
Assessing Behavioral and Computational Approaches  
to Naturalistic Action Segmentation 

 
Meredith Meyer1 (mermeyer@umich.edu), Philip DeCamp2 (decamp@media.mit.edu),  
Bridgette Hard3 (martin@psych.stanford.edu), Dare Baldwin4 (baldwin@uoregon.edu),  

Deb Roy2 (dkroy@media.mit.edu) 
1Department of Psychology, University of Michigan, Ann Arbor, MI 48103 USA 
2Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 USA 

3Department of Psychology, Stanford University, Stanford, CA 94305 USA  
4Department of Psychology, University of Oregon, Eugene, OR 97403 USA 

 
Abstract 

Recognizing where one action ends and another begins is an 
automatic and seemingly effortless process that supports 
understanding of goal-directed action. One characteristic of 
such action segmentation is that it is hierarchical; it reflects 
the goals and sub-goals of an actor, which correspond to 
coarse- and fine-grained action units respectively. We report 
on the success of one method of assessing hierarchical 
segmentation of naturalistic footage taken from an extensive 
corpus of unscripted human action (Speechome project, e.g., 
Roy et al., 2006). Results indicate that hierarchical 
segmentation occurs in an on-line fashion, with event 
boundaries marked by surges in attention that are modulated 
based on whether a boundary marks a fine, intermediate, or 
coarse unit. We also describe a method by which objective 
changes in an actor’s movement can be measured and 
analyzed as a predictor of participants’ segmentation 
behaviors.  
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Drawing inferences and generating predictions about 
others’ actions are processes most people undertake every 
day. The ways in which people use such inferences and 
predictions to make sense of others’ action is supported in 
part by the ability to segment continuous action into discrete 
units. For instance, while observing an individual preparing 
dinner, we might identify and recognize individual units of 
action such as chopping a carrot, opening a refrigerator, or 
rinsing off a dish. Investigations of action segmentation 
have suggested that people are highly consistent in where 
they judge event boundaries to exist; people typically report 
dynamic human action to consist of units corresponding to 
initiation or completion of goals, with considerable 
agreement across individuals regarding where event 
boundaries are located (Baldwin & Baird, 1999; Newtson, 
Engquist, & Bois, 1977; Zacks, Tversky, & Iyer, 2001). 
Further, action segmentation is seemingly spontaneous and 
automatic, engaged in as a routine and ongoing component 
of perception (Hard, 2006; Zacks & Swallow, 2007). 

The apparent ease with which people recognize 
breakpoints in action is remarkable given the complexity of 
the action stream itself. Human action is unquestionably a 
rich and highly variable stimulus; it is evanescent, often 
proceeds without pauses to mark the completion of 
individual units, and frequently features occlusion of 
relevant objects and body parts.  Further, the underlying 
structure of action is also complex, typically characterized 

by a hierarchy reflecting the goals and sub-goals of an actor 
(e.g., Schank & Abelson, 1977).   

Notably, human observers’ skill in segmenting the action 
stream has been observed on a variety of different levels in 
line with this hierarchical structure. For example, 
segmentation of “chop carrot” can be on a coarse level, with 
event boundaries noted at the onset and offset of the entire 
chopping event, or it can be on a fine level, with each 
vertical movement of the knife noted as marking a discrete 
unit. In tasks assessing hierarchical segmentation, here again 
a high degree of consistency has been observed in people’s 
segmentation behaviors (e.g., Hard, 2006; Zacks et al., 
2001a), and fMRI studies have revealed differing activation 
levels in frontal and posterior areas in response to fine and 
coarse event boundaries, suggesting that the distinction 
between fine and coarse units is psychologically real on a 
neural level (e.g., Zacks et al., 2001b). 

The ability to determine when one action has ended and 
another has begun, as well as segmenting action on multiple 
levels, supports how we make sense of the goal-directed 
action we observe in others. The fact that hierarchical event 
segmentation appears to be a relatively effortless process 
despite the complexity of the action stream itself suggests 
the workings of an equally complex system enabling this 
segmentation. Of particular relevance for the current studies, 
work by Hard and colleague (e.g., Hard, 2006; Hard & 
Recchia, 2006) suggests that event boundaries are processed 
differently than within-unit moments, with the detection of 
boundaries associated with a transient increase in cognitive 
processing load.  

The idea that event boundaries might elicit an upsurge in 
cognitive processing is consistent with a comprehensive 
account of action segmentation put forth by Zacks and 
colleagues. These authors (e.g., Kurby & Zacks, 2007; 
Zacks et al., 2007) describe the Event Segmentation Theory, 
an account of how the human observer perceives and 
conceptualizes action in terms of events. A crucial 
component of Event Segmentation Theory rests on the 
observer’s ability to make predictions about upcoming 
action. Such prediction generation is considered a 
spontaneous, online process that integrates incoming 
sensory information with prior knowledge and learning in 
an attempt to create a stable “event model.” Event units 
correspond to periods in which prediction error rate is low; 
the observed action is consistent with the predictions being 



made by the perceptual system, and the event model is 
stable. For example, within the event of cleaning off plates 
at the kitchen sink, the predictive system is able to generate 
accurate predictions of further plate cleaning based on such 
cues as the person’s movements and prior knowledge about 
kitchen clean-up. Event boundaries, in contrast, are 
experienced when prediction error rate is high; to extend the 
example above, such boundary moments are likely to occur 
at the completion of a task (e.g., cleaning off plates in the 
kitchen) and before the initiation of another task (e.g., 
wiping the countertop), because these moments correspond 
with a reduced ability to predict the onset and content of the 
second event.  

In order to update the event model at moments of reduced 
predictability, the system is believed to increase attention to 
the perceptual characteristics of the action stream and to 
activate new event schemata to replace the prior 
unsuccessful one. Hard and colleague (Hard, 2006; Hard & 
Recchia, 2006) provided an empirical test of whether 
boundaries were indeed associated with differential degrees 
of cognitive processing. As their methodology formed the 
basis of the first experiment in the current study, an in-depth 
explanation of their methods is in order. These authors 
reasoned that well-known paradigms developed for 
investigations of hierarchical processing of text would also 
be suitable for revealing aspects of hierarchical processing 
of action. In one such text processing study, individuals saw 
one word at a time from a passage of text and advanced 
themselves through word-by-word by pressing a button. The 
length of time between button presses was the primary 
dependent variable in this “moving window” method, with 
the idea being that longer reading times would be indicative 
of increased cognitive load associated with integration of 
past elements within and across text units into 
comprehensible larger units. Results indicated that 
participants tended to spend longer periods of time on words 
located at the ends of unit boundaries. Further, this “wrap 
up” effect was modulated by the level of any given unit; 
reading times were longer for words located at the ends of 
clauses and longer still for words located at the ends of 
sentences (Haberlandt & Graesser, 1989). 

To study processing of hierarchical action using a similar 
technique, Hard and colleague adapted the moving window 
method for use with human action by asking participants to 
advance through a sequence of still-frame images. These 
images were taken from regular time intervals of footage of 
scripted human goal-directed action (e.g., one still-frame 
image sampled every second). Following this “slideshow” 
viewing phase, participants watched the live action footage 
from which the still images had been sampled and marked 
with a button press the locations of action boundaries 
(hereafter, ‘breakpoints’). Participants completed this 
segmentation task a total of three times, providing 
judgments on fine, intermediate, and coarse levels.  

Results from the slideshow task indicated that participants 
tended to spend a longer period of time looking at images 
close in time to moments judged to be breakpoints in 

comparison to images taken from within action units, 
suggesting that breakpoints elicited surges in attention. 
Further, paralleling results observed in text processing, the 
effect was modulated by the level of the action breakpoint, 
with slides close in time to moments judged as coarse-
grained breakpoints receiving the longest looking times and 
those near fine-grained breakpoints receiving the least. This 
phenomenon, dubbed the dwell time effect, provided 
evidence that hierarchical segmentation occurs as part of 
real-time perception, without requiring explicit after-the-fact 
judgments of breakpoint locations. It further demonstrated 
the cognitive importance of action breakpoints; heightened 
attention was associated with moments participants 
explicitly judged to be breakpoints, and this effect was 
modulated based on whether that breakpoint was judged to 
be coarse, intermediate, or fine. 

In the current paper, we report on another study that 
investigated hierarchical processing of action, this time 
using in vivo recordings collected from the Human 
Speechome Project. Audio-video data was collected from 
from the home of a single child using 11 ceiling mounted 
cameras and 16 boundary layer microphones.  Over the first 
three years of the child’s life, 90,000 hours of video was 
collected, representing roughly 70% of the child’s waking 
experience (Roy et al., 2006).  

As described above, past work has made much progress 
on elucidating the cognitive processes that make up the 
system enabling segmentation; however, these studies have 
examined segmentation of either scripted or animated 
scenes (e.g., Hard, 2006; Hard & Recchia, 2006; Zacks, 
2004; Zacks et al., 2001a; Zacks, Kumar, & Abrams, 2009). 
The use of Speechome footage has the advantage of 
providing unscripted activity, allowing a test of the validity 
of methods that have been successful in revealing aspects of 
hierarchical segmentation of more artificial action scenes. 
Validation of the dwell time paradigm in Speechome 
footage additionally provides opportunities for the 
assessment of automated means of detecting action units, 
the topic taken up in Study 2. 

Study 1 Method 

Stimuli 
Images for a slideshow viewing task were created by 

extracting one image every second from a 108-second 
movie clip take from the Speechome corpus (e.g., see Figure 
1). The clip selected depicts an adult male preparing a meal.  
This video clip also served as the live action footage for 
which participants provided explicit segmentation 
judgments.  For the explicit segmentation task, a different, 
40-second clip of a woman cleaning the kitchen was used 
for training purposes. 

Participants and Procedure 
Participants were 28 university students (14 male) 

receiving class credit for participation. The experiment had 
two major phases, the slideshow viewing task and the  



                         
 

Figure 1: Sample image from slideshow depicting a person 
preparing food. 

 
explicit segmentation judgment task. All participants began 
the session with the slideshow viewing task, in which they 
were instructed to advance at their own pace through the 
108 still-frame images. Participants were told to click a 
mouse to advance the pictures. A Macintosh G4 computer 
was used to present stimuli on a 19.5” x 12” monitor, and 
Psychtoolbox (Brainard, 1997) was used to record 
participants’ responses. 
     Following the slideshow, participants heard a brief 
description of how action can be seen as consisting of units, 
and examples of fine, intermediate, and coarse units in 
actions unrelated to those displayed during test were 
provided in these instructions. Participants then provided 
explicit judgments of where they believed breakpoints to be 
located, first providing judgments for the training video and 
then for the 108-second test (Speechome) video. 
Participants indicated their judgments with a key press. 
Participants were asked to provide segmentation judgments 
on fine, intermediate, and coarse levels, resulting in a total 
of three viewings of the movie clip. Half of the participants 
were asked to segment on a fine level on their first viewing 
of the clips, followed by segmenting on an intermediate 
level, and finishing with segmenting on a coarse level (fine-
to-coarse order). The other half was asked to segment in the 
reverse order (coarse-to-fine order). Assignment of 
participants to these orders was random.  

 
Study 1 Results 

 
Do participants’ explicit segmentation judgments reflect 
understanding of hierarchical structure? 
One important preliminary question to answer is whether 
participants understood our instructions regarding 
segmentation on fine, intermediate, and coarse levels.   
Because we planned to compare the dwell times provided by 
each subject to their explicit breakpoint judgments made 
afterwards, it was important to ensure that participants 
differentiated among fine-, intermediate-, and coarse-level 
breakpoints during the explicit segmentation task.  

Evidence for this understanding comes in part from 
results indicating that participants provided significantly 
different numbers of judgments for breakpoints at different 
levels, with fine-level breakpoints receiving the most 
judgments (M fine = 39.04 [SD = 23.32]), intermediate-
level breakpoints receiving the next most (M intermediate = 
12.68 [SD = 8 86]), and coarse-level breakpoints receiving 

the least (M coarse = 5.75 [SD = 2.81]), F (1.13, 30.42) = 
61.44, p < .0001. (Greenhouse-Geisser statistics are reported 
due to violations in sphericity.) A significant linear trend 
characterized these data, F (1, 27) = 64.18, p < .0001. Thus, 
participants were clearly capable of recognizing breakpoints 
on different levels, providing the predicted differences in 
number of judgments according to level (fine vs. 
intermediate vs. coarse). As well, although individual 
differences in number of judgments were high (particularly 
in fine and intermediate judgments, as evidenced by the 
large standard deviations), 100% of participants provided 
the most judgments for fine breakpoints and the least for 
coarse breakpoints (binomial test, p < .0001). 

Participants were also fairly consistent in where they 
marked the locations of breakpoints. Figure 2 displays the 
number of fine, intermediate, and coarse level judgments 
across the 108 seconds of footage, with judgments “binned” 
into one-second intervals. As evidenced by the distinct 
peaks and valleys reflecting moments commonly judged and 
rarely judged as breakpoints, respectively, it is apparent that 
participants frequently marked the same moments for all 
three levels of judgments, a pattern largely consistent with 
past studies using the same explicit segmentation method 
(e.g., Hard, 2006; Zacks et al., 2001a; Zacks et al., 2009). 
 

 
Figure 2: Participants’ explicit judgments of fine, intermediate, and 

coarse level boundaries. 
 

Does dwell time increase at breakpoints? 
We next turned to one of the major hypotheses guiding 
Study 1, namely that participants’ dwell time would be 
longer for images judged to be breakpoints compared to 
those that weren’t. We used the participants’ own explicit 
segmentation judgments, provided during the segmentation 
task, as the basis for determining which slides were 
considered breakpoints.  Specifically, we applied a binning 
method, splitting the 108 second test clip into 1 second 
intervals, each corresponding to a single slide. Breakpoint 
judgments that fell into a given interval were matched to the 
corresponding slide, allowing us to classify breakpoint vs. 
non-breakpoint slides for each participant.  

We then treated participants’ raw dwell times to 
individual slides according to the following steps. Outliers 
(>3 SD above an individual’s mean dwell time to all 108 
slides) were removed from the data. Data were positively 
skewed, and thus a log transformation was applied. Due to 
participants’ tendency to dwell longer on slides at the 
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beginning of the sequence and to speed up as the task 
continued, most participants’ data were consistent with a 
power function. Significant portions of the variance were 
accounted for by the model for all participants (highest p 
value was .02). Thus, data were de-trended, and the 
residuals calculated based on the power function were used 
for analysis.  

Because there were unequal numbers of slides in the 
different classifications (e.g., far fewer slides classified as 
breakpoints vs. non-breakpoints), means for each type were 
divided by standard deviations of that type, producing an 
effect size. All reported analyses are on these scores, 
hereafter referred to as dwell time scores. (Note that dwell 
time scores can be zero or negative since the residuals 
represent the difference between actual dwell time and times 
predicted by the power function; however, it is still the case 
that higher dwell time scores indicate overall longer 
dwelling on any given slide.) 

A 2 (breakpoint status: breakpoint vs. non breakpoint) x 2 
(segmentation order: fine-to-coarse vs. coarse-to-fine) 
mixed ANOVA (with breakpoint status as a within-subjects 
variable and segmentation order as a between-subjects 
variable) revealed only the predicted breakpoint status 
effect. Dwell time scores for breakpoint slides (M = .124, 
SEM = .046) were higher than for non-breakpoint (within-
unit) slides (M = -.044, SEM = .026), F (1,26) = 6.40, p = 
.02. The main effect for segmentation order was not 
significant (M fine-to-coarse = .01, SEM  .03; M coarse-to-
fine = .07, SEM  = .02), F (1, 26) = 3.1, p > .05, nor was the 
segmentation order x breakpoint status interaction 
significant, F (1, 26) = .03, p > .05. Dwell time scores were 
thus higher for breakpoints than non-breakpoints, 
supporting the first hypothesis. 

 
Do dwell times vary according to fine, intermediate, and 
coarse levels? 

Using the same binning method used to distinguish 
between breakpoint and non-breakpoint slides for each 
participant, classification of slides as breakpoints vs. non-
breakpoints for each individual participant, slides were 
additionally categorized as falling at fine, intermediate, and 
coarse level boundaries. We then examined whether the 
dwell time effect was modulated based on whether a 
breakpoint was judged to be on a fine, intermediate, or 
coarse level. A 3 (segmentation level: fine, coarse, 
intermediate) x 2 (order: fine-to-coarse vs. coarse-to-fine) 
mixed between-within ANOVA was run, with segmentation 
level as the within-subjects variable  and order as the 
between-subjects variable. Because of sphericity violations, 
we report Greenhouse-Geisser statistics. The predicted main 
effect for segmentation level was found, F (1.52, 39.43) = 
16.17, p < .0001 (see Figure 3 for means). These differences 
were characterized by a significant linear trend, F (1, 26) = 
21.20, p < .0001, with coarse-level breakpoi nts receiving 
the longest dwell times, intermediate-level breakpoints 
receiving the next longest, and fine-level breakpoints 
receiving the shortest dwell-times. The main effect for order 

was not significant (M coarse-to-fine = .161, SEM = .057; M 
fine-to-coarse = .087, SEM = .073), F (1, 26) = 1.23, p > 
.05; there also was no order x segmentation level significant 
interaction (F (1.57, 39.43) = .95, p > .05.  

 

 
Figure 3: Dwell-time scores to slides designated as fine, 

intermediate, and coarse breakpoint. Data were characterized by a 
linear trend, p < .0001. 

 
Study 2 

 
Another line of investigation in action segmentation has 

focused on determining what perceptible features in the 
movement stream are relevant to segmentation. For 
instance, in the same study in which Hard and Recchia 
(2006) showed attentional differences to event boundaries, 
they additionally found that greater body movements on the 
part of the actor (as measured by overall pixel change 
between slides) significantly predicted observers’ 
segmentation behavior.  Similarly, in Zacks and colleagues’ 
(2009) investigation of live action, the authors studied how 
changes in movement features such as the actor’s 
acceleration and speed were predictive of observers’ explicit 
segmentation judgments. In that study, an actor wore 
magnetic tracking devices on his hands while filming an 
action sequence, allowing for later extraction and 
calculation of the relevant movement features. The authors 
found that several movement features, including speed, 
acceleration, and change in distances among the actor’s 
hands and head were predictive of observers’ segmentation 
judgments, particularly for fine-grained event markings (see 
also Zacks 2004 for similar analyses with animated figures).  

The ability to predict event boundaries based on 
perceptible features that can be extracted from video has 
great relevance to designers of informational systems that 
use identified actions as units of analysis.  In addition to 
testing the validity of the dwell-time methodologies in 
naturalistic action, another goal of the current paper was to 
assess whether features visible in the action input were 
predictive of individuals' segmentation judgments. In Study 
2, we extracted a set of predictive features, then analyzed 
how well these predictors correlated to the human 
judgments collected for Study 1 

Study 2 Method 
A set of motion features was extracted from the 

Speechome test clip using an accurate, semi-automatic 
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tracking system to annotate the positions of the body and 
hands of the actor appearing in the video (DeCamp & Roy, 
2009). Positions were recorded as image coordinates (2D 
positions on the image, as compared to 3D positions in real 
space). Body position was defined as the center of the 
visible portion of the actor's head and torso.  The positions 
of the hands were defined relative to the position of the 
body in order to reduce the covariance between them. After 
the position information was collected from the test video, it 
was used to compute the speed and acceleration of each 
body part, resulting in six features (see Table 1). The first 
and last seconds of data were also removed from analysis at 
this point because it was not possible to robustly define 
speed and acceleration at these points.  

 Kernel density estimation was applied to the breakpoints 
at each granularity level (i.e., fine, intermediate, and 
coarse).  While this process smoothed the data, it also 
provided a continuous distribution of the breakpoints over 
time, which was more convenient for analysis than the raw 
judgment counts.  Density estimation was performed with a 
Gaussian kernel. Bandwidths at were selected for each level 
using unbiased cross-validation, resulting in 0.92 s for fine 
breakpoints, 1.13 s for intermediate, and 1.27 s for coarse. 

Study 2 Results 
We found that each of the six features was significantly 

correlated to each breakpoint distribution (all p’s < .001, see 
Table 1). The body speed feature achieved the highest 
correlation (r = 0.71) when correlated with coarse-grained 
judgments (see Figure 4). Right and left hand speeds had 
maximum correlations of 0.64 and 0.35, respectively. The 
acceleration features performed slightly worse, but were 
nevertheless significant.   
 

Table 1: Correlations Between Visual  
Features and Breakpoint Distribution  

  Correlation 
  Fine Intermed Coarse 
Body Speed 0.49 0.65 0.71 
Right-Hand Speed 0.47 0.64 0.64 
Left-Hand Speed 0.45 0.44 0.35 
Body Accel 0.40 0.52 0.54 
Right-Hand Accel 0.35 0.51 0.47 
Left-Hand Accel 0.34 0.40 0.36 

 

 
Figure 4: Univariate linear regression on coarse breakpoint 

distribution using body speed as predictor. 

Discussion 
In Study 1, we examined human observers’ segmentation of 
naturalistic action, taking our stimuli from a large corpus of 
unscripted action (Speechome, e.g., Roy, 2006). Participants 
tended to dwell on images depicting breakpoints longer than 
non-breakpoints, and this difference was modulated based 
on whether a breakpoint was judged to be marking the 
completion of a fine-, intermediate-, or coarse-level unit. 
Despite the fact that our stimuli depicted naturalistic action, 
as well as the fact that participants had a decidedly different 
viewpoint of the action sequence itself than past studies of 
action (i.e., a ceiling-mounted camera provided the stimuli, 
and thus participants saw the actor from above), we 
replicated past findings of the dwell time effect (e.g., Hard, 
2006; Hard & Recchia, 2006). Our findings suggest that the 
dwell time effect is a robust and valid phenomenon, capable 
of providing another window into the cognitive processes 
underlying segmentation.  

The fact that participants’ implicit behavior (dwell time) 
was associated with their explicit segmentation judgments 
also offers an exciting direction for future research within 
the developmental domain. There is clear indication already 
that infants as young as nine months can segment an action 
stream, a remarkable finding given infants’ relatively 
impoverished understanding of goals and intentions  (e.g., 
Baldwin et al., 2001; Saylor et al., 2007). Although this 
work represents an important demonstration of infants’ 
action processing skill, the adaptation of dwell time 
methodology to this population has the potential to further 
expand our understanding of the developmental trajectory 
characterizing the segmentation process. The looking time 
methods used in these past developmental studies were not 
suitable for discerning hierarchical processing; further, the 
work examining hierarchical processing in adults has largely 
relied on participants’ explicit understanding of what 
constitutes fine, intermediate, and coarse units (e.g., Zacks 
et al., 2001a, 2001b; Zacks et al., 2009), a task that is clearly 
beyond the capacity of infants and young children. We are 
actively pursuing adapting dwell time techniques for use 
both with preverbal infants as well as young preschool-aged 
children (e.g., Meyer, Hard, & Baldwin, 2009), a 
methodological advance that will allow us to study 
hierarchical processing across the lifespan. 

In Study 2, we examined how perceptible movement 
features predicted human observers’ judgments. Our results 
demonstrated that specific sources of information (i.e., head 
and hand speed and acceleration) were significantly 
associated with participants’ segmentation judgments. Our 
results are consistent with similar movement change 
analyses performed by Zacks et al. (2009), suggesting that 
analysis of movement features may have broad utility in the 
design of automated systems of action analysis.  

Notably, we additionally observed results that differed 
from those of Zacks et al., (2009); whereas we observed 
lower correlations as the judgment granularity was increased 
(i.e., correlations were highest when examining coarse-
grained judgments and lowest when examining fine-grained 
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judgments), Zacks and colleagues actually observed the 
opposite. We speculate that this might be attributed to the 
differences between videos; in our footage the actor had no 
discernible facial features, and local movements of the 
hands and fingers were difficult to see; this may have 
reduced the ability of subjects to identify breakpoints as 
consistently at finer granularities. As well, the actor in our 
video moved his entire body through space (e.g., walking 
from a kitchen island to the sink), whereas the actor in 
Zacks et al.'s videos was seated. These gross bodily 
movements were frequently judged as coarse breakpoints 
and were clearly associated with several of our movement 
cues. As well, the use of 2D video annotations in place of 
3D motion sensor features may have provided less accurate 
measures that limited our ability to predict finer-grain 
events. In any event, the differences we observe offer 
inviting topics for future investigation relevant to the 
development of automated action analysis. 

To summarize, we both validated the dwell time effect in 
naturalistic stimuli as well as found objective movement 
parameters predictive of individuals’ segmentation 
behavior. The latter finding is of great relevance for 
researchers developing automated action analysis systems. 
Given that tracking whole people is now feasible for many 
types of video, current tracking technologies may enable the 
first steps towards systems that can automatically segment 
and identify actions from raw video, opening up new 
possibilities for human behavioral analysis. 

Human action is an undeniably rich and complex 
stimulus.  Yet, as we parse the events of our daily lives with 
little thought or apparent effort, the process may strike us as 
trivially easy. Nevertheless, the complexity of human action 
is apparent upon any attempt at formalization, and it poses a 
considerable challenge towards understanding human 
cognition. In this paper, we supply part of the solution by 
demonstrating how the human mind reacts and imparts 
structure to action sequences as they unfold. As well, we 
provide promising results from attempts to predict and 
model these reactions, suggesting future possibilities for the 
data driven analysis of events at a massive scale.  
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