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Abstract

A theoretical framework for grounding language is introduced that provides a computational path
from sensing and motor action to words and speech acts. The approach combines concepts from
semiotics and schema theory to devel op a holistic approach to linguistic meaning. Schemas serve as
structured beliefs that are grounded in an agent’s physical environment through a causal-predictive
cycle of action and perception. Words and basic speech acts are interpreted in terms of grounded
schemas. The framework reflects lessons learned from implementations of several language process-
ing robots. It provides a basis for the analysis and design of situated, multimodal communication
systems that straddle symbolic and non-symbolic realms.
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1. Language and meaning

The relationship between words and the physical world, and consequently our ability to
use words to refer to entities in the world, provides the foundations for linguistic commu-
nication. Current approachesto the design of language processing systems are missing this
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critical connection, which is achieved through a process | refer to as grounding—aterm |
will define in detail. A survey of contemporary textbooks on natural language processing
reveals arich diversity of data structures and agorithms concerned solely with manipula-
tion of human-interpretable symbols (in either text or acoustic form) without any serious
effort to connect semantic representations to the physical world.

Isthis a problem we should really care about? Web search engines and word processors
seem to work perfectly fine—why worry about distant connections between language and
the physical world? To see why, consider the problem of building natural language process-
ing systems which can in principled ways interpret the speaker’s meaning in the following
everyday scenarios.

An elderly woman asks her aide, “Please push that chair over to me”.
A man saysto hiswaiter, “ This coffeeis cold!”.
A child asks her father, “What is that place we visited yesterday?’.

How might we build a robot that responds appropriately in place of the aide or waiter?
How might a web search engine be designed to handle the child's query? These are of
course not questions that are typically considered part of natural language processing, but
these are basic questions that every human language user handles with deceiving ease. The
wordsin each of these examplesrefer to the physical worldin very direct ways. Thelistener
cannot do the right thing unless he/she (it?) knows something about the particular physical
situation to which the words refer, and can assess the speaker’s reasons for choosing the
words as they have. A complete treatment of the meaning of these utterances—involving
both physical and social dynamics—is beyond the framework presented in this paper.
The focus here is on sub-symbolic representations and processes that connect symbolic
language to the physical world with the ultimate aim of modeling situated language use
demonstrated by these examples.

In recent years, several strands of research have emerged that begin to address the prob-
lem of connecting languageto theworld[4,6,12,15,21,22,29,44,51,56,58,62,69,70,74] (see
also the other papers in this volume). Our own efforts have led to several implemented
conversational robots and other situated language systems [25,60,61,63-65]. For example,
one of our robotsis able to trand ate spoken language into actions for object manipulation
guided by visual and haptic perception [64]. Motivated by our previous implementations,
and building upon arich body of schema theory [2,19,34,43,45,50,68] and semiotics [20,
42,47,49], | present atheoretical framework for language grounding that provides a com-
putational path from embodied, situated, sensory-motor primitives to words and speech
acts—from sensing and acting to symbols.

The gist of the framework is as follows. Agents translate between speech acts, percep-
tual acts, and motor acts. For example, an agent that sees a fly or hears the descriptive
speech act, “There is a fly here” is able to trandate either observation into a common
representational form. Upon hearing the directive speech act, “Swat that fly!”, an agent
forms amental representation that guides its sensory-motor planning mechanisms towards
the intended goal. Signs originate from patterns in the physical world which are sensed
and interpreted by agentsto stand for entities (objects, properties, relations, actions, situa-
tions, and, in the case of certain speech acts, goas). Speech acts, constructed from lexical
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units, are one class of signs that can be observed by agents. Sensor-grounded perception
leads to two additional classes of signs which indicate, roughly, the “what” and “where”
information regarding an entity. To interpret signs, agents activate structured networks of
beliefs! called schemas. Schemas are made of continuous and discrete elements that are
linked through six types of projections. Two of these projection types, sensor and action
projections, provide links between an agent’s internal representations and the externa en-
vironment. These links are shaped by the specific physical embodiment of the agent. The
four remaining projection types are used for internal processes of attention, categorization,
inference, and prediction.

The primary focus of the framework in its current form is the interface between words
and physical environments, and how an agent can understand speech actsthat are about the
environment. There are many important issues that are beyond the scope of this paper. | will
not address language generation, conceptual learning, language learning, or the semantics
of social or abstract domains. These topics are clearly of great importance, and will moti-
vate future work that takes the framework presented here as a starting point. Learning in
particular deserves further comment. | firmly believe that to scale grounded language sys-
tems, statistical machine learning will be required. Without appropriately structured biases
on what is learnable, however, the rich structures underlying situated language use will
be hopelessly out of reach of purely bottom-up data-driven learning systems. The frame-
work presented here may provide useful structural constraints for future machine learning
systems.

Taxonomic distinctions made in the theory are motivated by recurring distinctions that
have emerged in our implementations—distinctions which in turn were driven by practical
engineering concerns. Although the theory isincomplete and evolving, | believeit will be
of valueto those interested in designing physically embedded natural language processing
systems. The theory may also be of value from a cognitive modeling perspective although
thisis not the focus of the paper (see[62]).

Connecting language to the world is of both theoretical and practical interest. In practi-
cal terms, people routinely use language to talk about concrete stuff that machines cannot
make sense of because machines have no way to jointly represent words and stuff. We talk
about placeswe aretrying to find, about the action and characters of video games, about the
weather, about the clothes we plan to buy, the music we like, and on and on. How can we
build machinesthat can converse about such everyday matters? From atheoretical perspec-
tive, | believe that language rests upon deep non-linguistic roots. Any attempt to represent
natural language semantics without proper consideration of these roots is fundamentally
limited.

1 Although this paper deals with topics generally referred to as knowledge representation in Al, my focus will
be on beliefs. From an agent’s point of view, al that exists are beliefs about the world marked with degrees of
certainty. Admittedly, as arobot designer, | share the intuition that arobot’s belief that x is truejust in the cases
for which the corresponding situation x is the case—a correspondence that | as the designer can verify (Bickhard
calsthis“designer semantics’ [10]). True beliefs may be called knowledge in cases where the robot can in some
sense justify its belief. However, as a starting point | prefer to model beliefs rather than knowledge so that the
notion of correspondence can be explained rather than assumed.
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Push: To press forcefully against in order to move

—

Force: Energy or strength

Energy: Strength of force Strength: The power to resist force

Fig. 1. A network of definitions extracted from Webster's Dictionary containing circularities. To make use of such
symbolic networks, non-linguistic knowledge is essential to ground basic terms of linguistic definitions.

Inherent to current natural language processing (NLP) systems is the practice of con-
structing representations of meaning that bottom out in symbolic descriptions of the world
as conceived by human designers. Asaresult, computers are trapped in sensory deprivation
tanks, cut off from direct contact with the physical world. Semantic networks, meaning pos-
tulates, and various representations encoded in first order predicate calculus all take objects
and relations as representational primitives that are assigned symbolic names. Without ad-
ditional means to unpack the meaning of symbols, the machineis caught in circular chains
of dictionary-like definitions such as those shown in Fig. 1 [27]. Efforts to encode know!-
edge using symbolic forms which resemble natural language and that can be written down
by human “knowledge engineers’ [37,40] are variations of this theme and suffer from the
same essential limitations. Dictionary definitions are meaningful to humansin spite of cir-
cularity because certain basic words (such as the words infants tend to learn first) hook into
non-linguistic experience and non-linguistic innate mental structures. How can we design
machines that do the same? To address this question, let us shift our attention to a very
different kind of machine intelligence: robot perception and control.

Consider the problem of designing a robot that avoids obstacles and navigates to light
sources in a room. Robot designers have learned that it is a bad idea to simply tell robots
where obstacles and lights are and expect the robot to work. This is because in practice,
with high probability, human mediated descriptions will not quite match the state of the
actual environment. No matter how accurately we draw a map and provide navigation in-
structions, the robot is till likely to fail if it cannot sense the world for itself and adapt
its actions accordingly. These are well known lessons of cybernetics and control theory.
Closed-loop control systems robustly achieve goals in the face of uncertain and changing
environments. Predictive control strategies are far more effective than reactive ones. In-
sights into a mathematical basis of teleology derived from developmentsin control theory
are every bit as relevant today as they were sixty years ago [59]. Cyclic interactions be-
tween robots and their environment, when well designed, enable a robot to learn, verify,
and use world knowledge to pursue goals. | believe we should extend this design philoso-
phy to the domain of language and intentional communication.
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A comparison between robotics and NLP provides strong motivation for avoiding
knowledge representations that bottom out in symbolic, human generated descriptions of
theworld. Language processing systems that rely on human mediated symbolic knowledge
have no way to verify knowledge, nor any principled way to map language to physical ref-
erents. An NLP system that is told what the world is like will fail for the same reasons as
robot do.

1.1. Languageis embedded in the physical world

In everyday language, it is the rule rather than the exception that speech acts leverage
non-linguistic context to convey meaning. Barwise and Perry [8] call this the efficiency of
language—the same words can mean infinitely different things depending on the situation
of their use. In avariety of situated language applications, from spoken dialog systems for
carsto conversational interfaces for assistive robots, the relationship between language and
the physical world isabasis of efficient language use.

We might design ad hoc solutions for specific restricted applications, but | believe a
principled solution to address in-the-world language processing requires a basic rethink-
ing of how machines interpret words. The theory | develop is motivated by such concerns.
The framework has emerged through practice. Over the past several years, we have im-
plemented a series of systems which learn, generate, and understand simple subsets of
language connected to machine perception and action. These engineering activities have
been guided by the intuition that language needs to be connected to the real world much
the way that infants learn language by connecting wordsto real, visceral experience. What
has been lacking in our work, however, is a coherent way to describe and rel ate the various
systems, and provide a theoretical framework for comparing systems and designing new
ones. This paper is an attempt to address this latter concern. No attempt has been made to
prove that the theory is complete or correct in any formal sense given the early stages of
the work.

Although this paper isfocused on systems with tight physical embeddings, the underly-
ing theoretical framework may be applied to communication tasks in which direct physical
grounding isnot possible or desirable. My underlying assumptionisthat an approach which
is shaped primarily by concerns of physical grounding will lead to a richer and more ro-
bust general theory of semantics since intentional communication in humans presumably
evolved atop layers of sensory-motor control that were shaped by the nature of the physical
world.

1.2. Duality of meaning

Consider the coffee scenario, illustrated in Fig. 2. How doesthe speaker convey meaning
by uttering these words in this context? There seems to be a basic duality in the nature of
linguistic meaning. On one hand, the downward pointing arrow suggests that the speech
act conveys meaning by virtue of its “aboutness’ relationship with the physical situation
shared by communication partners. On the other hand, we can interpret speech acts within
a larger theory of purposeful action taken by rational agents as indicated by the upwards
arrow.
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: Functional meaning
(@] ]

“This coffee is cold”
(o]

()

Referential meaning

Fig. 2. The duality of meaning of an everyday situated speech act.

The everyday common usage of “meaning” also includes an additional sense, roughly
the emotional connotation of something (“My Father gave me that cup—it has great mean-
ing for me”). | believe connotative meanings of this kind are more complex and emerge
from more basi c aspects of meaning, roughly asasummary statistic of anindividual agent’s
goal-directed experiences. | will thus set aside connotations and focus the more basic as-
pects of meaning.

Referential meaning: Words are used to talk about (refer to) objects, properties, events,
and relationsin the world

The sensory-motor associations of taste and temperature conjured by “coffee’” and
“cold” rely on agents having similar embodied experiences caused by common underlying
aspects of reality (the chemical composition of coffee and the dynamics of heat transfer as
they interact with bodily actions and senses). Furthermore, the speech act in Fig. 2 is an
assertion about the state of a specific part of the world: “this’ coffee. The word “ coffee”
has meaning for the listener because, in part, it is directed towards a particular physical
object as jointly conceived by speaker and listener. The words “this’ and “is’ connect the
speech act to aregion of space-time, in this case a part of the agents’ here-and-now.

Functional meaning: Agents use language to pursue goals
Speech acts can be considered within abroader theory of purposeful action [26]. Beyond

the literal meaning of “this coffeeis cold” interpreted as an assertion about the state of the
world, in certain contexts the speaker may aso intend an implied meaning to the effect of
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“1 want hot coffee”. Note that even the literal reading of the sentence can be analyzed with
respect to the speaker’s intentions. For example, the speaker might have just been asked,
“Do you know if that coffeeis hot or cold?’.

| believe that developing a computationally precise and tractable theory of language
use which simultaneously addresses both referential and functional meaning is a grand
challenge for the cognitive sciences. The framework presented here takes steps towards
addressing central aspects of this challenge, especially with regards to the referential na-
ture of words (but of course much more work remains to be donel). My approach will be
to identify essential aspects of communicative meaning that are required to build situated
systemswith primitive linguistic abilities. Many details will necessarily beleft out in order
to keep the whole in view with the intent of establishing a framework that can later be en-
riched and extended. Thisisindeed the spirit of Wittgenstein's recommendation in dealing
with phenomena as complex as natural language [78]:

If we want to study the problems of truth and falsehood, of the agreement and disagree-
ment of propositions with reality, of the nature of assertion, assumption, and question,
we shall with great advantage |ook at primitive forms of language in which these forms
of thinking appear without the confusing background of highly complicated processes
of thought. When we look at such simple forms of language the mental mist which
seems to enshroud our ordinary use of language disappears. We see activities, reactions,
which are clear-cut and transparent. On the other hand we recognize in these simple
processes forms of language not separated by a break from our more complicated ones.
We see that we can build up the complicated forms from the primitive ones by gradually
adding new forms.

2. Grounding

The term grounding will be used to denote the processes by which an agent relates
beliefs to external physical objects. Agents use grounding processes to construct mod-
els of, predict, and react to, their external environment. Language grounding refers to
processes specialized for relating words and speech acts to alanguage user’s environment
via grounded beliefs. Thus, the grounding of language is taken to be derivative of the
grounding of beliefs. We can view the relationship between language, an agent’s beliefs,
and the physical world asillustrated in Fig. 3. Schemas are information structures held by
an agent that are modified by perceptual input and that guide action (details of the inter-
nal structure of schematized beliefs are provided in Sections 4-6). Interactions between
schemas and the environment are mediated by perception and motor action. Language use
is achieved through comprehension and production processes that operate upon schemas.
Fig. 3 isreminiscent of the classic semiotic triangle in which all mappings from words to
external objects are mediated by thoughts [47]. Thus, the framework devel oped here might
be called an approach to “ computational semiotics’ in which the interpretation of signsis
performed through schemas.

Agents use schemas to represent beliefs about their environment. Consider an agent that
is situated next to atable that supports a cup. For the agent to hold the grounded belief that
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Language Physical
Comprehension Perception
Language Schemas Physical
about the world about the world World
Language Physical
Production Action

Fig. 3. Grounding is an interactive process of predictive control and causal feedback.

that particular cup is on the table, two conditions must hold: (1) that cup must have caused
the belief viathe natural physical laws of the universe (the flow of information via photons,
physical contact, sensory transduction, etc.), and (2) the belief must support predictions of
future outcomes regarding that cup conditioned on actions which the agent might take. On
this definition, the grounding process requires both causal and predictive relations between
referent and belief. This cyclic process corresponds to an interpretation-control loop that
must be implemented by an agent that holds grounded beliefs.

By virtue of being embedded in a shared physical world, the beliefs of agents are com-
pelled to alignment, providing the basis for coordinated action. Communication gets off
the ground because multiple agents can simultaneously hold beliefs grounded in common
external entities such as cups of coffee.

| take beliefs about the concrete, physical world of objects, properties, spatial relations,
and eventsto be primary. Agents can of course entertain more abstract beliefs, but these are
built upon a physically grounded foundation, connected perhaps by processes of analogy
and metaphor as suggested by the widespread use of physical metaphor in language [36].

An agent’s basic grounding cycle cannot require mediation by another agent. This re-
quirement excludes many interesting classes of agents that exist in purely virtual worlds.
This exclusion is purposeful since my goal is to develop atheory of physically grounded
semantics. If A tells B that there is a cup on the table, B’s belief about the cup is not
directly grounded. If B sees a cup on the table but then permanently loses access to the
situation (and can no longer verify the existence of the cup), then B’s belief is not di-
rectly grounded. | am not suggesting that an agent must ground all beliefs—that would
lead to a rather myopic agent that only knows about what it has directly experienced and
can directly verify. | am suggesting that in order to communicate with humans and build
higher order beliefs from that communication, an agent must have a subset of its beliefs
grounded in the real world without the mediation of other agents. From a practical point of
view, the necessity for real world unmediated grounding iswell known to roboticists aswe
discussed above. An autonomous robot simply cannot afford to have a human in the loop
interpreting sensory data on its behalf. Furthermore, complex inner representations must be
coupled efficiently, perhaps through layering, for operation under real-world uncertainty.
For autonomous robots to use language, we have no choice but to deal with internal repre-
sentations that facilitate conceiving of the world as objects with properties that participate
in events caused by agents. The need for unmediated grounding can a so be argued from a
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cognitive development perspective. Infants don’t learn language in a vacuum—the mean-
ings of first words are learned in relation to the infant’s immediate environment. Language
is bootstrapped by non-linguistic experience and non-linguistic innate structures, paving
the way for comprehension of dictionary definitions and other sources of ungrounded be-
liefs. | return to thistopic in Section 8.

It is worth heading off one possible criticism of the theory which may arise from a
misinterpretation of my definition of grounding. Although we have investigated language
learning in severa systems (e.g., [60,61,63,66]), the focus of this paper is on represen-
tational issues and many of the implemented structures that this theory is based on have
not yet been learned by any fully automated system. We have instead used a pragmatic
approach in which some aspects of a representation (typically topological structure) are
designed manually, and machine learning is used to determine settings of parameters
only when standard statistical estimation algorithms are easily applicable. The potential
criticism arises from the fact that human designers are creating representations for the
machines—in essence, it might appear that we are describing the world for the machine—
precisely what | said | wanted to avoid. However, there is in fact no contradiction when
we consider the definition of grounding carefully. The definition places constraints on the
process by which a particular set of beliefs come to be, are verified, and maintained. The
definition does not make any demands on the source of the underlying design of represen-
tational elements. These might be evolved, designed, or discovered by the agent. In all of
our robotic implementations, the systems do indeed construct and maintain representations
autonomously, and link language to those belief structures.

2.1. Causal sensor grounding is not enough

Based on the definition of grounding | have stated, causality alone is not a sufficient
basis for grounding beliefs.? Grounding also requires prediction of the future with respect
to the agent’s own actions. The requirement for a predictive representation is a signif-
icant departure from purely causal theories. For example, Harnad in his 1990 paper on
symbol grounding suggested a causal solution based on categorical perception of sensor-
grounded signals [27]. In my own past work [60,63] | have used “grounding” to describe
language systems with similar bottom-up sensory-grounded word definitions. The prob-
lem with ignoring the predictive part of the grounding cycle has sometimes been called
the “homunculus problem”. If perception is the act of projecting mental images into an
“inner mental theater”, who watches the theater?® How do they represent what they see?
A “pictures in the head” theory without an accompanying theory of interpretation passes
the representational buck. The problem of interpretation is simply pushed one layer in-
wards, but leaves open the question of how those internal models have meaning for the
beholder. If the inner process constructs a model of the model, we are led to an infinite
regress of nested models which is of course unsatisfactory.

2 Sloman and Chappell aso point out thislimitation of purely bottom-up sensory grounding [71]. They discuss
the need for “symbol attachment” which is similar to the expanded definition of grounding developed in this
paper that encompasses perception and action.

3 Dennett calls this the Cartesian theater [17].
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By requiring that the agent be able to trandate beliefs into predictions (not necessarily
about the immediate future) with respect to the agent’s own actions (where not acting at
al is considered a kind of action), we have a broad working definition of interpretation
that avoids descriptive regress. Beliefs have meaning for the agent because they have the
potential to predict future outcomes of the world, which the agent can verify for itself by
comparing predictions to actual sensations. As a result of this framing, beliefs that have
no possible impact on the agent’s abilities to make predictions about the outcomes of its
actions are deemed to have no value.

3. Desideratafor atheory of language grounding

If atheory of language grounding is to provide the basis for agents to use physically
situated natural language, | suggest that it must satisfy three criteria:

(1) Unification of representational primitives: Objects, properties, events, and situations
should be constructed from the same set of underlying primitives. This requirement is
desirableif we are to have away for beliefs about concrete objects and situations to be
efficiently translated into expectations with respect to actions (affordances).

(2) Cross-modal trandatability: Information derived from perception and language should
be interpretable into a common representational form since we want to design agents
that can talk about what they observe and do.

(3) Integrated space of actions: Motor acts (e.g., leaning over to resolve a visual ambigu-
ity) and speech acts (e.g., asking a question to resolve a visual ambiguity—"“is that a
cup or acan?’) should be expressed in a single integrated space of actions so that an
agent may plan jointly with speech and motor acts to pursue goals.

The framework that | will now present is motivated by these requirements. In Section 7
| will assess to what extent each goal has been satisfied.

4. A theory of signs, beliefs, projections, and schemas

The theoretical framework is a product of building systems and represents my attempt
to explicate the theoretical elements and structures that underlie these complex engineered
systems. Rather than separate the description of implementations, | will highlight relevant
implementations in the course of presenting the framework.

4.1. Sgns

The structured nature of the physical world gives rise to patterns. A collection of data
elements (e.g., pixels) contains a pattern if the data has non-random structure (or equiva
lently, is compressible, or is low in complexity) [18]. Patterns may be interpreted as signs

4 Thisis consistent with Peirce's pragmatic approach to epistemology [48].
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by agents. For example, a pattern of photons caused by a fly can serve as a sign of thefly,
if appropriately sensed and interpreted by an agent. | take Peirce’'s definition of asignasa
starting point [49]:

A sign... is something which stands to somebody for something in some respect or
capacity.

I will interpret Peirce’s definition in the following way. A sign is a physical pattern
(first instance of “something” in Peirce’s definition) which only exists as a sign relative to
an interpreter (“somebody”). A sign signifies an object, some entity in the world (second
instance of “something”). Signs may take other signs astheir objects, leading to nesting of
signs. For example, a shadow might be a sign of a cloud. If the shadow leads to a cooler
patch of ground, the temperature of the ground serves as a sign for both the shadow, and
chains through to serve as a sign of the cloud. This does not necessarily mean that an
interpreter can make the connection from a sign to its object, only that the physical causal
link exists. Signs signify (stand for) only limited aspects of their objects (*“some respect or
capacity”) and thus can serve to abstract and reduce information.

4.2. Three classes of signs: Natural, indexical, intentional

Signs may be classified as natural, intentional, and indexical.®> This classification
schemeis not mutually exclusive—a physical pattern may be interpreted as both a natural
and an indexical sign. Natural signs are shaped by nomic physical laws (natural flow of
photons, pull of gravity, etc.) whereas intentional signs are generated by volitional agents
for some purpose. The configuration of photons signifying the fly is a natural sign. The
speech act, “there’'safly!”, isan intentional sign. Of course the surface form of the words
exist as aphysical pattern of vibrating air molecules, as much a part of the sensible world
as photons, but their origins are fundamentally different. The word “fly” signifies the fly
by convention and is uttered by arational agent with some purpose in mind.

Indexical signs situate beliefs relative to a spatiotemporal frame of reference. The loca-
tion of the fly within an agent’s field of view may lead to an indexical sign of its spatial
position relative to the viewer's frame of reference. The semantics of indexical signs arise
from their use as parameters for control. Aswe shall see, an indexical belief that specifies
the spatial location of an object may serve as a control parameter in a robot to control
reaching and visual saccade behaviors directed towards a target. An aternative approach
would be to treat the spatiotemporal location of an object as simply another property of
the object like its color or weight. We have found, however, that in construction of robotic
systems, separation of spatiotemporal information leads to cleaner conceptual designs.®

5 This classification scheme is related to Peirce's three-way classification of iconic, indexical, and symbolic
signs. However, | prefer Ruth Millikan's distinction between natural and intentional signs [42] for reasons |
explain in the text.

6 For example, in order to debug machine vision systems, spatial coordinate frames are very useful from a
designer’s perspective. When designing structured motor control algorithms, conceptualizing action sequences
over timeis equally useful. Whether at aformal level these distinctions might be dropped altogether is unclear.
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I will now focus in some detail on natural signs, and how an agent can create beliefs about
objects via natural signs. Indexicalswill then be folded in, leading to spatiotemporally sit-
uated beliefs about objects. Finally, we will consider the comprehension and generation of
intentional signs (grounded speech acts).

4.3. Analog signs

Sensors transduce physical patterns from the environment into analog, continuously
varying signs (for robots, encoded as electrical potentials) which the agent can further
transform, interpret, store, and use to guide actions. The only way for signs to enter an
agent from the environment is through sensors. The embodiment of an agent determines
its sensors and thus directly affects the signs which an agent can pick up.

The agent is attuned to specific channels of sensory input and only detects signs that
appear within those channels. For example, an agent can be attuned to high contrast closed
formsthat are picked out from avisua environment, localized high intensity impulsesfrom
a haptic environment, or speech signals from an acoustic environment while ignoring other
signs from those same channels. Attunement may be innate and unalterable, or determined
by the agent’s state of attention. Multiple channels can be derived from a single sensor
(e.g., color and shape are different input channels, both of which might be derived from
the same camera). On the other hand, multiple sensors can contribute to a single input
channel.”

A sensor-derived channel defines a continuous space which | will call the channel’s
domain. Patterns project into domains via sensors. When a pattern is detected within a
channel to which the agent is attuned, the detected pattern is called an analog sign.

To take a smple example, imagine a robot with camera input that uses an optical re-
gion detector based on background/foreground contrast properties to detect closed visual
regions (sensed patterns corresponding perhaps to external objects). The robot is designed
to measure two features of the region, its maximum height and width. Presented with an
object, an analog sign of the object is thus a pair of continuously varying magnitudes, &
and w. Therange of possible values of 4 and w, and thus the domain of incoming signs for
this channel, rangefrom 0 to H and O to W, the height and width of the robot’svisual field
(measured in pixels). An observed analog sign isaparticular pair of (%2, w) values resulting
from an external stimulus.

4.4. Analog beliefs

Analog signs are causally tied to the immediate environment. Their indexicality isin-
herently limited to the here-and-now. Beliefs, on the other hand, are persistent information
structures that “stretch” indexicality over space and time. An analog belief is a distribu-
tion over all possible observations within a continuous domain. Analog beliefs map analog
signsto scalar magnitudes. An analog belief can serve as both an element of memory which

7 The superior colliculus of cats contain neurons which only fire under the conditions of simultaneous auditory,
visual, and somatosensory evidence [75]. This is an example in nature of multiple sensors leading to a single
channel of input.
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encodes a history of observations within a channel, and may also serve as a prediction of
what will be observed within a channel. To be useful in practice, analog beliefs must be
context-dependent. As we shall see, context is defined by the structure of schemas within
which beliefs are embedded.

Returning to the earlier robot vision example, an analog belief for the shape input chan-
nel can be implemented as a probability density function defined over the two-dimensional
H x W domain. One or more analog sign observations may be summarized as an analog
belief, forming the basis for memory.

To recap, analog beliefs are continuous distributions that are about signs since they are
defined with respect to domains inhabited by signs. Natural signs, in turn, are about as-
pects of their objects by definition—they are causally connected to their objects due to
nomic physical conditions of the environment. Due to the nested relationship between be-
liefs, signs, and objects, analog beliefs are about objects. Analog beliefs form elements of
schemas which enable an agent to both encode causal histories of signs and make context-
dependent predictions about the observation of new signs, satisfying the causal-predictive
grounding cycle defined in Section 2.

4.5. Sensor projections

I now introduce a graphical notation of typed nodes and typed edges that | will use
to represent schemas. Fig. 4 shows the notation for analog beliefs as ovals. Analog be-
liefs may have names (“A” in Fig. 4) for notational convenience only. The names are not
accessible to the agent. The meaning of an analog belief from the agent’s perspectiveis de-
rived strictly from its function in guiding the agent’s interpretative, predictive, and control
processes. Fig. 4 also introduces a representation of the sensory transduction and observa-
tion process as a projection. | will define five more projections as we proceed.

4.6. Schema types and tokens

Fig. 4 is our first example of a schema, a structured network of beliefs connected by
projections. We will encounter a series of schema diagrams of this kind as we proceed.
The purpose of these diagrams is to show how elements of the theory are combined to
implement various functions such as active sensing, representation of actions and objects,
and higher level situational, goal, and linguistic structures. Agents maintain schema types
in along term memory schema store. An agent interprets its environment by instantiating,
modifying, and destroying schema tokens which are instances of structures such as Fig. 4.
For example, if an agent is attuned to an input channel represented by the sensor projection
in Fig. 4, then an observation in this channel may be interpreted by instantiating a token
of the schema, resulting in an instantiation of an analog belief. The decision of whether to

sensor projection analog belief

D0

Fig. 4. Graphical notation for a sensor projection connected to an analog belief.
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transformer
Chi r———Cr )

Fig. 5. Graphical notation for a transformer projection which maps a source analog belief, A1, to atarget analog
belief, A2.

actualy instantiate a schema depends on the control strategy employed by the agent. The
structure of possible interpretations of an observation are determined by the contents of the
agent’s schema store. The contents of the store might be innate, designed, learned, or some
combination thereof.

4.7. Transformer projections

A second type of projection is called atransformer. A transformer performs a mapping
from one analog domain to another. Transformers may be used to pick out features of
interest from one analog belief to project a new analog belief, or might be used to combine
multiple analog beliefs. An observation from a source domain may be transformed into an
observation in a target domain by a transformer. For example, an observation of a shape
represented by 4 and w may be transformed into a one-dimensional domain by taking the
product of the terms. In this case, the transformer is simply an analog multiplier. An agent
might want to make this transformation in order to ground words such as “large” which
depend on surface area. A division transformer (i.e., one that computes the ratio w/ h)
could be used to ground words which depend on visual aspect ratios such as “long” (for
an implementation along these lines, see [61]). The graphical notation for transformersis
shownin Fig. 5.

4.8. Categorizer projections

The need for categorization is directly motivated by the discrete nature of language.
Words (or morphemes) are discrete categorical labels. For an agent to use words that refer
to the physical world it must have the capacity to discretely categorize continuously varying
representations according to linguistic convention.

Categorizer projections map analog domains onto discrete domains via pattern catego-
rization. Analog signs are projected into a categorical signs. The mapping is many to one.
Information about differences between a pair of analog signs is lost if the signs happen
to map into the same categorical sign. Categorization provides a mechanism for express-
ing functional equivalence. Assuming a well-designed agent, categorization provides the
means of establishing kinds of signs that signify the same information to the agent irre-
spective of detectable variationsin the signs' analog domains.

Let usreturn one last time to our example of shape representation via two-dimensional
height and width features. The analog domain may be discretized by creating apair of ana-
log beliefs defined over the domain that are set into competition with each other. A decision
boundary is defined by the points at which the analog beliefs are of equal magnitude. This
process divides the domain into two categories.
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In general, pattern categorization may be implemented by discriminative or genera-
tive means. Discriminative classifiers (e.g., multilayered perceptrons) explicitly model the
boundaries between categories defined with respect to a fixed input feature space. Gener-
ative classifiers capture the variability in data in general, for instance by modeling proto-
typical members of categories, also with respect to a fixed input feature space. Category
boundaries emerge due to competition between prototypes, or by applying thresholds to
prototypes. All of the systems we have implemented to date rely on prototypes to establish
categorical boundaries.

4.9. Categorical beliefs

The second elementary form of belief isacategorical belief, which is abelief about the
output of a categorization process which maps an analog domain to a discrete domain. Cat-
egorization is performed by categorizer projections. The output domain of a categorizer is
always afinite discrete set of outcomes. A categorical belief is thus a discrete distribution
(typically a discrete probability distribution in our implementations). In contrast to ana-
log beliefs, categorical beliefs rely on categorization—they may be thought of as beliefs
about answers to verbal questions one might ask about analog observations (e.g., will the
brightness of this patch of pixels will be greater than 0.5? Is this shape a square?). Fig. 6
introduces notation for categorizer projections and categorical beliefs.

In cases where al belief is concentrated on a single discrete outcome, the specific out-
come can be given a lowercase label and shown explicitly in the graphical notation as
illustrated in Fig. 7. The interpretation of this diagram is that the agent believes (remem-
bers, predicts) that the outcome of the categorizer will with high likelihood be theindicated
value. Residual belief in other outcomes might be maintained—the notation simply makes
the information structure clear for purposes of conceptual design and analysis.

4.10. Action projections

The specific physical embodiment of an agent gives rise to a natural set of action
primitives. For example, the robots we have constructed [52,60,63] have separate servo

categorizer

Fig. 6. Graphical notation for acategorizer projection which maps asource analog belief, A, to atarget categorical
belief, D.

categorizer
@—@—» D = square

Fig. 7. Graphical notation for a categorizer projection which maps a source analog belief, A, to a target cate-
gorica belief with concentrated belief in a single outcome. The label of this outcome (“square”) is a notational
convenience and is unavailable to the agent.
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action action action
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Fig. 8. Graphical notation for action projections.

motors dedicated to each degree-of-freedom (DOF) of the robot. Using standard position-
derivative control, each motor is associated with alowest-level action primitive, essentially
“moveto position x along a specified spatiotemporal path” subject to failure conditions due
to unanticipated collisions or other external conditions which require reactive response.
When an agent attempts to execute a primitive action, it either succeeds or fails.

Actions provide a new representational element, an action projection, which resultsin
a discrete binary (success/fail) outcome identical in form to the output of categorizer pro-
jections. This can be seen in the graphical notation for action projections indicated by
diamonds in Fig. 8. Actions lead to categorical signs that are represented as categorical
beliefs, either indicated as distributions over binary outcomes (left-most figure) or alterna-
tively, specific beliefs about the success or failure of an action (for notational convenience,
| write “success’ rather than “D = success’).

The use of a categorical belief to represent the outcome of an action binds actions into
the theory of signs at amost basic level. Each time the agent executes an action primitive,
the result is a categorical sign about the world it has acted upon. Action and sensing are
thereby intimately intertwined.

4.11. Active perception, perceptive action

Success or failure provides only limited information about an action. In general an agent
may want information about the manner in which an action succeeds or fails. An agent can
achieve this through active sensing—sensing analog signs while an action is performed.
An example of this arose from experiments with one of our robots, Ripley [52,64], which |
now briefly introduce. Only details relevant to the devel opment of the theory are mentioned
here. More technical descriptions of the robot may be found in previous papers.

Ripley, pictured in Fig. 9, is a manipulator robot that was designed for grounded lan-
guage experiments. Its seven degrees of freedom are driven by back-drivable, compliant
actuators instrumented with position and force sensors, providing the robot with a sense of
proprioception. Two miniature video cameras are placed at the gripper which also serves
as the robot’s head (when the robot talks with people, it is hard-coded to look up and
“make eye contact”, to make spoken interaction more natural). Ripley’s gripper fingers are
instrumented with force-resistive sensors giving it a sense of touch.

The visual system of the robot includes severa low-level image processing routines
for segmenting foreground objects from the background based on color, finding closed
form connected visual regions, and extracting basic shape and color features from regions.
A higher level visual sub-system tracks regions over time and maintains correspondence
between regions as the robot’s perspective shifts. When a region is detected and tracked
over time, an object is instantiated in Ripley’s mental model. The mental model provides
Ripley with object permanence. Ripley can look away from the table (such that al the
objects on the table are out of sight), and when it looks back to the table, Ripley retains
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Fig. 9. Ripley isa 7 DOF manipulator robot terminating in a gripper, pictured here handing an apple to its human
partner. The human speaks into a head-worn microphone to communicate with the robot. Two video cameras and
touch sensors are mounted on the robot’s gripper. Each actuated joint contains both a position and a force sensor,
providing proprioceptive sensing.

correspondences between objects from before. If a human intervenes and adds, removes,
or moves physical objects, Ripley instantiates, destroys, and updates objects in its mental
model. Each object in the mental model encodes basic visual attributes of the object (shape,
color) and object locations encoded with respect to Ripley’s body configuration (we will
return to thislast point in the discussion on indexical signsin Section 4.12). Ripley’svisua
system also includes a face tracker to locate the position of its human communication
partner. It is able to use this information to modulate spatial language to distinguish, for
example, “the cup on my right” from “the cup on your right” [64].

The robot’s work space consists of a round table. The robot’s motor control system
allows it to move around above the table and view the contents of the table from a range
of visual perspectives. A visually-servoed procedure lets the robot move its gripper to the
centroid of visual regions. Several other motion routines enable the robot to retract to a
home position, to lift objects from the table, and to drop them back onto the table.

Ripley understands alimited set of spoken requests. Output from a speech recognizer is
processed by a spatial language interpreter [25] which maps requests onto goals with re-
spect to objectsin Ripley’s mental model. A limited look-ahead planner chooses actionsto
satisfy goals such as looking at, touching, grasping, lifting, weighing, and moving objects.

We are now ready to consider how Ripley might represent the meaning underlying
words such as “soft” or “hard” used in their most literal, physical sense. An obvious ap-
proach, one that we implemented, is to sense the degree of resistance which is met in the
course of gripping. The resistance reading indicates the compliance of the object, providing
the basis for grounding words that describe these properties.

Fig. 10 shows how to combine some of the elements introduced earlier into a schema
to represent active perception required for touching to gauge compliance, providing the
basis for grounding words such as “soft” and “hard”. The schema may be interpreted as
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closeGrip senseGripResistance
—o—{>

Fig. 10. A schemafor active sensing of compliance through grasping.

follows. The action primitive closeGrip, when executed, runs amotor controller connected
to the grip motor. The gripper may or may not reach the targeted position (if the robot
successfully grasps a large rigid object, the object will block the gripper from closing).
The outcome of the action is represented by the categorical belief D. A sensor projection,
senseGripResistance, is connected to D and projects an analog belief with the designer-
friendly (but invisible to agent!) annotation COMPLIANCE. The connection from D to
the projection is interpreted to mean: run senseGripResistance while the source action
connected to D is executed.

4.12. Indexical signs and schema parameters

Indexical signs signify spatiotemporal locations—regions of space-time. These signs
giveriseto beliefs about locations, which in turn provide the grounding for language about
space and time. | will use the Ripley implementation once again as an example of how
belief structures can be constructed about locations, and then generalize the ideato develop
the theoretical framework.

To represent a belief about spatial location, consider how Ripley perceives indexical
signs of objects such as cups. For Ripley to move its gripper to touch a cup, it must set
six joint angles appropriately (the seventh joint is the gripper open-close angle). When
Ripley touches an object, the six-dimensional joint configuration at the moment of con-
tact provides an encoding of the object’s location. Similarly, when Ripley looks around
the table and detects that same object, again its six joint angles encode position when
combined with the two-dimensional coordinates of the object’s visua region within Rip-
ley’svisual field, leading to an eight-dimensional representation of space. To connect these
two representations of spatial location, we implemented a coordinate translation algorithm
using principles of forward kinematics and optical projection combined with knowledge
of Ripley’s physical embodiment. All object positions, regardiess of which modality de-
tected them, are transformed into a two-dimensional space corresponding to positions on
the surface of the robot’s work surface. As currently implemented, the location of an ob-
ject is represented deterministically. However, similar to Isla and Blumberg [30], we plan
to extend the implementation to support probabilistic representation of spatial location by
assigning a distribution over possible two-dimensional positions.

When an object is detected by Ripley through touch, the configuration of the robot’s
body provides a six-dimensional value which is an observation of the indexical sign orig-
inating from the physical object. We can consider body pose to be an input channel, and
the proprioceptive sensor reading to be an observation of an indexical sign. The domain of
the input channel spans Ripley’s permissible body poses. A transformer projection maps
indexical observations into atwo-dimensional domain, which can be transformed again to
guide grasping or visual targeting.
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To generalize, just asin the case of natural signs, an agent may hold indexical beliefs
using the same forms of representation: analog beliefs and categorical beliefs. Indexical
analog beliefs are distributions over possible locations within a continuous spatiotem-
poral domain. Indexical categorical beliefs are distributions over discrete spatiotemporal
categories. Categorical beliefs can be used to represent relative temporal and spatial rela-
tionships such as Allen’s temporal relations [1] or topological spatial relations [55].

Consider now a search routine used by Ripley called detectHandContact that requires a
parameter L, an analog belief defined over alocation domain that the robot can map into
arm positions. The routine detectHandContact(L) is not an action primitive, but instead
implements an iterative search procedure in which the peak value in L is used to select
where to reach, and if no hand contact is detected, the region of L around that peak is set
to 0, and the next highest peak in L istried.

The same analog belief that guides the hand control routine can also be used to drive a
visua routine, detectVisualRegion(L) which performs a similar visual search through the
control of visual saccades. Aswe shall seein Section 5, the use of ashared indexical analog
belief asthe control parameter for multimodal action routines provides a basis for deriving
asensory-motor grounded semantics of spatial location which can be extended to represent
location in space and time.

4.13. Complex actions and abstraction

Building on the idea of parameterized actions, we can now construct structured schemas
representing complex actions which will provide the basis for grounding concrete action
verbs. The top schema in Fig. 11 gives an example of a schema for lifting. Examining
the schema from left to right, when interpreted as a control procedure, to lift means to
search and find the object (using the parameter L1 to guide the haptic search), close the
gripper, query the gripper touch sensors, make sure a stable grip is found, and then to
move the gripper to a new location specified by the peak value of another analog belief
parameter, L2. The same schema can be denoted by an abstracted schema (bottom) which
shows a single action projection that carries the designer-friendly label lift and its two
indexical analog belief parameters, the source and destination locations. Note that other
implementations of lifting which differ from the top schema, but which take the same
input parameters and |lead to the same change in situations can be represented by the single
schema at bottom. The abstraction process suppresses “by means of” details and retains
only the parametric form of the whole.

detectHandContact(L1) closeGrip senseTouch touchCat moveHand(L2)

Ol O [ DD O]

lift (L1, L2)
O suooess |

Fig. 11. Top: Schemafor lift; L1 specifies a distribution over possible start locations and L2 specifies a distribu-
tion over the target completion locations. Bottom: Abstracted representation of the same schema.
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5. Schematization of objects

Consider what effects, which might conceivably have practical bearings, we conceive
the object of our conception to have. Then, our conception of these effects is the whole
of our conception of the object. (Charles Sanders Peirce, 1878.)

We are now able to construct schemas for physical objects using a combination of nat-
ural analog beliefs, natural categorical beliefs, indexical analog beliefs, sensor projections,
categorizer projections, and action projections. We have aready seen some examples of
schemas for properties (Fig. 10) and complex actions (Fig. 11). Object schemas subsume
action and property schemas. Thisisin contrast to many previous computational interpre-
tations of schema theory (e.g., [67,68]) which take objects as representational primitives
distinct from the actions that act upon them. | believe that for an agent to efficiently gener-
ate affordances® of novel situations for dynamically changing goals on the fly, a practical
option is to represent objects, actions, and goals with a common set of lower level primi-
tives.

My approach to the construction of objects from sensory-motor grounded primitives
is consistent with Drescher’s approach [19]. Drescher’s schema mechanism represents an
object as a set of expected interactions with the environment. Drescher, however, chose not
to allow parameterization and other structuring elementsto enter hisframework, which led
to difficulties in scaling the representation to higher order concepts of the kind | seek to
address. Smith’s conception of the “intentional dance” [72] has also directly influenced my
approach to object perception and conception as adynamic, constructive process.

Fig. 12 illustrates a schema for a palpable visible object such as acup.® A functionally
equivalent structure has been implemented in Ripley as the object permanence part of the
robot’s mental model which coordinates visual perception, motor control for grasping, and
referent binding for speech based understanding of directives [64].

Let us walk through the main paths of this schema to see how it works. The handle of
this schemais the categorical belief labeled O = cup. Symbolic names (e.g., “cup”) will be
attached to handles of schematypes. The domain of O isadiscrete set of possible objects
known to the agent.’® Thelabel O = cup indicatesthat this schemaencodes beliefsthat are
held in the case for which belief within the domain of O is concentrated on the outcome
cup. Aswith all labels, these are provided for us to design and analyze schemas. From the
agent’s perspective, O is simply a categorical belief which derives its semantics from its
relations to other elements of the schema.

Two action projections connect to the schema handle O. Following first the top
action projection, detectVisualRegion(L) projects a binary accomplishment categori-

8 Affordances is used here as defined by J.J. Gibson to be a function of both the external real situation and the
goals and abilities of the agent [23].

9 Arbib, Iberall, and Lyons have al so suggested detailed schemas for multimodal integration of vision and grasp-
ing of objects such as cup [3], but their choice of representational elements do not lead to a semiotic interpretation
as| seek in here.

10 of course the agent may be able to learn new categories of objects and thus increase the span of the domain
over time.
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Fig. 12. Schema for atangible (touchable, graspable, moveable, visible) object such as a cup.

ca belief. Two sensor projections emanate from this categorical belief. The first,
senseRegionLocation feeds back the actual location at which a visual region is found to
update L. An agent can execute this path, for instance, to actively track the location of an
object. The senseRegion sensor is attuned to the output of detectVisual Region and projects
R, an analog belief with a domain over possible region geometries. Two transformers
project (extract) analog color and shape information about R onto separate analog beliefs.
A categorizer projects the shape analog belief onto a specific shape category outcome, s1
which corresponds to the shape of cups (if the distribution of belief in O was concentrated
on adifferent object type, say balls, then the distribution over the SHAPE categorical belief
would shift aswell). To specify acup of a particular color, the distribution of belief would
simply be shifted accordingly in the COLOR analog belief.

The lower pathway of the schema may look familiar—it is an embedding of the lift
schemathat we have already seen (Fig. 11). Two feedback loops are used to update L based
on haptic sensation using the senseHandLocation sensory projection. The indexical L can
serve as a coordinator between modalities. In Ripley, for example, we have implemented a
coarse-grained vision-servoed grasping routine which relies on the fact that a single spatial
indexical coherently binds the expected success locations for vision and touch.

The object schema is an organizing structure which encodes various causal dependen-
cies between different actions that the agent can take and expectations of sensory feedback
given that a cup actually exists at L. To believe that a cup is at L, the agent would be
committed to the expectations encoded in this schema. If the agent executed some of the
action projections of the schema and encountered a failure categorical belief, this would
provide cause for the agent to decrease its belief that O = cup. Conversely, if the agent is
unaware of the presence of a cup, it may inadvertently discover evidence which leads it to
instantiate this schema and thus develop a new belief that thereisacup at L.
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The object schema serves as a control structure for guiding action. Embedded in the
network are instructions for multimodal active perception and manipulation directed to-
wards the object. Given agoal with respect to the object (e.g., finding out what its color is,
or moving it to a new location), the schema provides predictions of sequences of actions
which will obtain the desired results.

A central aspect of the concept of a cup, that its function is to carry stuff, is not yet
captured in this schema. To represent this, containment of objects relative to other objects
must be represented (Section 5.3).

5.1. Construction of objects: Individuation and tracking

To perceive an object, the agent must instantiate a schema token that stands for that
object. A particular internal information structure within the agent serves as an “ absorber”
for signs from the environment which the agent attributes to an individual object. It is by
virtue of maintaining a particular mental absorber over time that the agent conceptualizes
individuals over time. These internal structures stand for entities in the world and provide
the agent with a basis for grounding names and categorical labels that refer to the entities.

Partial evidence may cause an agent to instantiate a complex schema token that makes
various predictions about possible interactions with the object. The schema is grounded
in the actual object because (1) physical signs caused by the object are transduced by
the agent and interpreted into schemas, and (2) these schemas in turn generate a cluster
of expectations of future interactions with the object as observed through future signs.
Of course an agent might make mistakes in the process of interpreting partial evidence,
leading to representational errors. Further interaction with the environment may then lead
the agent to reviseits beliefs.

5.2. Ambiguity and error in interpretation

A sign may give rise to multiple possible interpretations. For instance, any tangible
object may be placed within an agent’s path leading to physical contact. The resulting
unanticipated categorical belief (from, say, detectHandContact) might have been caused
by any physical object, not just a cup. Prior context-dependent beliefs encoded as a distri-
bution over O play an important role in such cases. If the agent has an a priori basis for
limiting expectations to areduced set of objects, then ambiguity is reduced at the outset. If
an agent knows it isindoors, the priors on things usually found outdoors can be reduced.

Regardless of how low the entropy of an agent’s priors may be, sensory aliasing isafact
of life. A circular visual region impinging on an agent’s retina might signal the presence
of aball, a can viewed from above, aflat disc, and so forth. In response, the agent might
instanti ate multiple schema tokens, one for each significantly likely interpretation.

An agent may misinterpret signs in two ways. First, if the agent detects a novel object
for which it has not matching schema type, it will be impossible for it to instantiate an
appropriate schemain response to signs of the objects. If the potential number of schemas
is too large, a pragmatic approach for the agent might be to instantiate a likely subset,
which can be revised on the basis of future observations. Error may enter in the process of
deciding on thelikely subset. For example, if arobot detectsavisual sign of adistant visual
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region, this might be a sign of virtually any object it has schematized. By applying prior
probabilities on what objects are expected at that time and place, the robot can instantiate
only the most likely subset of schemas. However if the priors do not match that particular
context, none of the instantiated schemas will predict future interactions with the object,
and thus the interpretation isin error.

If the agent needs to disambiguate the type of object that caused the ambiguous sign,
its course of action lies within the schemas. The instantiated alternative schemas are rep-
resented in terms of expected outcomes of actions, and so the agent can choose to execute
actions which predict maximally different outcomes for different object classes. For the
disc-ball-can problem, simply leaning over to obtain a view from a side perspective will
suffice.

5.3. Stuation schemas

A situationisrepresented by linking schemasviatheir indexical elements. Fig. 13 shows
the schema corresponding to “ There is a cup here. Something is touching the cup”. Only
the handle categorical beliefs of the objects 01 and 02 are shown, along with their as-
sociated indexical analog beliefs L1 and L2. | use the notational shortcut of the at link
to summarize object schemas by their handles and associated indexical analog belief. No
expected outcome of 02 is specified, indicating a high entropy belief state with respect to
02'stype. A pair of categorizers projects beliefs about spatial relationships between L1
and L2, and between L1 and LO. The projected categorical belief labeled conract serves
asasituational constraint and encodes the belief that a contact rel ationship exists between
L1land L2.

L0 is a default spatial indexical analog belief corresponding to “here”. LO’'s domain
spans the default spatial operating range of the agent which depends on the agent’s em-
bodiment. A second spatial relation categorical belief encodes the belief that the cup is
contained within LO. For Ripley, L0 isthe surface of atablein front of Ripley whichisthe
only areathat Ripley is able to reach.

To represent “the ball is in the cup”, the situational constraint between L1 and L2 is
changed to contain(L1, L2), atopological spatia relation. To reason about embedded in-
dexical relationships during goal pursuit, relational constraints must be taken into account.
For example, if the agent wishes to find the ball but can only see the cup, belief in a
containment or contact relationship between the ball’sindexical analog belief and the cup’s

Fig. 13. The situation corresponding to, “There is a cup here. Something is touching the cup.”
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indexical analog belief support the inference that the ball will be found in the proximity of
the cup.

Clearly there is much more to be modeled with regards to spatial relations. The com-
plexities of spatial termssuch as*“in” are well researched [28] and very detailed geometric
models are required to capture spatial relations that depend not only relation locations of
objects, but also their orientations and specific shapes[56,57]. Beyond modeling geometry,
functional criteria aso play a crucia role [16]. For example, an apple that is at the top of
aheaping bowl of fruit is still said to be“in” the bowl, even though it is not geometrically
contained by the bowl, because the bowl affords control over the location of the apple (if
the bowl ismoved, soisthe apple). A promising future direction isto model the interaction
of functional and geometric factors (see [11] for preliminary steps). For example, amobile
robot could ground its understanding of “in the corner” in terms of how the corner restricts
the robot’s potential motion. Such an approach would introduce constraints from motor
control to ground spatial language.

5.4. Negation, disjunction, and explicit representations

Certain forms of negation are handled naturally in the proposed framework, others are
more problematic. In Ripley’s world, some objects can be seen but not touched because
they are flat (e.g., photographs). The distinction between tangible visible objects and in-
tangible yet visible objects is handled by replacing the success categorical belief projected
by detectHandContact (L) in Fig. 12 with fail, and by removing all outgoing edges from
that categorical belief. In effect, the schema encodes the belief that the two kinds of ob-
jects are identical except that for photographs, the haptic pathway is expected to fail. The
intangible object’sindexical analog belief L isrefreshable only through visual verification.

Difficult cases for handling negation arise from possible world semantics. For example,
we might want to tell an agent that “there are no cups here”. This sort of negative de-
scription is unnatural to represent in the approach | have outlined since the agent explicitly
instantiates structures to stand for what it believesto be the case. The representation might
be augmented with other forms of belief, perhaps explicit lists of constraints based on nega-
tions and digjunctionswhich are compared against explicit modelsto look for conflicts, but
these directions are beyond the scope of this paper.

Although the difficulty with existential negation and disjunction might seem to be a se-
rious weakness, there is strong evidence that humans suffer from very similar weaknesses.
For example, Johnson-L aird has amassed evidence that humans make numerous systematic
errorsin dealing with existential logic that are neatly predicted by atheory of mental mod-
els according to which humans generate specific representations of situations and reason
with these explicit models even in cases where they know the models are overly specific
[32]. Similar constraints on mental representations of machines may lead to a better “ meet-
ing of theminds” since systemsthat conceive of their environment in similar ways can talk
about them in similar ways. From a computational perspective, | believe my approach is
closely related to Levesque's idea of “vivid representations’, which have difficulty deal-
ing with certain classes of existential negation and disjunction for similar reasons [38].
Levesque has argued that the choice of vivid representations is defendable when practical
concerns of computational tractability are taken into account.
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Fig. 14. The situation corresponding to, “The ball wasin the cup. Now it isnot”.

5.5. Event schemas

Events are partial changes in situations. In Fig. 14, an indexical anchor for time binds
groups of spatial analog beliefs from two situations at two different points in time (indi-
cated by the two large rectangular frames). Temporal analog beliefs (71 and 72) encode
regions along a one-dimensional local timeline exactly analogous to the two-dimensional
spatial domain for spatial indexicals in Ripley. A tempora categorizer temporalCat
projects the categorical belief after (72, T1), specifying that the situation on the right fol-
lowsintime.

In the initial situation at 71, a ball is believed to be contained in a cup, which is con-
tained in the default spatial domain. At some later time T2, the containment relation
between the ball and cup becomes invalid—the agent places zero belief in the outcome
contain(L1, L2). Only changes from T'1 are indicated in the situation for 72—all other
aspects of the original situation are assumed unchanged. Like actions, events may be rep-
resented at higher levels of abstraction to suppress “by means of” details, retaining only
higher level representations about changes of state. At one level the particular trajectory
of the motion of a cup might be specified, at a higher level only the before-after changein
position and orientation.

6. Intentional signs

The representational foundations are finally in place to address the motivation behind
this entire theoretical construction: grounding language. Recall that there are three classes
of signs. We have covered natural and indexical signs. The final class of signs, intentional
signs, are used by agents for goal-driven communication.
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Fig. 15. The structure of a grounded word.

Speech acts are the canonical intentional sign. Viewed from a Gricean perspective [26],
speech acts are chosen by rational agents in pursuit of goals. | say “the coffee is cold” to
convince you of that fact, and by Gricean implicature, to issue a directive to you to bring
me hot coffee. Intentional signs are emitted by an agent into the environment. Like all
signs, intentional signs are physical patterns that stand for something to someone. In the
case of intentional signs, as opposed to natural and indexical signs, the link from sign to
signified is established by conventions agreed upon by a community of intentional sign
users. Gestures such as pointing may also constitute intentional signs but are not addressed
here.

Speech acts are assembled from lexical units (words and other elements of the lexicon)
using agrammar. Since my focuswill be on primitive descriptive and directive speech acts,
sophisticated grammars are not needed, only basic rules that map serial order to and from
thematic role assignments. For this reason | will not say much more about parsing and
grammar construction here'! but instead simply assume the requisite primitive grammar is
available to the agent.

6.1. Lexical units (words)

Fig. 15 showstheinternal representational structure of aword. A fifth type of projection
isintroduced in this figure, an intentional projection. This projection is an indicator to the
agent that the sign projected by it, in this case the categorical belief labeled “cup”, is a
conventional projection, i.e., onethat can only beinterpreted in the context of communica
tive acts. Intentional projections block interpretative processes used for natural signs since
hearing “cup” is not the same as seeing a cup. Hearing the surface form of the word that
denotes cups will be interpreted differently depending on the speech act within which it is
embedded in (consider “thereisacup here” versus “whereis my cup?’).

The domain of LEX in Fig. 15 isthe discrete set of all lexical units known to the agent.
The agent using the schema in Fig. 15 is able to convert discrete lexical units into sur-
face formsin order to emit them into the environment through speak actions, hopefully in
earshot of other agents attuned to speech through senseSpeech or functionally equivalent
sensor projections. The speechCat categorizer has been implemented in our systems using
standard statistical methods of continuous speech recognition using hidden Markov mod-
els. Toinvert the process, asixth and final type of projection isintroduced. SpeechGenisa

11 Elsawhere, we have explored the relationship between grammar acquisition and visual context [60,61] and
the interaction of visual context on parsing of text [25] and speech [65].
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generator projection which produces an analog sign corresponding to a categorical belief.
Since the mapping from analog to categorical signs is one-to-many, the inversion of this
process leaves room for variation. If categories are formed on the basis of thresholds on, or
competition between prototypes, then prototypes are natural choices as outputs of generator
projections. In previous work on visual-context guided word acquisition, we implemented
word structures that are consistent with the schema in Fig. 15 in which speechGen and
speechCat shared acoustic prototypes of word surface forms [60].

Word schemas can be connected to various schemas within an agent’s store of schema
types. | have made suggestions of ways by which schemas provide grounding for several
classes of lexical units. We have seen examples of schemas for properties including visual
property names (“red”, “round”), affordance terms (“soft”, “heavy”), spatial and temporal
relation labels (“touching”, “before”), verbs (“lift”, “move”), and nouns (“cup”, “thing”).
In addition, the very notion of an individual arises from the act of instantiating and main-
taining particular schemas, providing the basis for proper nouns and binding of indexical
terms (“that cup”, or more persistent proper names).

6.2. Using speech acts

Asabasic classification scheme for communicative acts, Millikan has suggested the dis-
tinction between descriptive and directive acts [42]. Descriptives are assertions about the
state of the world and are thus akin to natural signs (assuming the speaker can be trusted).
Directives are fundamentally different—they are requests for action (including questions,
which are requests for information). A speech act may be both descriptive and directive.
In the situation depicted in Fig. 2, “This coffee is cold” is a descriptive (it describes the
temperature of a particular volume of liquid) and perhaps also a directive (it may imply
a request for hot coffee). In systems we have constructed to date, only the more literal
interpretation of speech acts have been addressed, thus | will limit the following discus-
sion to this simplest case. | first discuss how the framework handles directives, and then
descriptives.

Directives are understood by agents by translating words into goals. The agent’s plan-
ning mechanisms must then select actions to pursue those goals in context-appropriate
ways. This approach suggests a control-theoretic view of language understanding. If we
view a goal-directed agent as a homeostasis seeking organism, directive speech acts are
translated by the agent into partial shifts in goa states which effectively perturb the or-
ganisms out of homeostasis. This perturbation causes the agent to act in order to regain
homeostasis.

In our schema notation, agoal is represented using a dashed outline for the appropriate
analog or categorical distribution which the agent must satisfy in order to satisfy the goal.
These may be called analog goals or categorical goals. A transition ending in a spreading
set of threerays (an iconic reminder that goals are reached for) connectsthe analog belief as
itiscurrently believed to be to the desired target value. In Fig. 16, the agent has set the goal
of changing the cup’s location such that the containment relation holds. This corresponds
to the directive, “Put the cup on the plate”.

Ripley understands limited forms of directives such as, “touch the bean bag on the left”,
or, “pick up the blue one”. To perform the mapping from speech acts to goal s, the output of
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Fig. 16. “Put the cup on the plate”.

asmall vocabulary speech recognizer is processed by aparser [25] which isintegrated with
Ripley’s control system and mental model architecture [64]. In some cases, adirective will
lead Ripley to collect additional information about its environment before pursuing the goal
set by the directive. For example, if the robot is directed to “hand me the heavy one’, but
the weights of the objectsin view are unknown, Ripley’s planning system uses the implicit
control structure of the schema underlying “heavy”1? to lift and weigh each candidate
object to determine which best fits the bill. Details of Ripley’s planning algorithms are
forthcoming. There are of course many other kinds of directives, but in essence, | believe
treating the comprehension of directives as a problem of translation into goal schemasisa
productive path forward (for another implementation along these lines see [33]).

A higher order verbal behavior, one that we have not yet explored, is the generation of
directive speech acts. To produce goal-directed directives in a principled way, the agent
must be able to plan with the use of instruments, and treat communication partners as
instruments who can be controlled by influencing their goals through speech acts. This
in turn requires that the speaker have some degree of “theory of other minds’ in order to
reason about the goals and plans of other agents. This asymmetry between the cognitive
requirements of language understanding and language generation might in part explain
why language comprehension always leads production in child language devel opment.

Understanding descriptive speech actsis treated in asimilar vein as interpreting natural
signs since both provide information about the state of the world. An interesting challenge
in understanding descriptive actsisthe problem of under-specification in linguistic descrip-
tions. “The cupison thetable” tells us nothing about the color, size, orientation, or precise
location of the cup. Looking at acup on the table seemsto provide al of thisinformation at
first sight, although change blindness experiments demonstrate that even short term mem-
ory encoding is highly goal-dependent (I might recall meeting someone yesterday and the
topic of our conversation, but not the color of her shirt). The framework allows for vari-
ous forms of descriptive under-specification. For example, to express uncertainty of spatial
location, belief can be spread with high entropy across the domain of an indexical analog
belief.

Generation of descriptive speech acts, like generation of directives, also requires some
ability to maintain theories of other mindsin order to anticipate effective word choices for
communicating descriptions. The Describer system [61] uses an anticipation strategy to
weed out descriptions of objects which the system predicts will be found ambiguous by

12 The words “heavy” and “light” are grounded in active perception schemas similar to those for “soft” and
“hard” shown in Fig. 10. Accumulation of joint forces during lifting project the weight of objects.
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listeners. But this implementation barely scratches the surface of what eventually must be
modeled.

There are numerous ideas which we could explore at this point ranging from context-
dependency of word meanings (categorizers may receive bias shift signals from other
categorizers, for example, to differentiate heavy feathers from light elephants) to the def-
inition of connotative meanings for an agent (as long term summary statistics of objects,
properties, and actions in their likelihood to assist or block goals—heavy objects probably
block more goals of alow powered manipulator whose goal is to move things around, so
the robot would develop a negative connotation towards the concept underlying “heavy”).
Given our lack of specific implementations to flesh out such ideas, however, | will not
attempt to elaborate further.

7. Taking stock

A summary of the elements of the theory provides a complete view of the framework
developed thusfar:

(1) Three classes of signs, natural, indexical, and intentional, carry different kinds of
information for agents.

(2) Agents hold beliefs about analog signs (analog beliefs), and beliefs about discrete
categories (categorical beliefs).

(3) Six types of projections (sensors, actions, transformers, categorizers, intentional pro-
jections, and generators) link beliefs to form schemas. Sensor and action projections
are transducers that link schemasto physical environments.

(4) Schemas may use parameters to control actions.

(5) Objects are represented by networks of interdependent schemas that encode proper-
ties and affordances. Object schemas subsume property and action schemas.

(6) Using schemas, an agent isableto interpret, verify, and guide actions towards objects,
object properties, spatiotemporal relations, situations, and events.

(7) Lexica units are pairs of analog beliefs (encoding surface word forms) and categor-
ical beliefs (encoding lexical unit identity) connected to defining schemas through
intentional projections.

(8) Speech acts are intentional signs constructed from lexical units.

(9) Two kinds of intentional signs, descriptive and directive, are used to communicate.

(10) Directive speech acts are interpreted into goal schemas that an agent may choose to
pursue.

(11) Descriptive speech acts are interpreted into existential beliefs represented through
schemas which are compatible with (and thus may be verified and modified by) sens-
ing and action.

In my introductory remarks | highlighted the referential-functional duality of linguistic
meaning. | defined grounding to be a process of predictive-causal interaction with the
physical environment. Finally, | proposed three requirements for any theory of language
grounding. Let us briefly review how the theory addresses these points.
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Both aspects of meaning are addressed to some degree in the framework: (1) Words are
about entities and situations in the world. Words project to schemas which are constructed
out of beliefs about signs, and signs are about the world due to causal physical laws. The
choice of aword's surface form is arbitrary and conventional, but the underlying mapping
of its categorical belief is shaped by causal-predictive interactions with the environment.
Language useis situated viaindexical beliefs constructed in the process of using language.
(2) Agents use language to pursue goals. Since all schemas may serve as guides for con-
trolling action, and words are defined through schemas, the very representational fabric of
word meanings may always be viewed from afunctional perspective.

Schemas are networks of beliefs. Beliefs are both memories of what has transpired,
and also predictions of what will transpire (contingent on action). This dual use of belief
structures satisfies the predictive-causal definition of the grounding process provided in
Section 2.

Finally, we may assess the framework with respect to the three requirements proposed
in Section 3:

(1) Unification of representational primitives: Objects, properties, events, and higher level
structures are all constructed from a unified set of analog beliefs, categorical beliefs,
and six types of projections.

(2) Cross-modal trandatability: Natural signs, indexical signs, and intentional speech acts
are interpreted into schemas. Directive speech acts are interpreted as goal schemas.
Descriptive speech acts (which are often vague when compared to perceptually de-
rived descriptions) are interpreted into compatible schematized belief structures. In
other words, speech acts (intentional signs) are trandated into the same representa-
tional primitives as natural and indexical signs.

(3) Integrated space of actions: Although not explored in this paper, the framework lends
itself to decision theoretic planning in which the costs and expected payoffs of speech
acts and motor acts may be fluidly interleaved during goal pursuit.

8. Social belief networks

In Section 2 | gave a relatively stringent definition of grounding that requires the be-
liever to have direct causal-predictive interaction with the physical subjects of its beliefs.
The theoretical framework | have developed does just this—it provides structured repre-
sentations of various concepts underlying words and speech acts that are grounded strictly
in sensory-motor primitives. But of course most of what we know does not come from first
hand experience—we learn by reading, being told, asking questions, and in other ways
learning through intentional signs. | argued that to make use of symbolically described
information, an agent needs an independent path to verify, acquire, and modify beliefs
without intermediaries. Building on this, social networks may collectively ground knowl-
edge that not all members of community can ground. | depict such networks of belief
amongst agentsin Fig. 17. Everything we have discussed thus far may be denoted by the
graph on the left. It shows a single agent that holds the belief B(x) about the world. The
world (denoted as the rectangle with a electrical ground sign at bottom) indeed contains x
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Fig. 17. Social belief networks.

and causally givesrise to B(x) as indicated by the upwards arrow. The downward arrow
from the agent back to the world denotes that the agent has the ability to verify B(x) by
interacting directly with the physical environment.

The right panel of Fig. 17 shows a community of four agents. Only Agent 1 has full
and direct grounded beliefsin x. Agent 2 came to know about x through intentional signs
transmitted from Agent 1. Agent 2's only way to verify x isto ask Agent 3. Agent 3 also
learned of x from Agent 1, but is able to verify by asking either Agent 1 or Agent 4. This
kind of graph isreminiscent of Putnam’slinguistic division of labor [54] in which an expert
about x (Agent 1) grounds beliefs about x on behalf of others in the belief network. The
claim | began with is that there exists some basic set of concepts about the world we all
share which each agent must ground directly for itself, and that language uses these shared
concepts to bootstrap mediated networks such as the right side of Fig. 17. The ubiquitous
use of physical metaphor in practically all domains of discourse across all world languages
[36] is astrong indication that we do in fact rely on physical grounding to as the basis of
conceptual alignment underlying symbolic communication.

9. Related ideas

Thetheory | have presented brings together insights from semiotics (the study of signs)
dating back to Peirce with schematheory dating back to Kant. Thereisagreat deal of prior
work on which the theory rests. Rather than attempt a comprehensive survey, | highlight
selected work that is most closely related and that | have not already mentioned el sewhere
in the paper.

Perhaps the most well known early work inthisareaisthe SHRDLU system constructed
by Winograd [76]. This work demonstrated the power of tight integration of language
processing within a planning framework. A key difference in Winograd’'s work was the
assumption that the language user has a complete, symbolically described world model
(blocks on atable top in the case of SHRDLU). The issue of word-to-physical-world con-
nectedness was not aconcernin Winograd’' swork. Asaresult, hisapproach doesnot lead in
any obviousway to the construction of physically grounded language systems. Categoriza-
tionisnot addressed in SHRDL U whereas a central aspect of the approach | have described
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here is the processes by which analog signs are transformed into categorical signs, and the
resulting distinction between analog and categorical beliefs. Many of Winograd's insights
on the interaction of planning, dialog, and reference, however, remain highly relevant for
thetheory | have presented here, and indeed complement the issues | have addressed. Over
a decade after SHRDLU, Winograd and Flores [77] wrote a critique of symbolic Al in-
cluding the methods employed by SHRDLU. The gist of this critique is to point out the
interpretive “ sleight of hand” that tendsto underlie symbolic Al systemssuch asSHRDLU,
and the ascriptive errors Al practitioners made in using terms such as “understanding” to
describe such systems (see aso [53]). A key reason for this ascription error was that the
systems were unableto link symbolsto their physical environment without a human in the
loop. In contrast, grounded language systems address this limitation.

Minsky'’s conception of frames[43] is similar in spirit to my approach. Frames are data
structuresthat represent stereotyped situations, and areinstantiated to interpret experienced
situations much as | have suggested the role of schemas here. Minsky suggests framesas a
structure for interpretation, verification, and control as| have for schemas. Minsky’s paper
covered a far wider range of domains, and thus naturally provided less specific details on
any one domain. In contrast, the theory | have outlined is focused specifically on questions
of language grounding and reflects specific structures that arose from a concerted effort to
build language processing systems.

Schank and Abelson [68] devel oped atheory of scripts which are organizing knowledge
structures used to interpret the meaning of sentences. Scripts are highly structured repre-
sentations of stereotyped situations such as the typical stepsinvolved in eating ameal at a
restaurant. Scripts are constructed from a closed set of 11 action primitives but an open set
of state elements. For example, to represent the stereotyped activitiesin arestaurant script,
representational state primitivesinclude hungry, menu, and where-to-sit. In contrast, | have
suggested a theory which avoids open sets of symbolic primitives in favor of a closed set
of embodiment-dependent primitives.

Several strands of work by cognitive scientists and linguists bear directly on thetopics|
have discussed. Bates and Nelson have proposed constructivist analyses of early language
development [9,46]. The computational framework presented here is compatible with both
of their approaches. Miller and Johnson-Laird compiled perhaps the most comprehensive
survey to date of relationships between language and perception [41]. Barsalou's percep-
tual symbol system proposal [7] stresses the importance of binding symbols to sensory-
motor representations, as evidenced by recent experiments that probe the embodied nature
of cognitive processes[24,73]. Barsalou’'s proposal emerged from human behavioral exper-
iments as opposed to construction of systems, and as a result provides a more descriptive
account in contrast to the computational level of explanation | have attempted here. Jack-
endoff [31] presents a compelling view on many aspects of language that have influenced
my approach, particularly his ideas on “pushing the world into the mind”, i.e., treating
semantics from a subjective perspective.

Some noteworthy approaches in the robotics community are closely related to the use
of schemas | have proposed. Kuipers Semantic Spatial Hierarchy suggests a rich multi-
layered representation for spatial navigation [35]. This representation provides a basis for
causal-predictive grounding in spatial domains which | believe might be of great value for
grounding spatial language. Grupen’s work on modeling affordances [ 13] intermingles ob-
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ject and action representations and also deserves further study from a language grounding
perspective.

Bailey [5] and Narayanan [44] propose the use of modified forms of Petri nets (aformal-
ism used to model concurrent, asynchronous control flow in networks) to model schema-
like structures underlying natural language verbs. Bailey’s representation of manipulation
actionsis similar to ours (Bailey’s implementations were based on a simulated robot arm).
Narayanan used modified Petri nets as a basis for understanding abstract economic news
stories by analogy to underlying physical action metaphors (e.g., “the economy hit rock
bottom™). Siskind [70] proposed an approach to modeling perceptually grounded repre-
sentations underlying manipulation verbs by combining force dynamics primitives with
Allen’stemporal relations[1]. The representation of events proposed by Bailey, Narayanan,
and Siskind are al able to model more complex event structures than the approach | have
presented here based on sequences of situation schema. However, my approach provides
a holistic account for actions and other ontological categories such as objects, properties,
and spatial relations, whereas these other approaches focus only on event structure. Anin-
teresting direction would be to investigate ways to incorporate the more expressive power
of Petri nets or Siskind's representation to augment the schema structure while retaining
the holistic nature of the framework | have presented.

Littman, Sutton and Singh [39] have proposed the idea of predictive representations of
state through which states of a dynamical system are represented as “action conditional
predictions of future observations’. The exact relationship between those ideas and the
ones | have presented will require detailed study, but it seemsto be very similar in spirit if
not formulation. Also closely related is Cohen’s work with robots that learn “ projections
as concepts’ [14] which have been linked to linguistic labels leading to a limited form of
language grounding [15].

10. Meaning machines

There are many important questions that this framework raises that | have not begun
to address. Where do schemas made of analog beliefs, categorical beliefs, and projections
come from? How and to what extent can their structure and parameters be learned through
experience? How might hierarchical structures be used to organize and relate schemas?
What kind of cognitive architecture is needed to maintain distinct schematic beliefs and
desires? How does an agent perform efficient inference and planning with them? How are
abstract semantic domains handled? How are higher level event, action, and goal structures
organized to support more sophisticated forms of inference and social interaction? These
are of course challenging and deep questions that point to the immense number of future
directions suggested by this work.

The framework introduced in this paper emerged from the construction of numerous
grounded language systems that straddle the boundary of symbolic and non-symbolic
realms. In contrast to models that represent word meaning with definitions made of word-
like symbols, | have taken a semiotic perspective with the intent of unifying language,
perception, and action with asmall number of representational primitives. Systemsimple-
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mented according to this framework transduce the physical world of patterns and into an
inner “mental world” of beliefs that are structured to support linguistic communication.
Although most language in adult conversation does not refer to the concrete physical
world, is motivated my focus on concrete semantics by two main observations about hu-
man communication. First, children bootstrap language acquisition by conversing about
their immediate environment—human semanticsis physically anchored. Second, a shared
external reality, revealed to agents through physical patterns, is the only way to explain
why conceptual systems are aligned across agents to any degree at all, and thus why we
can communicate with one another. If we are going to bring machines into our conceptual
and conversational world as autonomous agents that understand the meaning of words for
and by themselves—that truly mean what they say—grounding will play a central role.
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