
NetP: A Network API for Building Heterogeneous Modular Intelligent Systems

Kai-Yuh Hsiao and Peter Gorniak and Deb Roy
Cognitive Machines Group

MIT Media Laboratory
20 Ames St., Cambridge, MA, 02142

{eepness,pgorniak,dkroy}@media.mit.edu

Abstract

Any intelligent system, interacting with humans and
acting in the real world, will be composed of many
parts, each performing disparate and specialized tasks
with wildly differing requirements. We have imple-
mented a network abstraction layer, called NetP, that al-
lows processes to communicate by sending structured
data via non-blocking broadcasts to named channels.
Any process can subscribe to any channel and receive
the data posted to that channel. Using our API requires
minimal programming effort, provides a simple net-
work abstraction, and facilitates the debugging of net-
work operations. The resulting system is resilient to
partial failures and rapidly reconfigurable. In this pa-
per, we present our networking approach, along with a
case study that motivated our target feature list.

Introduction
In order to build an “intelligent” system, one that interacts
naturally with human beings and acts competently in the real
world, many different pieces, with many different require-
ments, must come together coherently. On some levels, such
as when driving motors, such a system might need to work
on a very fine-grained timescale and perform detailed real-
time planning. On another level, the system might need to
pass around large amounts of visual or auditory data for per-
ceptual processing. On a third level, it might need to make
and maintain structured beliefs about objects in the world,
address hierarchical goals, and keep track of conversations.

In such a system, even if it only operates in a small niche
of the real world, a large set of disparate pieces have to
work together and communicate for the whole system to
function. Clearly, modularity is the key to coherently in-
tegrating such a diverse set of abilities. However, the means
of communication between modules strongly influences the
level of complexity that can be feasibly attained. We have
developed a network messaging paradigm with the goal of
smoothly supporting a whole range of requirements, from
high-bandwidth video data streaming to transmitting com-
plex data structures.

Our messaging paradigm, named NetP, is centered around
the concept of broadcasting to channels. Information is

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

broadcast throughout the system, identified by the named
channel on which it is transmitted. Any module can broad-
cast information to any channel. Likewise, any module can
subscribe to any channel and receive any subsequent infor-
mation sent to that channel.

Data sent across our system is required to be structured in
a specific way, using map and list containers that hold inte-
ger, floating-point, and string primitive data elements. The
constrained structure allows complex data types to be trans-
mitted while eliminating dependence on user-defined mes-
sage structures, making the system easier to maintain and
more backwards-compatible. The data is sent as text, so all
packets are transparently readable by all users for debugging
purposes. For efficiency, we also provide routines for eas-
ily setting up a higher-bandwidth direct TCP/IP connection.
Our API (the functions used to access the library) is geared
towards simplicity for the programmer, and we have ported
the API for use in C++, Python, and Java, running on Linux
and OS X platforms.

Our complex systems rely on the features of our network
paradigm. For example, one of our robots has a vision sys-
tem, a motor system, a speech and language system, and
a behavior system, each of which consist of multiple sub-
modules. These modules have numerous authors, evolv-
ing specifications, and wildly different requirements with
respect to accuracy of timing, computational power, and ac-
cess to external resources such as cameras or motors. We
also re-use modules across different systems, making it nec-
essary for them to fit into different collections of modules
at different times. With such large-scale interdependencies,
care must be taken to limit the effects of any single change
or defect. Our network system is designed to allow maxi-
mal functionality from such an unruly crowd of components
with minimum time spent coordinating.

In this paper, we describe our network paradigm, along
with properties of the paradigm that we find useful. We de-
scribe a case study showing how this strategy plays out for
a real system. We conclude with our future plans for a large
scale system for intelligent behavior using the same method.

Design and Implementation
In order to enable the smooth integration of large numbers
of disparate modules, our group has implemented a network
messaging paradigm, named NetP, that caters to a diverse



set of networking requirements. Here we describe the basic
approach, along with salient features and examples of how
it is called from programs.

Broadcasting on Channels

Our modules communicate by broadcasting messages to
named channels, to which other modules subscribe in or-
der to receive the messages. A process accomplishes this by
creating one or more instances of class NetP. Each instance
of NetP can send on one channel, or receive on numerous
channels. A channel exists as soon as any process subscribes
to a channel for sending or receiving.

Channels represent an abstraction on top of the actual net-
work. A process subscribed to a channel will receive all
messages sent to that channel, regardless of where among
the networked computers the process is running. We cur-
rently accomplish this by using a subset of functions pro-
vided by the PVM (Sunderam 1990) system, although the
NetP system completely abstracts away this layer as well,
so any back-end network setup that allows processes to join
broadcast channels in an abstracted and distributed manner
would work.

In order to make use of our system, all computers that
will be involved in networked setup must be connected in a
PVM network. A file can be made with the list of hosts in
it, and the PVM network can be started on all hosts with a
single command. Once this is done, all processes running on
connected machines have access to the channel abstraction.

Our implementation of the channel broadcast abstraction
provides us with several benefits:

Module separation Broadcasting messages between mod-
ules gives a clear sense of where one module ends and
where another begins. Modules have access only to data
sent via messages from other modules; they cannot arbi-
trarily call each others’ functions and access each others’
private data.

Module replacement Subscribing to named channels al-
lows modules to listen for a message type regardless of the
source, and send messages regardless of the destination.
Substituting one module with another of similar function-
ality requires little more than subscribing or publishing to
the appropriate channels.

Network abstraction As mentioned, processes can sub-
scribe to channels without regard to where other processes
are located on the network. If a machine is under heavy
load, processes can be moved to other machines with no
reconfiguration.

Network efficiency Thanks to the distributed PVM system,
messages for a given channel are relayed over the net-
work only to hosts with processes subscribed to that chan-
nel. Other machines do not see the message, and there
is no central server or node through which all messages
must pass. PVM accomplishes this by running its daemon
on each machine and monitoring connected processes for
channel subscriptions.

Threaded, Non-blocking Sending and Receiving

The NetP system’s send and receive calls are non-blocking
by default. For sending, this means that the sending process
does not wait for any responses. For receiving, this means
that receive calls return immediately, whether or not any-
thing is waiting in the receive buffer, so the program can
continue executing. This stands in contrast to RPC (Remote
Procedure Call) methods, in which network operations are
treated like function calls, which block while waiting for the
other process to respond.

Naturally, this means that our system operates asyn-
chronously, meaning that every module runs at its own pace
and periodically checks its buffers for messages from other
modules. This property makes the most sense for disparate
sets of processes with vastly different timing requirements;
it makes little sense for a real-time motor control process
running at 1 KHz to run in lock-step with a vision system
that only sees fifteen frames per second.

Within our non-blocking broadcast paradigm, we also
provide the ability to perform blocking receives, for pro-
cesses that need to wait for responses, and for sets of pro-
cesses that need to synchronize. The NetP system runs in
a separate thread (and measures have been taken to ensure
thread safety), so the receive buffer can be managed inde-
pendently of the main process, and so blocking receive op-
erations can wake up the main thread when needed.

Using non-blocking operations via a separate thread of-
fers several advantages:

Subsystem coherence Because most modules are not wait-
ing for anything, they can run even when some of their
messaging partners are not. Even if the vision system typ-
ically communicates with the mental model, the mental
model can be debugged while the vision system is offline,
by continuing to run while making use of any remaining
inputs. Likewise, the vision system can produce outputs
without expecting the mental model to receive them.

Start sequence insensitivity Modules can be brought up in
any order, and when messages are available they will
be processed. This eliminates the need for complicated
scripting systems for bringing up processes according to
complex dependencies.

Robustness to failure Individual modules can crash or be
taken offline, and all the other modules will continue run-
ning at normal speed. While the entire system will not be
complete with missing modules, the missing modules can
be brought back online smoothly.

Buffer safety We manage receive buffers in a separate
thread, so if a receive buffer is not read in a timely man-
ner, it can be automatically truncated before occupying all
available system memory.

Flexible synchronicity As mentioned, modules can opt to
block on operations, so synchronous operation between
tightly-related modules is made possible without forcing
the whole system to adopt such a paradigm.



Structured Data and Text Representation
Data structures sent via NetP objects are packed into hierar-
chical data structures of type PData. PData is based on data
structures in Python, allowing simple data elements of inte-
ger, floating-point, and string type, as well as complex data
elements of list and map type that arbitrarily contain the sim-
ple data types. Access functions are provided so complex
structures can be traversed easily. The top-level PData in
each NetP instance is a map-type PData, encouraging mes-
sages to use labeled fields.

The purpose of creating a unique structured data type for
NetP transmission is to eliminate the need for intermedi-
ate message classes. Without a standardized data type, the
structure of each message type would have to specified sep-
arately, in an intermediate class shared between the sending
and receiving processes so both ends can correctly interpret
the structure of the data. This leads to versioning difficul-
ties, as modules compiled with old versions of the message
class would need to be constantly rebuilt to incorporate new
versions. It also leads to an unmanageable proliferation of
intermediate message classes.

We use map-type structures at the top level, encouraging
the use of labeled fields. An example of this would be:

{

’command’:’goto_point’,

’joint’:1,

’position’:0.53

}

Furthermore, all packets are sent over the network in text
format, so every step of the way, the contents of a message
are transparently human-readable for debugging purposes.
Packets are accompanied by metadata, including the time
of transmission, the hostname of the sending computer, and
the process ID of the sending process. Timestamps are syn-
chronized by running a program, timesynchost, on the
computer whose clock should be treated as the central clock
of the system.

We opted to use a Python-like representation instead of
another text representation such as XML because Python
representations can be directly coded in a rapid and intuitive
manner by programmers. Using an XML-based represen-
tation could conceivably be useful if the system needed to
be extended to support a much larger number of data types,
in which case a translation layer from programmer-intuitive
structures to XML sent over the network might be useful.
We have not yet needed such extensibility, though.

The structured representation presents a few key features:
Transparently structured data Drawing from its Python

inspiration, PData allows arbitrarily complex structures
to be translated into a set of nested lists and maps. This
standardization means that programmers writing receiv-
ing processes can easily read the format of a message and
infer the appropriate routine for making sense of the mes-
sage. This in turn reduces the amount of time that writers
of modules need to spend coordinating their module com-
munications.

Backwards compatibility When changes are made to mes-
sage structure, new fields can be added under new la-

bels, and old fields can retain their old labels. Thus, mi-
nor message format changes can still interoperate with
old versions of receiving code. Likewise, new receiving
processes can check the presence of new fields and re-
spond accordingly. This stands in contrast to a system
with a pre-specified raw byte messaging format, in which
changes to message formats can lead to complete incoher-
ence in message comprehension.

Accountability The metadata sent with each packet means
that the origin of packets can be traced efficiently. This
allows rapid identification of duplicate processes, as well
as processes that are flooding the network. The simplicity
of the channel subscription abstraction also allows log-
ging facilities to gain access to all packets sent across the
network, so the network as a whole can be observed and
debugged.

Multiple Language and Platform Support
We have used the SWIG wrapper generator (Beazley 1996)
to directly port the NetP and PData interfaces from C++ to
Java and Python. The API looks essentially the same in all
three languages, and in Python the translation to and from
PData is even more simplified since PData representations
have the same textual form as Python data structures.

Furthermore, we have successfully run the NetP system in
both Linux and OS X. Although we have run PVM in a Mi-
crosoft Windows environment before, configuring PVM in
Windows was frustrating and we have not attempted further
porting to that platform.

Naturally, this provides one key benefit:

Uniform cross-language API Porting a single API allows
programmers to learn one messaging standard, instead of
(for instance) PVM in C++, jPVM in Java, and pypvm for
Python, all of which have separate setup and usage pro-
cedures. API changes in one language are immediately
reflected in the API’s of the other languages.

It is our belief that our API is extremely easy for pro-
grammers to use, and we intend it this way so even novice
programmers can integrate modules without much effort. In
Figures 1, 2, and 3, we provide simple examples of send-
ing and receiving in each of the three languages. The packet
being sent across the network in all three examples is:

#{’num’: 1, ’list’: [1, 2, 3, 4, 5]}#.

Direct Connections
For most purposes, the NetP system provides a reasonable
tradeoff between transparency and raw speed. Without the
parsing of structured packets sent in text format, and without
using PVM’s groups (channel) facilities, the system would
run slightly faster. However, this increase in speed is unde-
sirable for typical messaging needs, because the time spent
debugging and maintaining would increase to a frustrating
extent. Thus, for most process-to-process communications,
we adhere to the structured, buffered communications pro-
vided by our current system.

However, for the processes with extremely high through-
put, e.g. raw video streaming, it might be wiser to forego



#include "NetP.h"

int main() {

NetP sendp("MyChannel"); // argument to constructor means it’s a send instance

sendp.data()["num"] = 1; // make a field named "num" and put 1 in it

sendp.data()["list"].eval("[1, 2, 3, 4, 5]"); // make a field "list" and eval a

// string representation of a list into it

sendp.send();

}

--------

#include "NetP.h"

int main() {

NetP recvp; // no constructor argument means it’s a receive instance

recvp.joinChannel("MyChannel");

while (1) { // loop forever

string resp = recvp.bReceive(); // blocking receive

int value = (int)recvp.data()["num"]; // get an int value

int listval = (int)recvp.data()["list"][3]; // get a value from a list

}

Figure 1: C++ send and receive code examples.

import netpacket

sendp = netpacket.NetP("MyChannel") # argument means it’s a send instance

a = {’num’:1, ’list’=[1, 2, 3, 4, 5]}

sendp.data().eval(repr(a)) # copy the structure into the NetP

sendp.send()

--------

import netpacket

recvp = netpacket.NetP() # no argument means it’s a receive instance

while (True):

resp = recvp.bReceive() # blocking receive

a = eval(repr(recvp)) # _a_ now holds the structure

Figure 2: Python send and receive code examples.

import netpacket.NetP;

class examplesend {

public static void main(String[] args) {

NetP sendp = new NetP("MyChannel"); // channel argument means it’s a send instance

sendp.data().get("num").set(1); // make a field named "num" and put 1 in it

sendp.data().get("list").eval("[1, 2, 3, 4, 5]"); // make a field "list" and eval

// a string representation of a list into it

sendp.send();

}

}

--------

import netpacket.NetP;

class examplerecv {

public static void main(String[] args) {

NetP recvp = new NetP(); // no argument means it’s a receive instance

recvp.joinChannel("MyChannel");

while (true) {

String resp = recvp.bReceive(); // blocking receive

int value = recvp.data().get("num").getInt(); // get an int value

int listval = recvp.data().get("list").get(3).getInt(); // get a value from list

Figure 3: Java send and receive code examples.



#include "NetP.h"

int main() {

NetP::DirectOffer("DirectTest"); // prepare to receive connection; does not block

while (NetP::GetSocketNum("DirectTest") == -1) { // sleep until connection exists

sleep(1); // you could do other stuff here too

}

for (int i=0; i<10; i++) {

cout << "read " << NetP::DirectRead("DirectTest") << endl;

sleep(1);

cout << "write " << NetP::DirectWrite("DirectTest", "qwertyuiop") << endl;

sleep(1);

if (NetP::GetSocketNum("DirectTest") == -1) { // if connection disappears then stop

break;

}

}

}

--------

#include "NetP.h"

int main() {

NetP::DirectConnect("DirectTest"); // initiate connection; blocks until something receives

for (int i=0; i<10; i++) {

cout << "write " << NetP::DirectWrite("DirectTest", "asdfjkl;") << endl;

sleep(1);

cout << "read " << NetP::DirectRead("DirectTest") << endl;

sleep(1);

if (NetP::GetSocketNum("DirectTest") == -1) { // if connection disappears then stop

break;

}

}

}

Figure 4: Code example for setting up a direct TCP/IP connection.

structured data and the additional buffering that PVM re-
quires. To this end, there is also the possibility of forming
a direct TCP/IP connection between two processes. This di-
rect connection is made very simple to use by abstracting it
via the NetP architecture. One process runs the DIRECTOF-
FER() function, specifying a channel name, and another pro-
cess runs the DIRECTCONNECT() function, specifying the
same channel name. As long as exactly one process has run
each function for a given channel name, regardless of order,
the NetP system will negotiate the connection, form the di-
rect TCP/IP connection, and provide a raw read and write
function for raw binary data transfer.

See Figure 4 for an example of setting up a direct con-
nection. Naturally, the DirectConnect grants one additional
benefit to our system:

Enabling speed/structure tradeoff Most processes will
send structured messages with varying levels of structure
and hierarchy. However, for processes that require ex-
tremely high throughput, raw minimally-buffered binary
data transfer can be used without the overhead of channel
abstractions, structure parsing, and textual representation.

A Motivating Case Study
The feature requirements that motivated our current net-
work approach are the result of our experiences developing
a large-scale intelligent robotic platform using a preliminary
form of our network paradigm. Our preliminary approach
made direct calls to PVM, which provided access to the ben-
efits of channel-like abstraction across the network.

However, directly calling PVM involved transmitting raw
byte sequences instead of structured representations, and
omitting many convenience features we have since added
into our complete abstraction layer. In order to make sense
of the raw byte sequences in each message, we implemented
a separate class for each message type that needed to be sent.
These message classes each contained the necessary proce-
dures for generating raw messages and extracting structure
and data fields from raw messages. Thus, each message
class needed to be included in all modules that sent or re-
ceived that message type.

Our primary system using this initial networking ap-
proach was a robotic platform, Ripley, whose pieces came
together from a number of other separate projects over time.
By standardizing all members of our group, even people
working on unrelated projects, on our network paradigm, it
became possible to efficiently bring together modules that
were never originally intended to interact. This was accom-



plished by adding some message types and altering channel
subscriptions appropriately.

Ripley (a fairly recent version is described in detail in
(Roy, Hsiao, & Mavridis 2004)) is a robotic system that
integrates motor, visual, speech, and language processing.
It can accept commands such as “Hand me the blue ob-
ject on my left,” which make reference to positions of ob-
jects in its tabletop environment as well as to the user’s
position. Speech recognition is performed by the Sphinx-
4 speech recognizer (Carnegie Mellon University, Sun Mi-
crosystems Laboratories, Mitsubishi Electric Research Lab-
oratories 2004), which passes output to a language pars-
ing system. Information about objects and the user is
determined based on visual input and stored in a three-
dimensional mental model. The language parser draws from
the mental model to determine word referents, and then ei-
ther chooses to ask simple questions (e.g. “Do you mean
this one, or this one?”) or to send commands to the motor
system for execution.

For a simplified diagram of modules in the Ripley system,
see Figure 5. None of these subsystems (speech, language,
motor, visual, and mental model) were initially designed for
the purpose of integration into the final version of the Ripley
system. The system most closely tied to the Ripley platform,
the motor system, simply broadcasts state information over
a specific channel to any process that wishes to listen, and
listens for command messages.

The current speech recognition system is built around the
Sphinx-4 speech recognizer by using a wrapper that broad-
casts recognizer output over the network. We are using
the same wrapped speech recognizer module in numerous
projects simultaneously, by setting up separate PVM net-
works and having other modules listen to the speech rec-
ognizer’s output channel.

The language parsing system was initially part of the
Bishop system (Gorniak & Roy 2004), which parsed speech
input from the recognition module to find referents in a sim-
ulated world of purple and green cones. Similarly, the visual
system was initially part of the Newt robot platform (Roy
et al. 2002), which used our own speech input system to
learn how to attach words to the appropriate visual features
of objects found in the camera input. Using the network
paradigm introduced here, Sphinx 4 later easily replaced our
own speech recognizer by simply emulating its channels and
messages.

The first approach to integration involved just the motor
control system and the visual modules from the Newt sys-
tem. The mental model was constructed (Hsiao, Mavridis,
& Roy 2003) using the vision system as input and the mo-
tor system as output. As mentioned, integration of a new
module consisted basically of setting up each module to lis-
ten to the channel broadcasts that contained the necessary
information. Our initial system made use of only primitive
phrase-spotting to carry out simple commands.

Later on, it became evident that the language parsing and
referent selection of the Bishop system would be suitable
as a language module for the Ripley system. Once again,
the basic network integration involved setting up approriate
message types and listening to the right channels. Pieces

of the Bishop system were integrated to enable language
processing on the speech input and visual processing on the
current contents of the mental model. In essence, we were
able to replace Bishop’s synthetic vision system with Rip-
ley’s real one using the same set of channels and message
types. Naturally, additional effort was required to reshape
the referent-finding modules to coherently handle the spe-
cific representations of the mental model (i.e. varieties of
objects beyond green and purple cones).

The construction of the complete Ripley system undeni-
ably involved a lot of effort and complexity, but we found the
process to be greatly simplified by being able to subscribe to
broadcast channels with evolving message types instead of
having to configure specific host/process connections. The
nonblocking nature of our network calls also simplified de-
bugging because subsections of the system could run coher-
ently in the absence of others (e.g. we could monitor visual
processing without requiring speech or motor control to be
active).

Lessons Learned
However, we also ran into difficulties with this approach,
which became the inspiration for many of the features in
our new system. The number of message types ballooned
rapidly and it became difficult to track down specifications
for each message type and which modules it belonged to.
Disparity in versions of message types became a headache
of recompilation, and much time was spent reconciling mes-
sage specifications. Our structured data format in the NetP
system is designed to avoid this scalability problem.

Also, PVM places all received messages in subscribed
groups into a buffer, but the receiving process is respon-
sible for reading the messages in a timely manner. Not
all processes were so carefully written, and this resulted in
buffers growing without bounds, and computers running out
of memory and crashing. To address these, our new system
uses its separate buffer-management thread.

Furthermore, with most message wrappers written in
C++, occasionally implementing modules in Java (with
jPVM) and Python (with pypvm) meant reimplementing
each message type for each language, which led to more ver-
sion disparities.

Other Possible Solutions
After looking for a networking setup for our modular de-
signs, we settled on our custom library based around struc-
tured channel broadcasts. In this section we overview other
approaches to network integration.

One approach to this problem is to pick an existing high
level language paradigm for distributed applications. These
include RPC (Remote Procedure Call, with implementations
like ONC-RPC (Srinivasan 1995), XML-RPC (Winer 1999),
CORBA (Object Management Group 2004), and SOAP
(XML Protocol Working Group 2003)). Another similar
method is RMI (Remote Method Invocation), with imple-
mentations like Java RMI (Sun Microsystems 2003)). These
allow processes to call functions and receive responses over
a remote network connection. While these approaches cer-



Control GUI Motor Control

Robot

Visual Input

Face Detector

Stochastic Position

Stochastic Color

Stochastic Size

Parser

Speech Recognizer

Audio Input

Feature Analysis

Interaction Analysis

Object Persistence

Visualizers

Simulated Vision

Spatial Reference
Analysis

Visual Analysis

Phrase Spotter

State GUI

Kinematics Action Generation

Object Segmenter

Face Hysteresis

Object Hysteresis Vision
Subsystem

Mental
Model

Speech/
Language
Subsystem

Motor
Subsystem

Figure 5: Diagram of Ripley modules and their messaging relationships.

tainly see widespread support for multiple programming lan-
guages and operating systems, they are typically used for
synchronized operation of pairs of processes, and require
each network connection to be made to a known machine. A
function call is an inherently blocking operation, so broad-
casts and asynchronous use is nonnative to these paradigms.
Transparency, monitoring, and accountability are also lim-
ited with these systems. Most importantly, these approaches
rely on strictly-defined interfaces and availability of the con-
nected processes.

Low level message passing interfaces such as PVM (Par-
allel Virtual Machine (Sunderam 1990)) or MPI (Message
Passing Interface (MPI Forum 1997)), on their own, also
fail to meet our requirements. They send fixed-structure
raw messages that lack meta-level data and are not conve-
nient for complex data structures. Their logging facilities
are at such a low level that decoding and abstracting them
into meaningful information is a large effort. Finally, their
threading and buffer management facilities are limited, often

forcing the developer to write his or her own.

Another possible approach involves multicasting over
TCP/IP networks (Deering 1989). This enables packets to
be sent to broadcast addresses, and any host listening on
a particular address can receive the relevant packets. This
could conceivably produce the same channel-listening be-
havior as our current system. Our emphasis in producing
NetP is to provide the simplest multi-platform API that we
can to collaborators, regardless of the underlying technol-
ogy. Multicasting could well be a viable replacement for
our PVM back-end, although multicast does encounter is-
sues with kernel configuration and router compatibility, and
these would have to be examined and overcome.

Every intelligent system adopts its own networking strat-
egy. As an example, Cohen et al.’s agent architecture (Cohen
et al. 1994) makes use of a networked blackboard configu-
ration where agents post problems to a hierarchical set of
blackboards, and other agents solve the problems and post
the solutions. All communication is handled by a central set



of blackboard servers. Other blackboard methodologies are
discussed in (Isla & Blumberg 2002).

Our NetP architecture is designed for networked commu-
nication in a more distributed fashion, instead of designating
a blackboard server or servers. Furthermore, many black-
board systems are designed for specific types of agent-to-
agent communication. The NetP system does not preclude
sending to named channels whose receivers implement a
blackboard architecture. Rather, NetP enables rapid setup of
networking for exactly this sort of configuration, and at the
same time enables other processes with completely different
needs to transmit data in formats appropriate to them.

Future Plans
Our new system is now in place and being used for a num-
ber of small projects, each involving several modules. In
the Ripley system, the speech, language, and motor systems
have mostly been transitioned to the new abstraction layer,
although some sections are still using the legacy frame-
work. Because of the improvements in scalability and trans-
parency, debug and maintenance time for the updated mod-
ules has become less frustrating.

A new robot is currently under construction in our group,
and it promises to require more complexity and integration
than our previous robot projects. By having NetP up and
running before the modules of the new robot come online,
we hope to minimize network integration time and make it
easier for more participants to add functionality to the new
robot. NetP has already been incorporated into the hand
grip controller for the new robot. Efforts have also started
to build an overall cognitive scheme for the new robot, in
which all modules will be further constrained to a specific
protocol so that multiple modules can produce conflicting
outputs and resolve the conflicts smoothly.

Work is also ongoing to add features to the NetP archi-
tecture. We are preparing to release the NetP system un-
der the open source LGPL license to enable anyone who is
in need of a network system with similar functionality to
share and contribute. This will be located on the web at
http://netp.sf.net.

Conclusion
We have developed a networking paradigm, and imple-
mented an abstraction layer and an API, called NetP, for
networked communication of a system made up of many
heterogeneous processes. By using nonblocking broad-
casts within a channel subscription model, processes can be
rapidly reconfigured to send and receive from one another,
to require no reconfiguration when hosts and processes are
moved around the network, and to continue operating when
related processes are offline. We require communications
to use a uniformly structured data type and transmit it with
metadata, which enables all packets sent over the system to
be human-readable for debugging and accountability. This
also allows message specifications to change while still be-
ing backwards-compatible. The network system is also de-
signed to run in a separate thread so it can perform buffer
management in the background and provide blocking and

synchronization to processes that request it. Finally, we
have used wrappers to port the C++ API directly to Java and
Python, and run the system on both Linux and OS X ma-
chines to provide implementation flexibility to the writers of
modules.

References
Beazley, D. M. 1996. Swig: an easy to use
tool for integrating scripting languages with c and c++.
http://www.swig.org/papers/Tcl96/tcl96.html.
Cohen, P. R.; Cheyer, A.; Wang, M.; and Baeg, S. C. 1994.
An open agent architecture. In AAAI Spring Symposium,
1–8.
Carnegie Mellon University, Sun Microsystems
Laboratories, Mitsubishi Electric Research Lab-
oratories. 2004. Sphinx 4 Java Speech Rec-
ognizer. http://www.speech.cs.cmu.edu/cgi-
bin/cmusphinx/twiki/view/Sphinx4/WebHome.
Deering, S. 1989. Host extensions for ip multicasting.
http://www.ietf.org/rfc/rfc1112.txt.
Gorniak, P., and Roy, D. 2004. Grounded semantic com-
position for visual scenes. Journal of Artificial Intelligence
Research 21:429–470.
Hsiao, K.; Mavridis, N.; and Roy, D. 2003. Coupling
perception and simulation: steps towards conversational
robotics. In Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 928–933.
Isla, D., and Blumberg, B. 2002. Blackboard architectures.
In Rabin, S., ed., AI Game Programming Wisdom. Charles
River Media, Inc. 333–344.
MPI Forum. 1997. Mpi-2 standard specifica-
tion. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.
Object Management Group. 2004. Common ob-
ject request broker architecture: core specification.
http://www.omg.org/technology/documents/formal
/corba iiop.htm.
Sun Microsystems. 2003. Java RMI specification.
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/index.html.
XML Protocol Working Group. 2003. Soap version 1.2
specification. http://www.w3.org/TR/soap/.
Roy, D.; Gorniak, P.; Mukherjee, N.; and Juster, J. 2002.
A trainable spoken language understanding system for vi-
sual object selection. In International conference of spoken
language processing.
Roy, D.; Hsiao, K.; and Mavridis, N. 2004. Mental imagery
for a conversational robot. IEEE Transactions on Systems,
Man, and Cybernetics 34:1374–1383.
Srinivasan, R. 1995. Rpc: Remote procedure call protocol
specification version 2. http://www.ietf.org/rfc/rfc1831.txt.
Sunderam, V. S. 1990. Pvm: A framework for parallel
distributed computing. Concurrency: Practice and Expe-
rience 2(4):315–339.
Winer, D. 1999. Xml-rpc specification.
http://www.xmlrpc.com/spec.


