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Abstract

Many common types of language understand-
ing depend on situational context. In the ex-
treme, utterances like ”the one to the left of the
green ones”, ”let’s do that again” or ”can you
help me?” provide little content or restrictions
through their words, but can be readily un-
derstood and acted upon by a human listener
embedded in the same situation as the speaker.
We describe a series of computational models
of situated language understanding that take
into account the context provided by a game
the language users are playing. Starting with
a game focusing on spatial disambiguation, we
proceed to a model taking into account player’s
recognized intentions to perform referent dis-
ambiguation and end with a system that un-
derstands highly situated commands directly
in terms of recognized plan fragments. Finally,
we discuss our use of these models in building
artificial agents that plan alongside the player
in the game world and co-operate through lan-
guage and their own initiative.

Introduction

The meaning of language often depends on
its embedding situation. Especially interac-
tive spoken language, such as occurs when giv-
ing directions, eating out or playing basketball,
can rarely be fully understood without detailed
knowledge of where, when and why it occurred.
It is thus necessary to access and model the em-
bedding situation in order to design computa-
tional models of situated language understand-
ing, and to build systems that interact with hu-
man beings via situated language. Perceiving
and acting in the real world, however, is a dif-
ficult problem, limited by the current sensing
and manipulation abilities of machines. Only
constrained and controlled situations can today
be modeled by natural language understanding
systems embedded in the real world, such as in-

teractive robots. Computer games, on the other
hand, have been growing in the complexity of
the worlds they let players explore, as well as in
popularity. These games create immersive ex-
periences that often demand and encourage so-
cial and collaborative language use. While they
are not a faithful model of real world physical
interaction, they let us explore human language
use in spatially rich and purposeful, yet easily
sensed and controllable settings.

In this paper we describe a sequence of four
games used as platforms for situated compu-
tational language understanding. Except for
the last, our research using these games fol-
lows the same experimental setup: Two play-
ers, a speaker and a listener, play the game
collaboratively using in-game actions and lan-
guage (either speech or typed text). We record
the actions together with the audio or the text
message events, and in each case build a com-
puter model of situated understanding that re-
places the human listener. The system attempts
to analyse the recorded language and situation,
and predicts the listener’s next action.

The first game is designed as a purely spatial
game: the players are given no instructions but
to describe objects to each other that are indis-
tinguishable except for their spatial locations.
While this study yields insight into parsing spa-
tial language in terms of visual features, it cre-
ates an overly simplistic situation with respect
to the purpose of the interaction. Much of the
context in reference resolution, however, is pro-
vided by understanding purpose: if the speaker
knows what the listener is trying to achieve, this
knowledge limits the set of possible referents.
In the next game, therefore, the players are not



only describing objects, but they do so to solve
a puzzle. In that study we show that com-
bining plan recognition with object reference
substantially improves language understanding
performance over using only one or the other.
The third study does away with the distinc-
tion between reference resolution and general
language understanding and demonstrates that
highly situated language understanding can be
achieved by grounding language directly in the
recognized plans of players. Lastly, we describe
a preliminary implementation of an artificial
character in a puzzle solving game whose un-
derstanding and actions are driven by insights
gleaned from the first three game scenarios.

Related Work

Much work in language understanding
assumes a static, propositional knowl-
edge base for language understanding
[Montague, 1974], though some work ex-

plicitly acknowledges the need to model
situations [Barwise and Perry, 1983]. Discourse
and plans recognized from discourse have
played a role in prior computational language
understanding work [Grosz and Sidner, 1986
Allen and Perrault, 1980], but such work
focuses mostly on the words said, not on
the spatial, social and goal-dictated con-
text of language. The state of a shared
environment with the wuser does play a
role in discourse understanding for some
work in  human-computer  collaboration
[Lesh et al., 1999| Rich and Sidner, 1998],
but in this case the similarity to real world
physical scenarios is very limited.

From the embodiment literature comes

support for taking the physical situa-
tion as well as possible interactions into
account during language understanding

|Glenberg and Kaschak, 2002, [Barsalou, 1999,
Zwaan, 2003]. Real-world efforts at such
types of language understanding using robots
include work on grounding verbs in video
data [Siskind, 2001], understanding newspaper
articles in terms of action representations

[Narayanan, 1997 and our own work on
word learning in conjunction with perceptual
input  |[Roy and Pentland, 2002, |Roy, 2002,
Roy et al., 2002].  Finally, language under-
standing studies and systems embodied in
computer games and their characters are
starting to appear [Byron and Stoia, 2005|
Fleischman and Roy, 2005].

Games, Systems and Studies

As mentioned earlier, our language understand-
ing studies have evolved from initially using sys-
tems that focus on modelling spatial language
and phenomena, thus limiting the need for plans
or purpose, to models that fully represent the
situation in terms of the speaker’s and listener’s
plans. We now sketch several studies and sys-
tems to illustrate this path and its insights.

Bishop: Space is Everything

Like all of our studies presented here, the
Bishop task [Gorniak and Roy, 2004] allowed a
pair of participants to use unconstrained lan-
guage to accomplish a given task. In a single
session, one participant acted as the speaker
and one as the listener. Both could view a
current scene of up to 30 objects, such as the
one in Figure|l|on computer monitors arranged
such that participants could not see each other.
Both monitors always showed identical scenes.
It was the speaker’s task to pick one object on
the screen, use the computer’s mouse to select
it, and then verbally describe the selected ob-
ject to the listener. It was the listener’s task to
identify the object being described and select it
on his or her own screen. If speaker and listener
picked the same object, this object disappeared
and the speaker moved on to select another ob-
ject. If the selections did not match, the speaker
got another chance to describe the object. The
task is not hard, and listeners select the correct
object 96.5% on first attempt.

As the objects are indistinguishable except
for appearing in two colours, and are randomly
arranged in the scene, speakers are forced to use
the spatial configuration of the scene to distin-



Figure 1: Sample Spatial Arrangement Used in
the Bishop Task

guish objects. In analysing data collected in this
task, we distinguish a set of descriptive strate-
gies: a visual feature measured on the current
scene, together with their linguistic realization.
The descriptive strategies that cover most of the
data are:

colour almost every utterance employs colour
names (“green” or “purple”)

spatial regions and extrema as in “the
b2

green one that’s closest to us in the front” or
“the purple one on the left side”

grouping participants used groups of objects
(“the green cones”) both to select within
them, and to select relative to the group (“the
one behind the three purple”

spatial relations phrases like “behind” or “to
the left of” occur both in relation to individ-
ual object and using groups as landmarks

anaphora as the successfully identified object
disappeared, participants would sometimes
use its prior location as a reference point
(“the one behind that one”)

It is the goal of the Bishop system to model
these observed descriptive strategies. The sys-
tem, like all systems discussed here, employs
a grounded semantic composition strategy to
understand language in terms of its seman-
tic embedding in the world. A robust chart
parser finds islands of grammaticality in the
transcribed and often ungrammatical speech.
Whenever the parser completes a grammati-
cal constituent, it uses entries from a visually

grounded lexicon designed from the data to in-
terpret the constituent in terms of the visual
scene, producing what we call a concept. In the
Bishop task, concepts are ranked subsets of the
objects present in the current scene. At the
word level, the parsing process starts out with
concepts referring to all objects in the scene.
The lexical entries then apply to these con-
cepts, or the concepts produced by other con-
stituents, to produce new concepts - in essence
filtering the set of possible referents as pars-
ing progresses. For example, the lexical entry
for “left” would produce a concept ranking ob-
jects by their horizontal position in the scene,
whereas in the constituent “the green one on the
left” it would be applied to the set of all green
objects (a concept produced by “green one”),
ranking only these objects in terms of their hor-
izontal position. We will encounter this method
of incremental situated semantic interpretation
throughout the systems presented in this paper.

Lexical entries have to cover many linguistic
and semantic subtleties, and they do cover all
of them in the Bishop system. For example,
the Bishop system distinguishes between rela-
tive and absolute position to distinguish other-
wise similar terms like “left” and “middle”. As
in the example above, participants usually un-
derstand “the green one on the left” to mean the
the green object furthest to the left, indepen-
dent of its absolute horizontal position, whereas
“middle” often picks out an object in the abso-
lute centre of the scene. However, “middle” is
also used in other ways, without any linguis-
tic phenomena indicating a difference: it can
indicate the object in the absolute middle of
the scene, the object in the middle of a visu-
ally salient group of objects, the object between
two salient groups of objects (or between two
objects), among other uses. Despite not cov-
ering all such subtle influences on visual word
meanings, the Bishop system selects the correct
target object over 80% of the time on data the
system was built from and over 70% on an inde-
pendent test set of utterances with descriptive
strategies it has implemented (versus a random



baseline of about 13%).

The Bishop system thus represents a power-
ful computational model of human spatial per-
ception and language for the Bishop task. The
task, however, is limited in that it was specifi-
cally designed to elicit spatial language to the
neglect of other influences of the situation at
hand on human language use. In most situa-
tions, space is not the only meaning-providing
context for a situated utterance. The shared in-
tentions of speaker and listener are a far more
prevalent context. In the next study, we thus
turn from applying the Bishop framework to a
purely visual-spatial understanding task to one
producing concepts that also take into account
the speaker’s intentions.

Purposeful Reference

The Bishop framework assumes a relatively
clean transcript of human speech, and a sin-
gle purpose to each utterance: to refer to ex-
actly one object in the current visual scene. Our
next two studies and systems use a commercial
game, Bioware’s [Neverwinter Nights (a screen-
shot from the study is shown in Figure[2). The
first study works directly from speaker’s acous-
tically ambiguous speech, and, while setting a
high level goal, does not dictate utterance-by-
utterance purpose to the speaker. Once more,
one speaker and one listener participate in the
study. The speaker is given a high level instruc-
tion (“light both fires in the first room”) and
then left to experiment as to how to accomplish
this goal. Speaker and listener each control one
character in the game, and the design of the
puzzle requires the speaker to take advantage of
the otherwise inactive listener by issuing com-
mands. For example, to enter a room with a
chest containing a needed key, one of the play-
ers must pull a level that opens the door to the
room, while the other has to walk into the room
before the door closes again. The puzzle con-
tains several identical items (for example, three
levers and two doors) that serve different pur-
poses during the puzzle solution.

It was the goal of this study to show that

Figure 2: Screenshot from Bioware’s Neverwin-
ter Nights

taking into account speech and intention at the
same time accomplishes understanding of situ-
ated utterances that are ambiguous when taking
into account only one or the other. To han-
dle the noisy acoustics, we run a probabilis-
tic language parser on the confusion networks
[Mangu et al., 1999] produced by a speech rec-
ognizer. This parser produces an estimate of
the likelihoods of possible words at different
times in the speech stream, given their acous-
tic and grammatical probabilities. Similarly to
the Bishop parser, this parser creates a concept
whenever it completes a constituent. Possible
referents for these concepts are in-game items
such as levers and doors, and the groundings of
words in the situation are again encoded in the
lexicon. As this system employs a probabilistic
parser, a concept now is made up of a set of
probabilities that represent the likelihood of a
fragment of speech referring to a particular ob-
ject in the game, given the acoustic, grammati-
cal and referential properties of the fragment.

To capture the speaker’s intention, we cap-
ture high level game events such as characters’
movements between rooms, and perform proba-
bilistic hierarchical plan recognition on this se-
quence of events. The plan recognizer captures
higher level events and assigns probabilities to
its interpretations of the events stream. For ex-
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ample, the three consecutive low level events of
one player pulling a lever, a door opening, and
the other player changing rooms all together
constitute a co-operative room change event.
The plan recognizer also computes the proba-
bilities of all possible events that players could
engage in next. We can read these probabil-
ities as the recognized intentions of the play-
ers. For example, if one player just opened
a door by pulling a lever, the plan recognizer
might predict that it is the other player’s in-
tention to walk through this door. Thus, we
can rank the intentions by the probabilities the
plan recognizer assigns to them. We then trans-
late these probabilities involving intentions into
probabilities involving objects simply by con-
sidering which objects a certain action involves
- pulling a certain lever involves that lever and
the door it opens.

Having arrived at a concept that provides the
probabilities of reference of speech segments,
and the predicted intentions of players, we inte-
grate these probabilities via Bayes’ theorem to
yield the probability of reference of a segment
of speech given the combined acoustic, gram-
matical, referential and intentional information
gathered from the speech signal and the game.
We have evaluated this method by predicting
the referents of noun phrases in a data set col-
lected from participants solving the puzzle, and
shown that combining intention recognition and
reference resolution in this way improves refer-
ence resolution dramatically (as much as 100%)
over performing only intention recognition or
only reference resolution in this task.

This study and the associated computational
framework show that recognizing speakers’ in-
tentions can be the key to situated language
understanding in collaborative scenarios, and
that the compositional parsing framework in-
troduced in the Bishop system extends beyond
the visual task to cover noisy speech in a game
environment. It also shows that through a prob-
abilistic extension this system can coherently in-
tegrate external information such as intentional
probabilities. It is a shortcoming of extending

the Bishop system in this way, however, that in-
tentional information is considered external to
the reference resolution process. In fact, one
would think it was at the core of reference res-
olution. Furthermore, it is unclear how to ex-
pand this system beyond reference to objects,
because the concepts it produces, just like in
the Bishop system, contain probabilities over
objects. To alleviate these problems we need
a new representational basis for concepts that
does not have object reference as its core.

Referring to Intentions

Even when restricting the situated language un-
derstanding task to commands, reference res-
olution covers only a fraction of the linguis-
tic and semantic phenomena that occur in the
game tasks studied here. Players use utterance
such as “let’s do that again” or even “now!” as
commands, both of which do not contain noun
phrases that clearly refer to objects in the world.
Furthermore, the post-hoc integration of inten-
tions into the reference resolution process in the
previous study goes against our intuitions about
the central nature of intentions in language un-
derstanding.

To handle a wider range of commands
and to put intentions at the core of the
concepts in our language understanding sys-
tems, we turn to the notion of affor-
dances |Gibson, 1977] and introduce the no-
tion of Affordance-Based Concepts (ABCs)
|Gorniak, 2005, [Gorniak and Roy, 2006]. The
task players engage in is similar to the one
in the last study, though the current study
analyses players’ typed text instead of speech.
As before, we perform probabilistic hierarchical
plan recognition on high level game events, and
parse player’s utterances to produce concepts
for grammatical constituents. The fundamen-
tal difference lies in the fact that the concepts
produced by the parser do not contain probabil-
ities over objects anymore, but rather contain
probabilities over recognized intentions. Thus
each prediction the plan recognizer makes, such
as the prediction that a player will walk into



another room or pull a level, is itself a possi-
ble component of an ABC. When the parser en-
counters a word like “door”, its lexical entry
selects all intentional predictions that the plan
recognizer has ever made that involve doors.
These might be predictions of players breaking,
unlocking, opening and walking through doors.
Of course, not all of these predictions came or
will come to pass. However, they closely cor-
respond to the notion of affordances: players’
possible interactions with the world, the nature
of which depends both on the player (for exam-
ple, his or her physical location, abilities and
possessions) and the world (for example, which
lever open which doors, which doors can be bro-
ken down.) As the parser forms more complex
grammatical constituents, it filters concepts as
the Bishop parser did. For example, “open the
door on the left” might filter for the predicted
opening interactions with doors the listener can
engage in if she moves towards her left.

The combination of linguistic parser and plan
recognizer thus produces concepts that are bun-
dles of ranked affordances. These concepts nat-
urally predict actions, and constitute a rich in-
terpretation of reference (a “door” is the set of
all possible interactions the listener could en-
gage in with doors). Beyond reference, this
framework covers utterances like “let’s do that
again” or “now!” - the first is interpreted as a
command to repeat the last joint interactions
of the two players with the world, whereas the
second simply picks the most likely current af-
fordance as its prediction. Once more we have
evaluated this approach by predicting the ac-
tions of human listeners in response to com-
mands using unseen data. The system achieves
70% accuracy versus a 14% random baseline,
showing that the notion of Affordance-Based
Concepts serves to capture the relevant inten-
tional aspects of a given situation to interpret
otherwise ambiguous language use.

Figure 3: One of the collaborative synthetic
game characters

Intention-Recognizing Collaborative
Characters

So far our studies have involved two human
beings, and have attempted to predict the ac-
tions of the human listener in the data collected.
One of our goals, however, is to produce artifi-
cial agents (like the one in Figure [3) that dy-
namically take the evolving situation into ac-
count when understanding their human collab-
orator’s intentions. To this end, we have trans-
ferred the implementation of Affordance-Based
Concepts to several interactive game scenarios.
In one scenario, a single player has the option
of accomplishing a given task in three differ-
ent ways, each of which involves several steps
that require two characters to perform actions
simultaneously. The player can ask for help at
several points during the game, and the artifi-
cial character will attempt to perform the cor-
rect collaborative action (for example, opening
the door for a player locked in another room
or lighting the forge for a player attempting
to smelt a key when asked “can you help me
with this?”). The character’s response is based



on its intention recognition engine. In another
scenario, we have added another layer of inten-
tion recognition to the character, which lets us
loosen the assumption that the player’s overall
goal is known. The character will now watch the
player interact with the world and based on the
player’s actions guess the player’s overall goal
(for example: to put one box into every room
of the game). While continuously re-evaluating
its estimate of the highest-level goal, the charac-
ter will then collaborate with the player by au-
tonomously planning towards this goal and tak-
ing suitable actions to bring the current world
state closer to the target state. In this case,
it does not require an overall puzzle solution,
but rather formulates plan fragments that con-
tribute to the identified goal.

Both of these scenarios are examples of trans-
ferring the computational models of language
understanding and intention recognition intro-
duced in the previous sections to modern day
game scenarios. We believe that intention
recognition and intention-based situated lan-
guage understanding are not only feasible, but
essential for producing games with entertaining
and non-frustrating non-player characters.

Conclusion

We have presented a series of studies that all
share a similar design and language interpreta-
tion framework. In content, however, the stud-
ies and systems progress from a purposeless,
purely spatial task and computational model,
to taking into account the intentions behind an
utterance in an external manner, to making in-
tention recognition and affordances the core of a
situated language understanding system. All of
the systems perform well on their specific tasks,
but incorporating intention recognition lets us
coherently cover a large set of linguistic and in-
tentional phenomena that are not addressed by
purely spatial approaches. We have also shown
the applicability of these approaches to game
environments with synthetic characters.

In the future, we intend to integrate work on
discourse into our language understanding sys-

tems, and to build more flexible agents that can
adapt to new game situations without knowing
how the game works ahead of time.
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