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Abstract

This paper reports results from early experiments
on automatic classification of spoken affect. The
task was to classify short spoken sentences into
one of two affect classes: approving or
disapproving. Using an optimal combination of
six acoustic measurements our classifier achieved
an accuracy of 65% to 88% for speaker
dependent, text-independent classification. The
results suggest that pitch and energy
measurements may be used to automatically
classify spoken affect but more research will be
necessary to understand individual variations and
how to broaden the range of affect classes which
can be recognized. In a second experiment we
compared human performance in classifying the
same speech samples. We found similarities
between human and automatic classification
results.

1 Introduction

Spoken language carries many parallel channels
of information which may roughly be divided
into three categories: what was said, who said it,
and how it was said. In the computer speech
community the first two categories and the
associated tasks of speech recognition and
speaker identification have received a great deal of
attention whereas the third category has received
relatively little. We are studying a component of
the third category; we are interested in
automatically classifying affect through speech
analysis. Although there has been much research
to identify acoustic correlates of affect [14, 17, 3,
4, 12, 8], the authors are not aware of any
previous work which attempts automatic
classification of affect by explicitly modeling
these acoustic features.

In this paper we report on initial experiments to
determine useful acoustic features for automatic
affect classification of speech. The task was to
classify short sentences spoken with either
approving or disapproving affect. Our
experimental data consisted of recordings of three

adult speakers who were asked to speak a set of
sentences as if they were speaking to a young
child. We extracted several acoustic features from
the speech recordings which we expected would
be correlated with affect. Standard pattern
classification techniques were applied to measure
the accuracy of automatic classification based on
these features.

In a second experiment we conducted a human
listening test on the same collected speech
samples to compare human classification
accuracy against the automatic analysis.

The motivation for this work is to move towards
a speech interface which pays attention to all
information in the speech stream. We are
interested in exploring new types of interfaces
which can detect and react to the emotion of the
user [10]. We believe that an interface which
listens to the user must detect all three types of
information in the speech stream: not only what
was said and who said it, but also how it was
said.

2 Background

For the purposes of this paper we divide the
“how it was said” channel of speech into two
further categories. The first includes the prosodic
effects which the speaker uses to communicate
grammatical structure and lexical stress.
Experiments suggests that this information is
mainly carried in the fundamental frequency (F0)
contour, the energy (loud/quiet) contour and
phone durations [11, 9].

The second factor which effects the “how it was
said” channel is the emotional or affective state of
the speaker. Some of the commonly identified
correlates of affect include average pitch, pitch
range, pitch changes, energy (or intensity)
contour, speaking rate, voice quality, and
articulation [4, 8]. For example Williams and
Stevens found correlations between anger, fear
and sorrow with the F0 contour, the average
speech spectrum and other temporal
characteristics [17]. Scherer reports that the basic



emotions can be communicated by pitch level
and variation, energy level and variation, and
speaking rate [14].

We note that the acoustic correlates which
communicate affect overlap significantly with the
acoustic correlates which communicate
grammatical structure and lexical stress. Thus in
principle it is impossible to completely separate
the analysis of the two sources of variation,
however in this paper we will treat effects due to
affect in isolation.

Although the literature is consistent in which
acoustic features are correlated with affect, the
manner in which a given feature is adjusted to
communicate a specific emotional state seems to
be less clearly understood. Scherer found that
although voice quality and F0 level convey
affective information independent of verbal
content, F0 contours could only be correctly
interpreted by human listeners when the verbal
content was also available [15]. This suggests
that the F0 contour cannot be used for affect
classification unless the text and grammatical
structure of the spoken utterance is available.
Streeter et. al. studied the pitch level of two
speakers during the build up to a stressful event
(the speakers were the systems operators on duty
at the time of the 1977 New York blackout) [16].
Streeter found that as the situational stress
increased one speaker’s pitch level increased
while the other speaker’s pitch level decreased.
This indicates that the manner in which acoustic
features are correlated with affect is speaker
dependent.

3 Data Collection

We made speech recordings of three adult native
English speakers. The speakers were asked to
imagine that they were speaking to young child
and speak a set of sentences which were grouped
into approving and disapproving sets. The
subjects were given a printed list of sentences
which they were asked to speak with pauses
between each sentence. The sentence prompts
were designed to convey a message of approval
or disapproval without referring to any specific
topic. Examples of approval include “That was
very good” and “Keep up the good work”.
Examples of disapproval include “You shouldn’t
have done that” and “That’s enough”. There
were 12 unique sentences for each affect class (a
total of 24 sentences). The sentences were all
short in duration (two to six words) since it is
difficult for speakers to sustain consistent affect in
long spoken utterances [2].

Each subject recorded 180 sentences (90 from
each affect class). Each subject read 30 sentences
from one affect class, then 30 from the other and
repeated this cycle three times for a total of 180
sentences. Approximately one third of the
samples were systematically discarded to remove
effects of switching from one class to the other
during recording. A few samples containing
hesitations, coughing, and laughter were also
removed. There were a total of 303 recordings
from the three subjects in the final data set.

Recordings were made in a sound proof room
with a Sony model TCD-D7 DAT recorder and
an Audio Technica model AT822 stereo
microphone. The DAT recordings were made in
16-bit 48 kHz sampled stereo. The automatic
gain control in the DAT recorder was enabled
during all recordings to ensure full dynamic
range. The audio was then transferred to a
workstation and converted to a 16-bit single
channel 16 kHz signal.

4 Experiment 1: Automatic Affect
Classification

4.1 Analysis

The acoustic features which we considered for
performing automatic affect classification are
summarized in Table 1. The features were chosen
to be independent of the verbal content and
sentence level prosodic structure.

Feature Method
F0 (mean,
variance)

Autocorrelation function

Energy
(variance,
derivative)

Short-time energy

Open
Quotient

First and second Harmonic
amplitude ratio

Spectral
Tilt

Ratio of first harmonic to third
formant

Table 1: Acoustic features used in the
classification experiment.

All features are computed on 32ms frames of the
signal. Adjacent frames overlap by 21ms.

The first two features are the mean and variance
of the fundamental frequency (F0). The F0 is
found by locating the peak of the autocorrelation



function of the speech signal over each 32ms
window [13]. The peak value is required to meet
range constraints (70 to 450 Hz) and is smoothed
using a median filter.

The third and fourth features are the variance and
derivative of the short-time energy of the signal,
computed over 32ms windows [13].

The fifth feature is the open quotient which is the
ratio of the time the vocal folds are open to the
total pitch period.  This feature is estimated by
the ratio of the amplitudes of the first two
harmonics [6, 7].

The sixth feature is the spectral tilt which is
estimated by the ratio of the amplitude of the first
harmonic to the amplitude of the third formant
[6, 7].

We chose not to use the absolute energy level as
a feature since it is dependent on the exact
recording configuration, and has been shown to
contain little information about affect in
perceptual tests.

The current implementation of our pitch tracker
occasionally doubles or halves its F0 estimates
which leads to very noisy time derivative
measures. For this reason we have not included
F0 changes as a feature.

With the exception energy, all features are
computed only on voiced portions of the speech
recordings. The voiced/unvoiced decision is
made by computing the ratio of energy in the
high and low frequency bands and multiplying
this ratio by the short-time energy of the signal.
By thresholding this measure we can detect
segments of the signal with high energy and a
high proportion of that energy present in the
lower frequencies which are the characteristics of
voiced speech spoken in a quiet environment.

4.2 Classification

As a first step we were interested in learning the
discrimination ability of each feature in isolation.
We built Gaussian probability models based on
each feature for each affect class and used a
likelihood ratio test with equal priors to classify
test data.

Since the data set consisting of 303 sentences is
relatively small we used cross-validation (also
known as the hold-one-out method) for all
classification experiments [1]. Cross-validation is

performed by holding out a subset of data,
building a classifier with the remaining labeled
training data, and then testing the classifier on
the held-out test set. A new set of test data is
then held-out and the train-and-test cycle is
repeated. This process proceeds until all data has
been held out once. Errors are accumulated across
all test sets.

In our case each held-out test data set consisted
of all recordings corresponding to one text
sentence. Thus the training data did not contain
any occurrences of the sentence which the
classifier was tested on.  This assured that the
classification results reflected text-independent
performance.

Once we had tested classification performance
using each feature in isolation, we used the
Fisher linear discriminant method [5] to find an
optimal combination of all six features. The
Fisher method finds a linear projection of the 6-
dimensional training data onto a one
dimensional line which maximizes the interclass
separation of the training data. We computed
Gaussian statistics on the projected values of data
for each class and used a likelihood ratio test
with equal priors to classify test data.

4.3 Results

Table 2 presents the results of the classification
experiments. The first three columns show
classification accuracy for each speaker (F1 is
female, M1 and M2 are male). The fourth
column “All” is the pooled data from all three
speakers. The first six rows show classification
accuracy using each feature in isolation as
described above. Note that random classification
will lead to an expected accuracy of 50% for large
data sets since this is a two class problem.

These results show that the most discriminative
feature for each speaker is different. Speaker F1
uses large variations in speaking intensity in her
disapproving speech and “smoother” speech to
express approval. The result is high
discrimination using the energy range feature. In
contrast M1 relies most on changing the range of
F0; when he speaks approvingly he uses a
smaller F0 range than when he speaks
disapprovingly. M2 relies most on the average
pitch level; for approving utterances his average
F0 is significantly higher than disapproving
sentences in which he has a relatively low
average F0.



In the combined case where data from all
speakers were pooled we found that the best
features were the average F0 and the open
quotient measure. These two features are
modified most consistently by all three speakers.

Feature F1 M1 M2 All
Average F0 45 53 82 64
F0 Range 58 67 53 51
Energy range 88 57 67 61
Energy change 83 60 58 62
Open quotient 76 63 58 64
Spectral tilt 58 62 61 56
All features 88 65 84 65

Table 2: Classification results (percent
correct) using Gaussian probability models
for each feature in isolation (top six rows)
and using an optimal combination of all six
features (bottom row).

5 Experiment 2: Human Classification

In a second experiment we were interested to
learn how well humans would perform in the
affect classification task given the data we
collected for the first experiment. In particular we
were interested to learn if there would be a
significant drop in accuracy for speaker M1
similar to the results from the automatic system.
To do this we randomly selected one example of
each approval and disapproval sentence from each
speaker for a total of 70 sentences1. These
recordings were grouped by speaker but the
sequence within each speaker set was randomized
(i.e. approval and disapproval sentences were
randomly ordered for each speaker).

The recordings were played in reverse as a means
of masking the verbal content of the sentences
while retaining the voice quality and level and
range characteristics of the pitch and energy. In
effect many of the cues which a human would
rely on such as the F0 contour and verbal content
(which we did not use in the automatic classifier)
were masked to make the human task comparable
to the automatic task. However, all of the features
which we did use in the automatic task were still
present in the reversed audio.

1Due to an error during the design of this
experiment only 22 sentences (rather than 24)
from M1 were used. Thus the total number of
sentences presented to each subject was 70
rather than 72.

This masking technique has been used in similar
perceptual tasks by Scherer [15]. Scherer
observed that “the most serious potential artifact
of reversed speech is the creation of a new
intonation contour.” [15]. Indeed some subjects
in our experiment commented that they found
themselves trying to interpret the F0 contour
even though they knew it was reversed speech.
We note that alternate methods of masking such
as low-pass filtering and random splicing also
have serious artifacts [15].

A simple graphical interface was created to
present the reversed speech samples to subjects
in sequence. The subject was asked to make a
binary approval/disapproval classification for each
sample. The subject was given control to go
back and change the classification of samples as
often as desired until he/she was satisfied.

Figure 1 shows the classification accuracy
(percent correct) for seven native English
speaking subjects. The accuracies  averaged
across all seven subjects for the three speakers
F1, M1 and M2 were 76%, 69% and 74%
respectively.

Note that the relative ordering of accuracy for the
three speakers is consistent in the human and
automatic experiments.  This might mean that
speaker M1’s speech does not contain as many
indicators of his affective state.

Figure 1: Human listening experiment results
compared to automatic classification results
(taken from Table 2).

Human listeners performed somewhat worse than
the automatic classifier. One reason for this is
that the automatic classifier was supplied with



labeled training data of each speaker. We
expected that human listeners would be able to
apply prior knowledge of acoustic correlates of
emotion to do the classification task without
training data. Artifacts of reversing the playback
of recordings (noted earlier) probably contributed
to the errors.

6 Conclusions and Future Work

The results of these initial experiments are
promising. We achieved classification accuracies
ranging from 65% to 88% (where random choice
would lead to 50% accuracy) for three speakers.
In a related experiment human listeners achieved
classification accuracies ranging from 69% to
76%. The human listeners and the automatic
classifier both had higher errors for the same
speakers.

There are several short-time features which we
can add to the present framework to potentially
improve performance including speaking rate
estimation, long term spectrum [12], and rate of
change of F0.

Due to the limited scope of the experiments we
cannot draw strong conclusions but the data
suggests that energy and F0 statistics may be
effectively used for automatic affect classification.
This is in accord with previous findings in the
psycholingistic community. However it is not
clear how to deal with variations in individual
speaking styles.  We plan to collect data from
more speakers to see if there are natural clusters
of speaking styles in which case an affect
classifier could first decide which cluster a
speaker belongs to, and then apply the
appropriate decision criteria.

It is likely that high accuracy in spoken affect
classification will not be achieved without
analysis of verbal content and sentence level
prosodic cues such as the F0 contour. Our
limited human verification task suggest that
without this information, humans are not able to
perform the task well either. Possible extensions
of this work include integration with other
sources of information which are obtained by
speech recognition, speaker identification, and
visual face analysis.
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