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ABSTRACT 

This paper presents a methodology for automatically indexing a 
large corpus of broadcast baseball games using an unsupervised 
content-based approach.  The method relies on the learning of a 
grounded language model which maps query terms to the non-
linguistic context to which they refer.  Grounded language models 
are learned from a large, unlabeled corpus of video events.  
Events are represented using a codebook of automatically 
discovered temporal patterns of low level features extracted from 
the raw video.  These patterns are associated with words extracted 
from the closed captioning text using a generalization of Latent 
Dirichlet Allocation.  We evaluate the benefit of the grounded 
language model by extending a traditional language model based 
approach to information retrieval.  Experimental results indicate 
that using a grounded language model nearly doubles performance 
on a held out test set. 

Categories and Subject Descriptors 

I.2.10 [Artificial Intelligence]: Vision and Scene Understanding 
– Video Analysis 

General Terms 

Algorithms, Experimentation 

Keywords 

Video retrieval, grounded language models, sports video, Latent 
Dirichlet Allocation, temporal data mining, unsupervised content-
based indexing. 

1 INTRODUCTION 
The decreasing cost of data storage and the increasing use of 
digital video recorders is driving the need for more advanced 
methods for video search.  One popular proposal for facilitating 
search in video relies on using traditional information retrieval 
(IR) techniques to search the speech uttered during a video (e.g., 
[12]).  Such methods are popular because of their scalability and 
the lack of human supervision required to index large corpora.  
However, applying such methods to searching sports video faces 
serious challenges, even when speech transcriptions are provided 
(for example, in the closed captioning stream).   

 

Unlike the case with text documents, the occurrence of a query 
term in a video is often not enough to assume the video’s 
relevance to that query.  For example, when searching through 
video of baseball games, returning all clips in which the phrase 
“home run” occurs, results primarily in video of events where a 
home run does not actually occur.  This follows from the fact that 
in sports, as in life, people often talk not about what is currently 
happening, but rather, they talk about what did, might, or will 
happen in the future.   

Traditional IR techniques cannot address such problems because 
they model the meaning of a query term strictly by that term’s 
relationship to other terms.  To build systems that successfully 
search video, IR techniques must exploit not just linguistic 
information but also elements of the non-linguistic context that 
surrounds language use.  A great deal of research has addressed 
this issue by designing video search techniques that rely on 
supervised methods to classify events (see [22] for a review).  The 
majority of these systems do not index events by natural language 
query terms (as traditional IR approaches do), but rather, 
categorize events using classifiers trained on hand labeled 
examples of predefined event types (e.g. home runs).1  Although 
these approaches can be useful, such supervised approaches to 
video retrieval are labor intensive both for the system designers, 
who must label examples and train the concept classifiers, as well 
as for the system users, who may be required to re-write their 
queries to match the system’s predefined event types. 

In this paper, we present an unsupervised method for content-
based video indexing of sports video.  The method maintains the 
advantages of traditional IR approaches while incorporating 
contextual information in an unsupervised manner.  The method is 
based on the learning of a grounded language model; a framework 
motivated by research on computational models of human verb 
learning [8].  We model the meaning of a word as a probabilistic 
mapping between words and representations of the non-linguistic 
events to which those words refer.  To represent events in video, 
we follow recent work on video surveillance in which complex 
events are represented as temporal relations between lower level 
sub-events (e.g., [14]).  While in the surveillance domain, hand 
crafted event representations have been used successfully, the 
greater variability of content in broadcast sports demands an 
automatic method for designing event representations.   

Our approach operates in three phases: first, raw video data is 
abstracted into multiple streams of discrete features.  Temporal 
data mining is then used to generate a codebook of temporal 
patterns used to represent video events.  These temporal pattern  

                                                                 
1 For an interesting exception see [23] in which hand chosen 
terms from the closed captioning stream are used to index a 
limited set of predefined events. 
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Figure 1.  Learning grounded language models operates in three phases: first the raw video is abstracted into parallel streams 

corresponding to visual context, camera motion, and audio context features.  Second, temporal data mining is used to discover a 

codebook of temporal patterns.  Finally, words from the closed captioning are mapped onto the encoded event representations. 

 

representations are then mapped to words in the closed captioning 
text using a generalization of Latent Dirichlet Allocation 
([5],[17]).  In the following sections we detail this approach and 
examine its effectiveness in retrieving video events from a held 
out test set of broadcast baseball games.  Results indicate that 
performance of the system using the grounded language model is 
significantly better than traditional text based approaches. 

 

2 GROUNDED LANGUAGE MODELING  
Our framework for learning grounded language models operates 
in three phases (see Figure 1): first, raw video data is abstracted 
into multiple streams of discrete features.  Temporal data mining 
techniques are then applied to these feature streams to discover 
hierarchical temporal patterns.  These temporal patterns form a 
codebook that is used to generate event representations which are 
then mapped to words in the closed caption stream. 

2.1 Feature Extraction 
The first step in representing events in video is to abstract the very 
high dimensional raw video data into more semantically 
meaningful streams of information.  Ideally, these streams would 
correspond to basic events that occur in sports video (e.g., hitting, 
throwing, catching, kicking, etc.). Due to the limitations of 
computer vision techniques, extracting such ideal features is often 
infeasible.  However, by exploiting the “language of film” that is 
used to produce sports video, informative features can be 
extracted that are also easy to compute.  Thus, although we cannot 
easily identify a player hitting the ball, we can easily detect 
features that correlate with hitting: e.g., when a scene focusing on 
the pitching mound immediately jumps to one zooming in on the 

field (see Figure 1).  While such correlations are not perfect, pilot 
tests show that baseball events can be classified using such 
features [10].  Although many feature types can be extracted, we 
focus on only three: visual context, camera motion, and audio 
context. 

2.1.1 Visual Context 
Visual context features encode general properties of the visual 
scene in a video segment.  Such features are relatively easy to 
extract in comparison to the classification of full events in video, 
requiring less training data and achieving higher performance.  
The first step in extracting such features is to split the raw video 
into “shots” based on changes in the visual scene due to editing 
(e.g., jumping from a close up of the pitcher to a wide angle of the 
field).  Shot detection is a well studied problem in multimedia 
research; in this work, we use the method of Tardini et al. [18] 
because of its speed and proven performance on sports video.   

After a game is segmented into shots, individual key frames are 
selected from the shot and represented as vectors of low level 
features (see Table 1 for the complete list of features used).  
Boosted decision tree classifiers are trained [19] to categorize 
each key frame into one of three categories: pitching-scene, field-

scene, or other.  For this three way classification, we achieved 
approximately 96% accuracy on a held out test set.   

Given these categorizations, a second boosted decision tree 
classifier is then used to sub-classify the field shots into the 
following six categories: infield, outfield, wall, base, running, and 

misc.  Performance on a held out test set showed approximately 
90% accuracy. 

  



Feature group Type Region/Statistic Description 

Camera motion stats median  pan/tilt/zoom Median camera motion during shot in each of 
three directions (pan/tilt/zoom). 

Pixel stats grass, field total, top, bottom, left, 

right 

Number of pixels with characteristic (of grass, 
field) color values in each of the names regions of 
the key frame. 

Pixel ratios grass/grass, field/field, 

grass/field 

total/total, top/bottom, 

left/right 

Ratio of pixels types by region of key frame (e.g., 
number of grass pixels in whole frame vs. 
number of soil pixels in whole frame).. 

Pixel distributions grass horizontal, vertical Distribution of pixel type projected onto region 
(from Pei and Chen, 2003). 

Entropy stats entropy total, center, top, 

bottom, quadrants 

Entropy of key frame by region. 

Entropy ratios entropy top/bottom, center/total Ratio of entropy by region. 

Line stats lines total lines, max slope, 

max length 

Slope and length of longest line segment found in 
key frame (lines are found using Canny edge 
detection and Hough transforms) 

Color stats RGB colors max color, max color 

size 

Number of pixels in key frame for each of 16 
RGB binned colors. 

Blob stats face, max color number, max size, avg. 

size, std. size 

Connected component statistics for face colored 
pixels and max (RGB) colored pixels.   

Table 1.  List of features used to abstract visual context. 

 

2.1.2 Camera Motion 
Whereas visual context features provide information about the 
global situation that is being observed, camera motion features 
afford more precise information about the actions occurring in the 
video.  The intuition here is that the camera is a stand in for a 
viewer’s focus of attention.  As action in the video takes place, the 
camera moves to follow it, mirroring the action itself, and 
providing an informative feature for event representation.   

Detecting camera motion (i.e., pan/tilt/zoom) is a well-studied 
problem in video analysis.  We use the system of Bouthemy et al. 
[6] which computes the pan, tilt, and zoom motions using the 
parameters of a two-dimensional affine model fit to every pair of 
sequential frames in a video segment.  The output of this system is 
then clustered into characteristic camera motions (e.g. zooming in 
fast while panning slightly left) using a 15 state 1st order Hidden 
Markov Model, implemented in the Graphical Modeling Toolkit.2 

2.1.3 Audio Context 
Abstracting audio context from raw audio requires both sound 
classification and segmentation. We employ a sound classification 
system based on supervised learning algorithms in which binary 
classifiers for speech, excited_speech, cheering, and music are 
built using boosted decision trees [19].  Classification operates on 
a sequence of overlapping 30 ms "frames" chunked from the audio 
stream. For each frame, a feature vector is computed using, 
MFCCs (often used in speaker identification and speech detection 
tasks), as well as energy, the number of zero crossings, spectral 
entropy, and relative power between different frequency bands.  
The classifier is applied to each frame, producing a sequence of 
class labels. These labels are then smoothed using a dynamic 
programming cost minimization algorithm (similar to those used 

                                                                 
2 http://ssli.ee.washington.edu/~bilmes/gmtk/ 

in Hidden Markov Models).  Performance of this system achieves 
between 78% and 94% accuracy.   

2.2 Temporal Pattern Mining 

In this step, temporal patterns are mined from the features 
abstracted from the raw video data.  As described above, ideal 
semantic features (such as hitting and catching) cannot be 
extracted easily from video. We hypothesize that finding temporal 
patterns between audio, visual and camera motion features can 
produce representations that are highly correlated with sports 
events.  Importantly, such temporal patterns are not strictly 
sequential, but rather, are composed of features that can occur in 
complex and varied temporal relations to each other.  For 
example, Figure 1 shows the representation for a fly ball event 
that is composed of: a camera panning up followed by a camera 

pan down, occurring during a field scene, and before a pitching 

scene. 

Following previous work in video content classification [9], we 
use techniques from temporal data mining to discover event 
patterns from feature streams.  The algorithm we use is fully 
unsupervised. It processes feature streams by examining the 
relations that occur between individual features within a moving 
time window.  Following Allen [1], any two features that occur 
within this window must be in one of seven temporal relations 
with each other (e.g. before, during, etc.).  The algorithm keeps 
track of how often each of these relations is observed, and after 
the entire video corpus is analyzed, uses chi-square analyses to 
determine which relations are significant.  The algorithm iterates 
through the data, and relations between individual features that 
are found significant in one iteration (e.g. [BEFORE, camera 

panning up, camera panning down]), are themselves treated as 
individual features in the next.  This allows the system to build up 
higher-order nested relations in each iteration (e.g. [DURING, 
[BEFORE, camera panning up, camera panning down], field 

scene]]).   



The temporal patterns found significant in this way make up a 
codebook which is used as a basis for representing events in 
video.  Given an unseen video event, the raw video is abstracted 
into parallel feature streams (as described in Section 2.1).  These 
feature streams are then scanned, looking for any temporal 
patterns that match those found in the discovered codebook (as 
well as their nested sub-patterns).  The list of patterns that match 
form a feature vector representation of the event, in which each 
element in the vector corresponds to the duration of occurrence of 
a matched pattern from the codebook.  Thus, each event is 
represented as a vector of real valued features, each value being 
the duration that a particular pattern (from the codebook) was 
observed during the event. 

2.3 Linguistic Mapping 
The last step in building the grounded language model is to map 
words onto the encoded event representations.  We equate the 
learning of this mapping to the problem of estimating the 
conditional probability distribution of a word given a video event 
representation.  As in previous work [7], we generate these 
estimates using techniques similar to those used in Machine 
Translation (MT).   

Mappings between words and pattern features for an event are 
estimated based on a paired corpus of video event representations 
and the corresponding words uttered during that event.  We 
generate this paired corpus from a corpus of raw video by first 
abstracting each video into the feature streams described in 
Section 2.1.1.  For every shot classified as a pitching scene, a new 
instance is created in the paired corpus corresponding to an event 
that starts at the beginning of that shot and ends exactly four shots 
after.  This definition of an event follows from the fact that most 
events in baseball must start with a pitch and usually do not last 
longer than four shots [11].  For each of the events in this paired 
corpus, a pattern feature representation is generated as described 
in Section 2.2.  These video representations are then paired with 
all the words from the closed captioning that occur during that 
event (plus/minus 10 seconds).  Because closed captioning is 
often not time synched with the audio, we use the technique 
described in [12] to align the closed captioning text with the 
announcers’ speech. 

While the MT framework shows promise, recent work on related 
tasks in automatic image annotation ([2], [4]) and natural 
language processing [17] have demonstrated the advantages of 
using hierarchical graphical models.  In this work, we follow 
closely the Author Topic (AT) model [17], which is a 
generalization of Latent Dirichlet Allocation (LDA) [5]. 

LDA is a technique related to Latent Semantic Analysis ([15], 
[13]) that was developed to model the topics discussed in a large 
corpus of documents.  The model assumes that each document is 
made up of a mixture of topics, and that each word in the 
document is generated from a probability distribution associated 
with one of those topics.  The AT model generalizes LDA, saying 
that the mixture of topics is not dependent on the document itself, 
but rather on the authors who wrote it.   

According to this model, for each word in a document, an author 
is chosen uniformly from the distribution of the document’s 
authors.  Then, a topic is chosen from a distribution of topics for 
that particular author.  Finally, the word is generated from that 
chosen topic.  Given this model, we can express the probability of 
the words in a document (W) given its authors (A) as: 

∏ ∑∑
∈ ∈ ∈

=
Wm Ax Tzd

xzpzmp
A

AWp )|()|(
1

)|(
        (1) 

where T is the set of latent topics that are induced given a large set 
of training data.   

We make use of the AT model to learn a grounded language 
model, by making an analogy between documents and video 
events.  In our framework, the words in a document correspond to 
the closed captioning words spoken during an event, while the 
authors of a document correspond to the temporal patterns 
representing the activity that occurred during that event.  We 
modify the model slightly, such that, unlike authors which are 
chosen from a uniform distribution, patterns are chosen from a 
multinomial distribution based upon the duration of the pattern.  
The intuition being that patterns which occur for a longer duration 
are more salient and must be given greater weight in the 
generative process.  Thus, we rewrite (1) to give the probability of 
words during an event (W) given the vector of observed temporal 
patterns (P) as: 

∏∑∑
∈ ∈ ∈

=
Wm Px Tz

xpxzpzmpPWp )()|()|()|(
        (2) 

3 EXPERIMENTS 
Work on video IR in the sports domain, e.g. [11], usually focuses 
on retrieving video data using a set of supervised classifiers that 
categorize events into pre-determined concepts (e.g. homerun, 

infield out, outfield hit etc.).  Such supervised systems can be seen 
as discovering mappings from a closed set of query terms to a 
closed set of events (as in [23]).  The goal of our approach, 
however, is to develop a system which discovers mappings from 
an open set of query terms to an open set of events3.   

A supervised system can only perform such an open task with the 
addition of a function that maps (automatically or manually) an 
open set of terms to its pre-defined set of event classes (as is done 
in the news domain, see [20]).  As developing such a function is 
beyond the scope of this paper, we focus our evaluations on 
extending a traditional approach to open term IR, the language 
modeling approach of Ponte and Croft [16], by incorporating a 
grounded language model.   

In Ponte and Croft [16], documents relevant to a query are ranked 
based on the probability that each document generated each query 
term.  For video event retrieval, we can similarly rank video 
events based on the probability that a query term was generated 
from the closed captioning during that event: 

∏=
query

word

captionwordpeventqueryp )|()|(
        (3) 

In our experiments, we follow Ponte and Croft [16]in treating the 
probability of a word given a caption as an interpolation between 
the probability of the query term given the words in the caption 
and the probability of the word in the entire corpus: 

)()1()|(*)|( wordPcaptionwordPcaptionwordp corpuscaption ωω −+=        (4) 

Here ω is a weighting coefficient (set to 0.5).  We also use a 
simple add N smoothing technique (N=1e-6) to address issues of 
sparse data.   

In extending the language modeling approach to incorporate 
contextual information in the video, we make the simplifying  

                                                                 
3 and to do so without hand labeling any events 



Query terms  

Result  

rank 

walks  
(WALK) 

strike out  
(STRIKEOUT) 

left field  
(LEFT) 

it’s gone  
(HOMER) 

towards the corner  
(DOUBLE) 

1 WALK NON_HIGH LINE_LEFT_SINGLE NON_HIGH LINE_LEFT_DOUBLE 

2 NON_HIGH STRIKEOUT LINE_LEFT_DOUBLE FLY_LEFT_HOMER NON_HIGH 

3 NON_HIGH STRIKEOUT NON_HIGH GROUND_1ST_OUT LINE_LEFT_DOUBLE 

4 WALK NON_HIGH FLY_LEFT_OUT FLY_LEFT_HOMER NON_HIGH 

5 NON_HIGH STRIKEOUT FLY_LEFT_HOMER NON_HIGH NON_HIGH 

Precision/ 

Ranked Prec. 
0.4 / 0.3 0.6 / 0.353 0.8 / 0.71 0.4 / 0.2 0.4 / 0.333 

Table 2.  Example output of combined system [i.e., using an alpha=0.5 in equation (5)].  Query terms are displayed with relevant 

category in parentheses.  Query results are presented in ranked order and described by all relevant categories to which they belong 

(e.g., GROUND_1ST_OUT represents an event where a batter hit a ground ball to 1st base and was called out.  NON_HIGH represents a non-

highlight event such as a foul ball).  Both standard precision and ranked precision metrics are presented.  
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Figure 2.  Information retrieval performance of grounded 

language model (equation 5) using only words (alpha=0), only 

video features (alpha=1), and using both together (alpha=0.5).  

Performance is shown on individual games as well as on full 

held out test set. 
 

assumption that the relevance of an event to a query can be 
modeled as two independent probabilities: the probability of the 
query word given the speech of the announcer, and the probability 
of the word given the video event representation. We formalize 
this by extending (3): 

∏ ∗=
−

query

word

videowordpcaptionwordpeventqueryp αα )|()|()|( )1(     (5) 

The p(word|caption) is estimated using (4), while the  

p(word|video) is estimated as in (2).  α is used to weight the 
models.  

3.1 Data 
As standardized corpora are unavailable in the sports domain, we 
recorded 99 Major League Baseball games from the 2006 season 
totaling approximately 275 hours and 20,000 distinct events.  
These games represent data from 25 teams in 23 stadiums, 
broadcast on five different television stations.  From this set, six 
games were held out for testing (15 hours, 1200 events, nine 

teams, four stations).  From this test set, highlights (i.e., events 
which terminate with the player either out or safe) were hand 
annotated for use in evaluation.  Each highlight was categorized 
into one of 13 categories according to the type of the event (e.g., 
strikeout vs. homerun), the location of the event (e.g., right field 

vs. infield), or the nature of the event (e.g., fly ball vs. line drive).  
(See Figure 3 for a complete listing of categories).  Importantly, 
although only highlights are hand annotated, both highlights and 
non-highlights are used in the test set.  Thus, retrieval operates 
over the complete set of events in a game (which is significantly 
more challenging than retrieval from just highlights alone). 

Since a standard set of query terms was also unavailable for the 
sports domain, we automatically generate queries using a 
technique similar to that used in Berger & Lafferty [3].  For each 
of the highlight categories described above, a log likelihood ratio 
is used to generate a measure of how indicative each unigram, 
bigram, and trigram in the corpus is of a particular category [21].  
Query terms are then selected by taking the top 10 ngrams that are 
most indicative of each category (e.g. “fly ball” for category 
flyball).  This gives us a set of queries for each annotated category 
(130 in all; see Figure 3) for which relevant results can easily be 
determined (e.g., if a returned event for the query “strike out” is of 
the strikeout category, it is marked relevant). 

3.2 Model 
Following Steyver et al. [17] we train our AT model using Gibbs 
sampling , a Markov Chain Monte Carlo technique for obtaining 
parameter estimates (see Steyvers et al. [17] for more details).  We 
run the sampler on a single chain for 1000 iterations.  We set the 
number of topics to 50, and normalize the pattern durations first 
by individual pattern across all events, and then for all patterns 
within an event.  The resulting parameter estimates are smoothed 
using a simple add N smoothing technique, where N=1 for the 
word by topic counts and N=.01 for the pattern by topic counts.   

4 RESULTS 
Table 2 shows example outputs of the system run on all events 
from the six test games (both highlights and non-highlights).  The 
system uses an interpolation between a traditional language 
modeling retrieval system and a system using the grounded 
language model [i.e., using an alpha=0.5 in equation (5)].  The  
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Figure 3.  Performance of combined system (alpha=0.5) on individual query terms. 



0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1alpha=

M
e

a
n

 R
a

n
k

e
d

 P
re

c
is

io
n

10 queries 3 queries

 

Figure 4.  Effect of varying alpha parameter (equation 5) on 

information retrieval performance.  Alpha=0 represents the 

system using only the traditional language model.  Alpha=1 

represents the system using only the grounded language 

model.  Results are presented for automatically generated 

query sets using top 10, and top 3 most indicative query terms. 

 

top five results are returned for each query, and the relevant 
classes are displayed.  Results are reported using precision which 
indicates the number of relevant results divided by the number of 
returned results (set to five in these experiments).  Results are also 
reported using the more stringent ranked precision defined as:  

N

rrelrP
precisionranked

N

r∑ == 1
))(*)((

_
        (6) 

Where r is the rank of the result, P(r) is the precision at rank r, 
rel(r) is a binary indicator of the relevance of the result at rank r, 
and N is the number of returned results (set to five in these 
experiments).  Like traditional precision, ranked precision 
measures the quality of retrieved results, but also punishes 
systems when relevant results are not returned first.4  The 
remainder of the experiments are measured in ranked precision. 

Figure 2 compares the performance of a traditional language 
modeling retrieval system versus a system using only the 
grounded language model and a system that interpolates between 
the two [using an alpha=0.5 in equation (5)].  Results are reported 
for the 130 automatically generated queries described in Section 
3.1, run over all events in the test games (both highlights and non-
highlights).  Comparisons are made for searches within a single 
corpus made up of all six held out test games, as well as, for 
searches within each test game individually.  For each query, the 
ranked precision is computed and the mean over all queries is 
reported.   

Figure 3 shows a detailed view of the performance of the 
combined system (alpha=0.5) for each individual query.  Queries 

                                                                 
4 Ranked precision is also similar to Mean Average Precision 
(MAP), but does not factor in recall.  Unlike MAP, ranked 
precision does not give higher weight to queries for infrequent 
events.  Rather, it strictly expresses the ability of the system to 
return relevant results in ranked order.   

are grouped according to their highlight category and ranked 
precision for each query is reported. 

Figure 4, shows the effect on performance of varying the 
weighting parameter alpha from equation (5).  We report results 
on two sets of queries generated using the automatic technique 
described in Section 3.1: one taking the top 10 ngrams per 
highlight category, and one taking only the top three.  This second 
set of queries represents a smaller and cleaner test set to evaluate 
the performance of the system.  

5 DISCUSSION 
Figure 2 shows that for five out of six test games, using the 
grounded language model improves results over traditional IR 
techniques.  This increase is even more evident when searching 
the complete set of test games.  The more detailed results reported 
in Figure 3 show a large range in performance due in part to the 
quality of the query term used.  Because query terms are generated 
automatically, as more terms are selected, their quality begins to 
deteriorate.  Thus, by only examining terms with high log-
likelihood ratios, we would expect better performance from the 
system.  This is just what is shown in Figure 4. 

Here we see that results on just the top three queries generated in 
the manner described in section 3.1 show markedly better 
performance than the larger set of test queries.  Also in Figure 4, 
we see the benefit of varying the weight between the grounded 
and traditional language models.  The increased performance is 
due to the complementary nature of the grounded language model 
and the traditional language model for IR.  As described above, 
traditional IR approaches return many false positives because of 
the tendency of announcers to discuss things that are not currently 
occurring.  A grounded language model faces its own challenges, 
due primarily to limitations in computer vision.  By combining the 
two together, the grounded language model buttresses the 
traditional approach, leading to significant increases in 
performance when compared to either system on its own. 

6 CONCLUSIONS 
We have presented a system for unsupervised content-based 
indexing of sports video retrieval.  The system relies on the 
learning of a grounded language model which maps query terms 
to non-linguistic contextual information from the video.  By 
extending traditional language modeling approaches to IR with a 
grounded language model, the system is able to nearly double the 
performance over baseline methods.  

Unlike most previous efforts to exploit non-linguistic information 
for video retrieval, our system does not require hand labeled 
examples of predefined event types.  Instead, our system exploits 
automatically mined temporal patterns of low level features, 
which can be easily extracted with limited effort and high 
reliability. 

Further, in our system no extra effort is required (by the system or 
the user) to match a natural language query to the system’s 
predefined set of event types.  Rather, events in video are indexed 
by natural language terms directly (as in traditional IR 
approaches) allowing retrieval to operate without additional 
effort. 

Currently, we are examining how such grounded language models 
can improve search on noisier data, in particular, in games 
without closed captioning where speech must be transcribed 



automatically.  In future work, we will examine the ability of 
grounded language models to improve performance for other 
natural language tasks.  Incorporating such contextual information 
may benefit tasks as diverse as Machine Translation, 
Summarization, and Automatic Speech Recognition.  Finally, we 
are examining extending this approach to other sports domains 
such as basketball.  In theory, however, our approach is applicable 
to any domain in which there is discussion of the here-and-now 
(e.g., home improvement shows, etc.).  In future work, we plan to 
examine the strengths and limitations of grounded language 
modeling in these domains. 
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