describes joint with with Thomas Kollar that ad-

dresses this limitation: extensions that can handle verbs such as “follow” and “meet.”

For a command such as “Follow me to the kitchen,” it generates a sequence of actions

that corresponds to the desired motion through the environment. This problem is

challenging because the verbs have a complex internal event structure, and the robot

must respond to the person’s movements when obeying the command.

To address this problem, we need a two-pronged approach: first a new inference

mechanism is required to replan in the event of changes in the environment. Second,

new models are required to capture the meanings of words such as verbs that depend

on changes in the environment.

Planning is done using a cost function defined in terms of the log likelihood of

the model described in Chapter 4. Once a cost function is defined, the robot can

be controlled via closed-loop planning. At each timestep, the robot computes the

lowest-cost sequence of actions and executes the corresponding action, enabling it to

dynamically respond to changes in the environment for commands such as “Follow

the person.”

The second component required is models for verbs such as “meet” and “follow.”

Chapter 3 described supervised classifiers to model the meanings of spatial relations

in the natural language command and ground landmark noun phrases using back-
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Figure 7-1: Top scoring plan for “Meet the person at the kitchen.” The system
searches over action sequences the robot could take, and possible trajectories for the
person. It outputs the most likely pair of trajectories for the robot and person.

ground knowledge about object co-occurrence information mined from a large corpus

of tagged images. Here I describe time-based verb models that can handle both figures

and landmarks that move.

7.1 Inference

Given a natural language command, the algorithm performs forward search to find

the sequence of actions that minimizes the cost function. At each timestep, the

algorithm computes a set of candidate plans and landmarks that maximizes the joint

distribution of actions, states, and observations. Dynamically re-planning at each

timestep enables the robot to react to a changing environment.

Evaluating plans with the model is expensive and make several approximations

to the model to make this tractable. For spatial relations sr, landmarks l, and states

si, p(sr, l|s1 . . . sT ) is approximated as arg maxpathlets p(sr, l|pathlet), where pathlets

are the set of path subsets on a particular candidate path. In this way the spatial

relation and landmark computations can be cached for each pathlet in the map (only

a few hundred), greatly speeding up inference. This approximation was not made for

verb models, because the paths of the robot and person were much more important

for the ranking of verbs. In addition, for verbs the landmark is sometimes an object

in the environment, and other times a person. I used a keyword spotting algorithm
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to decide if a landmark phrase represented a person, and otherwise backed off to the

inference based on Flickr co-occurrence statistics. For verbs which take a landmark,

rather than marginalizing over all possible landmarks g, the system picks the location

which maximizes p(vt, lt, gt|s1 . . . sT ) as arg max gtp(vt, lt|s1 . . . sT , gt)p(gt). The prior

on p(gt) encourages the landmark to be closer to the robot.

7.1.1 Verbs

Verbs are one of the most complex and important parts of natural language directives.

They define events that take place between one or more entities in the world, imposing

a rich internal structure. Syntactically, they form the core of the sentence, relating

the rest of the phrases together to form a coherent event. This section describes a

methodology for learning models for the meanings of verbs of motion. When training

the verbs, the system must face both moving (e.g. people) and non-moving (e.g. ob-

jects) landmarks. Unlike static geometric features, verbs such as “follow the person”

require models that can dynamically react to changes in the person’s trajectory.

For a transitive verb of motion such as “follow,” the system decomposes the motion

trajectories of the person following and the person being followed, together with

limited information about the environment: p(vk|fk, lk, s1 . . . sT ). The figure (fk) and

landmark (lk) are given to the model as a sequence of locations tagged with times.

This distribution may need to be conditioned on the entire state sequence since, for

example, “bring” may need to have access to the part of the path where person and

robot met as well as the trajectory afterward in order to rank an example trajectory

appropriately.

To learn this distribution I created Boolean features that have a truth value at

each instant in the event are created:

MovingTowards(landmark, figure) IsMoving(landmark)

IsVisible(figure, landmark) IsClose(figure, landmark)

MovingTowards(figure, landmark) IsMoving(figure)

I also used conjunctions of all features. The system samples feature values at each

time slice of the event and computes the probability of a feature value being true
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Figure 7-2: ROC curves showing the performance of distributions for various verbs
when they are treated as classifiers. TP is true positives, and FP is false positives.

during the event. In addition, I used features corresponding to the path as a whole,

such as the distance between the figure and landmark at the beginning and end of the

event. All of these features were used as input to a naive Bayes distribution which was

trained using a corpus of labeled examples, following the same methodology as the

one used for spatial relations. Verbs can be composed with any of the spatial relations

and landmarks, according to Equation 4.7, which allows for the composition of novel

commands that the robot has never seen before. In addition, since the features used

to learn the verbs are scale-invariant and generalize to new paths, this component

will generalize to new environments.

Standard machine learning techniques suffice to learn good verb models. As the

domain is expanded to more complex verbs, more powerful inference mechanisms are

required to capture more of the time-based structure of the verb. Performance curves

for the verbs trained on a corpus of labeled examples is shown in Figure 7-2.
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Figure 7-3: Most frequent verbs from an open-ended set of natural language com-
mands given to robots.

Go Follow Avoid Meet Bring Overall

90% 80% 78% 70% 29% 69%

Table 7.1: Accuracy of our algorithm for various verbs.

7.2 Evaluation

The current system takes as input a natural language command and an initial position

for the person and robot. At each timestep the system infers a plan and takes an

action. An example output of one step of the inference appears in Figure 7-1, for

“Meet the person at the kitchen.” The system searches over possible paths of the

robot and the person, finds the most likely one according to the model, and takes

the corresponding action. It does this at each timestep, so the overall output is a

trajectory for the robot through the environment, re-planning at each step in response

to the person’s actions.

I present a quantitative evaluation of our system’s performance using a corpus of

natural language commands compared with a person’s actions when following those

commands. The system used the inference algorithm to control the robot’s activity,

given the same information a person had when creating the corpus. Table 7.1 reports

the fraction of commands that a researcher judged that the robot got correct. Most
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of the commands used a map populated by hand with the labels of certain classes of

objects.

The verb “bring” performs much worse than the others in the test set. This

disparity is for two reasons. First, “bring” involves more complex event structure than

other verbs: the robot must first approach the person, then take them somewhere

else. This structure is difficult for a simple feature-based classifier to model. Second,

because “bring” events tend to be longer, the model might not have been able to search

far enough ahead in time to find a successful plan. Optimizing and parallelizing the

system to enable it to search deeper in the plan space could alleviate this problem.

This work points the way towards a mechanism for handling time-based com-

mands. It works for verbs like “follow” and “avoid” but breaks down on more struc-

tured commands. However the framework described in this thesis for decomposing

natural language into sub-components, and defining a distribution that maps be-

tween language in the world provides a jumping-off point for building these richer,

time-based models.
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Chapter 8

Conclusion

This thesis describes a system for understanding natural language commands and

descriptions about events in the world. Much work remains to be done to extend

the thesis to handle more realistic types of dialog and embed the work in real-world

applications.

8.1 Future Work

Spatial language understanding is a challenging problem with many real-world appli-

cations. This thesis addressees aspects of that problem and provides a base to build

future work. Key areas of extension include moving from paths to plans for describing

more complex, hierarchical activity, developing learning mechanisms that require less

supervision, and adding dialog capabilities to the system.

The biggest challenge that lies ahead is extending beyond spatial language to

more general vocabulary and more faithful meaning representations. This expansion

includes adding richer models of the meanings of words, that incorporates functional

geometry and nuances such as “just past,” as well as expanding the scope of language,

from higher level actions and plans to more abstract spatial metaphor.
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8.1.1 Goal-based Language

Higher-level goal-based queries and commands such as “Get me a soda” or “Show

me people eating a snack” directly map to the goals of a person interacting with a

language understanding system; a system that understands these sorts of commands

would be more useful than one that merely processes spatial directives. To make

this concrete, I asked an annotator to describe a person’s activity in video by com-

pleting the sentence “The person is...” rather than “The person is going...” as in

the restricted video retrieval corpus. Figure 8-2 shows a histogram of the resulting

annotations. Spatial descriptions appear, but also many high-level descriptions such

as “preparing food,” “tidying up” and “cooking.”

Related, to characterize the types of things a human might say to a robot, an open-

ended corpus of natural language commands was collected. Subjects were asked to

imagine a mobile robot that can recognize people and objects but cannot manipulate

objects or engage in dialog. Subjects wrote down natural language commands they

might give to a robot for five different scenarios: delivery, guiding people, meeting

people, preventing access, and surveillance. Seven subjects were robotics researchers,

and five were annotators hired from the MIT community. Example commands from

this corpus include:

• “Wait by the staircase next to 391, and bring Susan to my room when she comes

in.”

• “Please go to the question mark and wait for Oussama. When he gets here,

bring him back here.”

Figure 8-3 shows a histogram of the most frequent verbs in the corpus, broken

down by command type. Commands in this corpus are extremely challenging, because

of the complex syntactic structure, wide variety of vocabulary, and detailed knowledge

of the environment.

To handle these types of language, it is necessary to develop a system that can

map between language and more general actions, rather than just movement. There
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will be a correspondingly larger space to search when finding the best mapping be-

tween language and actions and events. Finding the right search space is critical; fast,

approximate inference techniques will make the search more tractable. The method-

ology described here, of breaking down language into its components, modeling each

component separately, and building it back up, can provide guidelines for structuring

this search.

Chapter 7 described a planning-based inference mechanism for finding a plan that

matches a command such as “Follow the person to the kitchen.” This framework

points the way towards more general commands to robots such as “Pick up the box

and load it into the truck” or “Take a picture of the person on the couch.” Handling

these types of commands requires defining a space of plans to search over that is

rich enough to capture the semantics of language, but small enough to be tractable.

One of the largest implementation issues that came up over and over in this work

was finding ways to reduce the size of the search space in order to perform tractable

inference. Applications include CSAIL’s robotic forklift, developed as part of the

Agile Robotics In Process project [Correa et al., 2010] and shown in Figure 8-1. The

goal of this project is to develop a robot capable of loading and unloading cargo in

a warehouse environment. Other manipulator robots such as Willow Garage’s PR2

and the MDS have arms and hands capable of manipulating objects, and even folding

towels [Maitin-Shepard et al., 2010].

As robots move out of the lab, it is important to create natural, easy-to-use

interfaces to support human-robot interaction. Language is a compelling modality for

human-robot interaction because in the best case it requires no training or adaptation

on the part of the user. Making a robot that can engage in naturalistic dialog with

a human is a challenging problem, requiring both the ability to understand natural

language utterances as well as the ability to participate in natural language dialog.

The system described in this thesis is really about understanding a part of a complete

dialog interaction; embedding it in a complete dialog interface is required for language

interfaces to move out of the lab.

103



Figure 8-1: CSAIL’s robotic forklift, and Willow Garage’s PR2. These robots have
the capability to manipulate objects. Language interfaces require richer vocabularies
and a higher-level set of actions.

8.1.2 Functional Geometry

It appears that many spatial relations do not rely on just the geometrical information

of the figure and ground, but also require functional information. Coventry and

Garrod [2004] have shown that judgements of situations such as “in the bowl” depend

not just on geometric relations but also functional relations: whether the object is

supported by the bowl or by the rope, as shown in Figure 8-4. Extending the system

to handle these features would enable a more faithful model of the semantics of spatial

prepositions.

8.1.3 Spatial Metaphor

Spatial language appears in many non-spatial contexts. For example, the sentence

“Through the years, you’ve never let me down” contains spatial analogies to both

time (“through the years”) and emotion (“let me down”). Boroditsky [2000] has

shown that space and time share conceptual structure, and that the domain of time

is shaped by structures from spatial reasoning. This result suggests that it should

be possible to leverage spatial language understanding in order to understand these

types of metaphor. If a spatial model of an abstract domain was created, then the

system described in this paper could be used to reason about it, but there are many
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Figure 8-2: Descriptions created by an annotator watching video clips and completing
the sentence “The person is ...”
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Figure 8-3: Most frequent verbs from an open-ended set of natural language com-
mands given to robots.

nuances. This could enable a system that can understand non-spatial language by

analogy to spatial language.

8.1.4 Map Interfaces

With the new, nearly universal availability of location information, and the impending

revolution in robotics, there are many opportunities for this work to have both near-

term and long-term impact. Devices with access to GPS-based location information

are now everywhere. An improved, dialog-based voice interface to a GPS navigation

system would enable users to safely use the technology while they are driving, since

it requires neither their hands nor their eyes.

8.1.5 GPS Logs

GPS is now available on almost every cell phone and in many cars. As more and

more GPS data is recorded, there is an increasing need for interfaces for searching

the data. Applications areas include information surveillance and reconnaissance for

the military, and law enforcement.
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Figure 8-4: Judgements of whether “The pear is in the bowl” depend on whether the
bowl is controlling the movement of the pear.

8.2 Contributions

The work described in this thesis describes how to make systems that understand

spatial language in real-world contexts. Expanding beyond spatial language under-

standing to richer language, and embedding it in dialog are the next steps towards

building robust language understanding systems that work in the real world.

The key scientific contribution of this thesis is a model of spatial semantics that

enables a system to understand and use spatial language in real-world domains. Spa-

tial prepositions in English are defined in terms of a set of features extracted from the

two-dimensional geometry of a scene. I applied this lexicon of spatial relations to two

real-world problems: natural language video retrieval and natural language direction

understanding. Overall the system performs quite well. For direction understand-

ing, the system correctly follows between 50% and 60% of directions in the corpus,

compared to 85% for human performance. Furthermore, I show that spatial relations

improve performance when doing local inference to follow the directions. When doing

video retrieval with the open-ended corpus, the system effectively retrieves clips that

match natural language descriptions: 58.3% were ranked in the top two of ten in

a retrieval task, compared to 39.9% without spatial relations. This effort shows the
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effectiveness of the features and provides an opportunity to analyze their performance

in order to study which ones perform best. The thesis advances the state of the art

in natural language understanding and grounding by connecting spatial language to

real-world domains.
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