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ABSTRACT

Language is grounded in sensory-motor experience.
Grounding connects concepts to the physical world en-
abling humans to acquire and use words and sentences
in context. Currently, machines which process text and
spoken language are not grounded in human-like ways.
Instead, semantic representations in machines are highly
abstract and have meaning only when interpreted by hu-
mans. We are interested in developing computational sys-
tems which represent words, utterances, and underlying
concepts in terms of sensory-motor experiences, leading to
richer levels of understanding by machines. Inspired by
theories of infant cognition, we present a computational
model which learns from untranscribed multisensory in-
put. Acquired words are represented in terms associa-
tions between acoustic and visual sensory experience. The
system has been tested in a robotic embodiment which
supports interactive language learning and understanding.
Successful learning has also been demonstrated using in-
fant-directed speech and images.

1. INTRODUCTION

Language is grounded in experience. Unlike dictionary
definitions in which words are defined in terms of other
words, humans understand many basic concepts in terms
of associations with sensory-motor experiences [1]. To
grasp the concepts underlying words such as red, heavy
and above requires interaction with the physical world.
Grounding is a fundamental aspect of spoken language
which enables humans to acquire and use words and sen-
tences in context.

Infants learn their first words by associating speech pat-
terns with objects, actions, and people. The meanings of
words and utterances are inferred by observing the world
through multiple senses. Multisensory grounding of early
words forms the foundation for more complex linguistic
capacities. Syntax emerges as children begin to com-
bine words to refer to relations between concepts. As the
language learner’s linguistic abilities mature, their speech
refers to increasingly abstract notions. However, all words
and utterances fundamentally have meaning for humans
because of their grounding in multimodal and embodied
experience.

Current spoken language recognition and understanding

systems are not grounded. During training, systems are
presented with recordings of spoken utterances paired with
manually generated transcriptions. Acoustic waveforms
are the only sensor signal available to the system during
training. Once trained, these systems convert novel speech
input into transcriptions or machine actions. Non-acoustic
signals are typically not integrated into the recognition or
understanding process. Although ungrounded speech sys-
tems have led to practical applications for transcription
and telephony, numerous difficult problems of speech com-
munication cannot fully be addressed until multisensory
grounding is introduced to speech systems.

To explore issues of grounded language, we have cre-
ated a system which learns spoken words and their visual
semantics by integrating visual and acoustic input [3]. The
system learns to segment continuous speech without a lex-
icon and forms associations between acoustic word forms
and their visual semantics. This effort represents a step to-
wards introducing grounded semantics in machines. The
system does not represent words as abstract symbols. In-
stead, words are represented in terms of audio-visual as-
sociations. This allows the machine to represent and use
relations between words and their physical referents. An
important feature of the word learning system is that it is
trained solely from untranscribed microphone and camera
input. Similar to human learning, the presence of multi-
ple channels of sensory input obviates the need for manual
annotations during the training process. In this paper we
first present the model of word learning, and then describe
experiments in testing the model with interactive robotics
and infant-directed speech.

2. CELL: A COMPUTATIONAL
MODEL OF WORD LEARNING

Inspired by theories of infant language acquisition, we
have developed a model of cross-channel early lexical learn-
ing (CELL), summarized in Figure 1 [3]. This model dis-
covers words by searching for segments of speech which re-
liably predict the presence of visually co-occurring shapes.
Input consists of spoken utterances paired with images of
objects. This approximates the input that an infant might
receive when listening to a caregiver while visually attend-
ing to objects in the environment. Output consists of a
lexicon of audio-visual items. Each lexical item includes
a statistical model (based on hidden Markov models) of a
spoken word, and a statistical visual model of an object



class. To acquire lexical items, the system must (1) seg-
ment continuous speech at word boundaries, (2) form vi-
sual categories corresponding to objects, and (3) form ap-
propriate correspondences between word and object mod-
els.
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Figure 1: The CELL model. Camera images of objects
are converted to statistical representations of shapes and
colors. Spoken utterances captured by a microphone are
mapped onto sequences of phoneme probabilities. A lay-
ered memory architecture consisting of short and long term
memory supports search for consistent cross-modal pat-
terns based on mutual information.

A speech processor converts spoken utterances into se-
quences of phoneme probabilities. At a rate of 100Hz,
this processor computes the probability that the past 20
milliseconds of speech belonged to each of 39 English
phoneme categories or silence. The phoneme estimation
was achieved by training a recurrent neural network using
the TIMIT database. Utterance boundaries are automati-
cally located by detecting stretches of speech separated by
silence.

A visual processor was developed to extract statistical
representations of shapes and colors from images of ob-
jects. The visual processor uses ‘second order statistics’
to represent object appearance. Color is represented by
computing a two-dimensional histogram of illumination-
normalized RGB pixel values from the area of the image
occupied by the target object. To represent shape, the
edge pixels of the viewed object are first located. For
each pair of edge points, the normalized distance between
points and the relative angle of edges at the two points are
computed. All distances and angles are accumulated in
a two-dimensional histogram representation of the shape
(the ‘second order statistics’). The chi-squared divergence
statistic is used to compare shape histograms, a measure
that has been shown to work well for object comparison
[4]. Three-dimensional shapes are represented with a col-
lection of two-dimensional shape histograms, each derived
from a particular view of the object. Sets of images are
compared by summing the chi-square divergences of the
four best matches between individual histograms.

Phonemic representations of multi-word utterances and
co-occurring visual representations are temporarily stored

in a short term memory (STM). The STM has a capacity of
five utterances, corresponding to approximately 20 words
of infant-directed speech. As input is fed into the model,
each new [utterance,object] entry replaces the oldest entry
in the STM. A short-term recurrence filter searches the
contents of the STM for recurrent speech segments which
occurred in matching visual contexts. The STM focuses
initial attention to input which occurred closely in time.
To determine matches, an acoustic distance metric [2] is
used to compare each pair of potential speech segments
drawn from the utterances stored in STM. This metric es-
timates the likelihood that the segment pair in question
are variations of similar underlying phoneme sequences
and thus represent the same word. The chi-squared di-
vergence metric is used to compare the visual components
associated with each STM utterance. If both the acoustic
and visual distance are small, the segment and shape are
copied into the LTM. Each entry in the LTM represents a
hypothesized prototype of a speech segment and its visual
referent.

Infant-directed speech usually refers to the infant’s im-
mediate context [5]. When speaking to an infant, care-
givers rarely refer to objects or events which are in another
location or which happened in the past. On this premise,
a long-term mutual information filter assesses the consis-
tency with which speech-shape pairs co-occurred in the
LTM. The mutual information (MI) between two random
variables measures the amount of uncertainty removed re-
garding the value of one variable given the value of the
other. Mutual information is used to measure the amount
of uncertainty removed about the presence of a specific
shape or color in the learner’s visual context given the ob-
servation of a specific speech segment. Since MI is a sym-
metric measure, the converse was also true: it measured
the uncertainty removed about the co-occurrence of a par-
ticular speech segment given a visual context. Speech-
shape or speech-color pairs with high MI are retained, and
periodically a garbage collection process removes hypothe-
ses from LTM which do not encode associations with high
MI.

3. EXPERIMENTS WITH AN
INTERACTIVE ROBOT

CELL was incorporated into a real-time speech and vi-
sion interface embodied in a robotic character (Figure 2).
We chose a robotic form to enable natural human-machine
conversation in which the machine is able to use body and
facial gestures to indicate internal state.

Input consisted of continuous multiword spoken utter-
ances and images of objects acquired from a CCD cam-
era mounted on the robot. To teach the system, a per-
son places an object in front of the robot and describes
it. After accumulating multiple audio-visual observations,
the system acquires a lexicon of color and shape terms
grounded in microphone and camera input. Once a lex-
icon has been acquired, the robot can be engaged in an
object labeling task (i.e., lexical generation), and an ob-
ject selection task (i.e., lexical understanding).
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Figure 2: The robot consists of a four degree-of-freedom
armature with a CCD camera mounted at the tip. The
camera may be moved to obtain images of a target image
from various perspectives. Target objects are placed on a
turn table providing an additional degree of freedom.

3.1. Acquiring a Lexicon

The robot has three modes of operation: acquisition,
generation, and understanding. In the acquisition mode,
the robot searches for the presence of objects on the view-
ing surface. When an object is detected, the system gath-
ers images of the object from various random perspectives.
If a spoken utterance is detected while the images are be-
ing gathered, a [utterance, object] event is generated and
processed by CELL.

To teach the system, the user might place a cup in front
of the robot and say, “Here’s my coffee cup”. To verify that
the system has received contextualized spoken input, the
robot “parrots” back the user’s speech based on the recog-
nized phoneme sequence. This provides a natural feedback
mechanism for the user to understand the nature of inter-
nal representations being created by the system. In infor-
mal tests, the system was able to learn and use a lexicon
of 12 shape and color terms from 70 input utterances.

The system acquires word order statistics for learning
the order of shape and color terms in adjacent positions
without intervening words. The shape and color chan-
nels serve to ground primitive categories of speech enabling
higher level distributional analysis of word category order-
ing. Lexical items are assigned to either the shape or color
class depending on their contextual grounding. The sys-
tem tracks the distribution of color-shape and shape-color
terms for input utterances. In experiments, the system
learned that color terms precede shape terms in English.

3.2. Object Description

Once lexical items are acquired, the system can gen-
erate spoken descriptions of objects. In this mode, the
robot searches for objects on the viewing surface. When
an object is detected, the system builds a view-set of the
object and compares it to each lexical item in LTM. The
acoustic prototype of the best matching item is used to
generate a spoken response. The spoken output may de-
scribe either shape or color depending on the grounding of
the best match. Speech is generated by sending phoneme
sequences to a model-based speech synthesizer.

To use word order statistics, a second generation mode

finds the best matching lexical item for the color and shape
of the object. The system generates speech for both as-
pects of the object. The order of concatenation is deter-
mined by the acquired word order statistics. When pre-
sented with a tennis ball, the robot would say “yellow ball”
when it had already learned the words “yellow” and “ball”.

3.3. Speech Understanding

In the speech understanding mode, the system waits for
the user to name objects in terms of shape and color. The
input utterance is assumed to contain only lexical items in
LTM. The input utterance is matched to existing speech
models in LTM. A simple grammar allows either single
words or word pairs to be recognized. The transition prob-
abilities between word pairs is determined by the acquired
word order statistics.

In a second step, the system finds all objects on the
viewing surface and compares each to the visual models of
the recognized lexical item(s). In a forced choice task, it
selects the best match and returns the robot’s gaze to that
object. To provide additional feedback, the selected object
is used to index back into the lexicon and generate a spoken
description. This feedback leads to revealing behaviors
when an incorrect or incomplete lexicon has been acquired.
The nature of errors provides the user with guidance for
subsequent training interactions.

4. GROUNDED WORD
LEARNING: EXPERIMENTS
WITH INFANT-DIRECTED
SPEECH

To evaluate CELL with natural spoken input, we gath-
ered a corpus of audio-visual data from infant-directed in-
teractions [3]. Six caregivers and their pre-linguistic (7-
11 months) infants were asked to play with objects while
being recorded. We selected 7 classes of objects com-
monly named by young infants: balls, shoes, keys, toy
cars, trucks, dogs and horses. A total of 42 objects, six
objects for each class, were obtained. The objects of each
class varied in color, size, texture, and shape.

Each caregiver-infant pair participated in 6 sessions over
a course of two days. In each session, they played with 7
objects, one at a time. All caregiver speech was recorded
using a wireless head-worn microphone onto DAT. In to-
tal we collected approximately 7,600 utterances comprising
37,000 words across all six speakers. Most utterances con-
tained multiple words with a mean utterance length of 4.6
words. Speech segmentation could not rely on the exis-
tence of isolated words since these were rare in the data.

The 42 objects were imaged from various perspectives
using the robot described in the previous section. A total
of 209 images from varying perspectives were collected for
each of 42 objects resulting in a database of 8,778 images.
Only shape histograms were computed for these experi-
ments.
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Figure 3: Speech was recorded from natural caregiver-
infant interactions centered around objects. A robot was
used to capture images from various first-person perspec-
tives of the objects from the infant interactions. Speech
recordings and images provided input to the learning ex-
periment. The system learned statistical models of words
and objects without manual annotations.

Speech recordings from caregiver-infant play were com-
bined with the images taken by the robot to provide mul-
timodal input to the learning system (Figure 3). To pre-
pare the corpus for processing, we performed the following
steps: (1) Segment audio at utterance boundaries. This
was done automatically by finding contiguous frames of
speech detected by the recurrent neural network, (2) For
each utterance, we selected a random set of 15 images of
the object which was in play at the time the utterance was
spoken.

We evaluated the lexicons extracted from the corpus us-
ing three measures. The first measure, M1, was the per-
centage of lexical items with boundaries at English word
boundaries. The second, M2, was the percentage of lexical
items which were complete English words with an optional
attached article. The third measure, M3, was the percent-
age of lexical items which passed M2 and were paired with
semantically correct visual models.

For comparison, we also ran the system with only acous-
tic input. In this case it was not meaningful to use the MI
maximization. Instead the acoustic-only system searched
for globally recurrent speech patterns, i.e. speech segments
which were most often repeated in the entire set of record-
ings for each speaker.

Table 1: Results of evaluation on three measures averaged
across all six speakers.

M1 M2 M3
T£5% | 31+8% | 13+4%
28+6% | 72+8% | 57+£10%

audio only
audio-visual

Results of the evaluation shown in Table 1 indicate that
the audio-visual clustering was able to extract a large pro-
portion of English words from this very difficult corpus
(M2), many associated with semantically correct visual
models (M3). Typical speech segments in the lexicons
included names of all six objects in the study, as well
as onomatopoeic sounds such as “ruf-ruf” for dogs, and
“vroooom” for cars. The comparison with the audio-only
system clearly demonstrates the improved performance
when visual context is combined with acoustic evidence in
the clustering process. For word boundary detection (M1),
multimodal input lead to a four-fold improvement over
acoustic-only processing. Inter-modal structure enabled
the system to find and extract useful knowledge without
the aid of manual annotations or transcriptions.

5. CONCLUSIONS

The CELL model demonstrates acquisition of a sensory
grounded lexicon from untranscribed input. The system
is a step towards creating machines with rich semantic
representations which move beyond symbolic “dictionary
definitions” which lack connections to the physical world.
Such representations may allow machines to integrate con-
textual information when understanding and generating
speech, leading to more intelligent linguistic behavior in
real-world situations.

From an engineering perspective, CELL demonstrates
a method of training pattern recognition systems without
manually transcribed data. By mimicking infant learning,
we envision systems which can explore and interact with
the world in order to discover and model useful patterns
without direct human intervention. In the future we plan
to extend our models of infant learning, and explore appli-
cations in medical domains, assistive aids, entertainment,
and mobile computing.
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Grounding connects concepts to the physical world enabling
humans to acquire and use words and sentences in con-
text. Currently, machines which process text and spoken
language are not grounded in human-like ways. Instead, se-
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have meaning only when interpreted by humans. We are
interested in developing computational systems which rep-
resent words, utterances, and underlying concepts in terms
of sensory-motor experiences, leading to richer levels of un-
derstanding by machines. Inspired by theories of infant
cognition, we present a computational model which learns
from untranscribed multisensory input. Acquired words are
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