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Abstract

We present a computational model that connects gestalt visual perception and language.
The model grounds the meaning of natural language words and phrases in terms of the
perceptual properties of visually salient groups. We focus on the semantics of a class of
words that we call conceptual aggregates e.g.,pair, group, stuff, which inherently refer to
groups of objects. The model provides an explanation for how the semantics of these natu-
ral language terms interact with gestalt processes in order to connect referring expressions
to visual groups.

Our computational model can be divided into two stages. The first stage performs
grouping on visual scenes. It takes a visual scene segmented into block objects as input,
and creates a space of possible salient groups arising from the scene. This stage also assigns
a saliency score to each group. In the second stage, visual grounding, the space of salient
groups, which is the output of the previous stage, is taken as input along with a linguistic
scene description. The visual grounding stage comes up with the best match between a
linguistic description and a set of objects. Parameters of the model are trained on the basis
of observed data from a linguistic description and visual selection task.

The proposed model has been implemented in the form of a program that takes as input
a synthetic visual scene and linguistic description, and as output identifies likely groups of
objects within the scene that correspond to the description. We present an evaluation of
the performance of the model on a visual referent identification task. This model may be
applied in natural language understanding and generation systems that utilize visual context
such as scene description systems for the visually impaired and functionally illiterate.
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Chapter 1

Introduction

Each day, from the moment we wake up, our senses are hit with a mind boggling amount

of information in all forms. From the visual richness of the world around us, to the sounds

and smells of our environment, our bodies are receiving a constant stream of sensory input.

Never the less we seem to make sense of all this information with relative ease. Further,

we use all this sensory input to describe what we perceive using natural language. The

explanation, we believe, lies in the connection between visual organization, in the form of

gestalt grouping, and language.

Visual grouping has been recognized as an essential component of a computational

model of the human vision system [4]. Such visually salient groups offer a concise repre-

sentation for the complexity of the real world. For example, when we see a natural scene

and hear descriptions like,the pair on topor the stuff over there, intuitively we form an idea

of what is being referred to. Though, if we analyze the words in the descriptions, there is

no information about the properties of the objects being referred to, and in some cases no

specification of the number of objects as well. How then do we dismabiguate the correct

referent object(s) from all others present in the visual scene? This resolution of ambiguity

occurs through usage of the visual properties of the objects, and visual organization of the

objects in the scene. These visual cues provide clues on how to abstract the natural scene,

composed of numerous pixels, to a concise representation composed of groups of objects.

This concise representation is shared with other cognitive faculties, specifically lan-

guage. It is the reason why in language, we refer to aggregate terms such asstuff, and
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pair, that describe visual groups composed of individual objects. Language also plays an

important role in guiding visual organization, and priming our search for visually salient

groups.

A natural language understanding and generation system that utilizes visual context

needs to have a model of the interdependance of language and visual organization. In this

thesis we present such a model that connects visual grouping and language. This work, to

the best of our knowledge, is one of the first attempts to connect the semantics of specific

linguistic terms to the perceptual properties of visually salient groups.

1.1 Connecting gestalt perception and language

Gestalt perception is the ability to organize perceptual input [31]. It enables us to perceive

wholes that are greater than the sum of their parts. This sum or combination of parts into

wholes is known as gestalt grouping. The ability to form gestalts is an important component

of our vision system.

The relationship of language and visual perception is a well established one, and can

be stated as,how we describe what we see, andhow we see what is described. Words and

phrases referring to implicit groups in spoken language provide evidence that our vision

system performs a visual gestalt analysis of scenes. However, to date, there has been rel-

atively little investigation of how gestalt perception aids linguistic description formation,

and how linguistic descriptions guide the search for gestalt groups in a visual scene.

In this thesis, we present our work towards building an adaptive and contex-sensitive

computational model that connects gestalt perception and language. To do this, we ground

the meaning of English language terms to the visual context composed of perceptual prop-

erties of visually salient groups in a scene. We specifically focus on the semantics of a

class of words we term as conceptual aggregates, such asgroup, pair andstuff. Further, to

show how language affects gestalt perception, we train our computational model on data

collected from a linguistic description task. The linguistic description of a visual scene is

parsed to identify words and their corresponding visual group referent. We extract visual

features from the group referent and use them as exemplars for training our model. In this
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manner our model adapts its notion of grouping by learning from human judgements of

visual group referents.

For evaluation, we show the performance of our model on a visual referent identification

task. Given a scene, and a sentence describing object(s) in the scene, the set of objects that

best match the description sentence is returned. For example, given the sentencethe red

pair, the correct pair is identified.

1.2 Towards Perceptually grounded Language understand-

ing

Our vision is to build computational systems that can ground the meaning of language

to their perceptual context. The term grounding is defined as, acquiring the semantics of

language by connecting a word, purely symbolic, to its perceptual correlates, purely non-

symbolic [11]. The perceptual correlates of a word can span different modalities such

as visual and aural. Grounded language models can be used to build natural language

processing systems that can be transformed into smart applications that understand verbal

instructions and in response can perform actions, or give a verbal reply.

In our research, our initial motivation was derived from the idea of building a program

that can create linguistic descriptions for electronic documents and maps. Such a pro-

gram could be used by visually impaired and functionally illiterate users. When we see an

electronic document we implicitly tend to cluster parts of the document into groups and

perceive part/whole relationships between the salient groups. The application we envision

can utilize these salient groups to understand the referents of descriptions, and create its

own descriptions.

There are other domains of application as well, for example, in building conversational

robots that can communicate through situated, natural language. The ability to organize

visual input and use it for understanding and creating language descriptions would allow

a robot to act as an assistive aid and give the robot a deeper semantic understanding of

conceptual aggregate terms. This research is also applicable for building language enabled
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intuitive interfaces for portable devices having small or no displays e.g., mobile phones.

1.3 The Big Picture

The diagram shown in Figure 1-1 shows our entire model. It can be divided into two stages.

The first stage, indicated by theGroupingblock, performs grouping on visual scenes. It

takes a visual scene segmented into block objects as input, and creates a space of possible

salient groups, labeledcandidate groups, arising from the scene. We use a weighted sum

strategy to integrate the influence of different visual properties such as,color andproximity.

This stage also assigns a saliency score to each group. In the second stage, visual ground-

ing, denoted in the figure by theGroundingblock, the space of salient groups, which is the

output of the previous stage, is taken as input along with a linguistic scene description. The

visual grounding stage comes up with the best match between a linguistic description and

a set of objects. The parameters of this model are learned from positive and negative ex-

amples that are derived from human judgement data collected from an experimental visual

referent identification task.

1.4 Organization

In the next chapter, Chapter 2 we discuss relevant previous research related to percep-

tual organization, visual perception, and systems that integrate language and vision. In

Chapter 3 we describe in detail the visual grouping stage, including a description of our

grouping algorithm and the saliency measure of a group. In Chapter 4 we describe how

visual grounding is implemented. We give details of our feature selection, the data collec-

tion task, and the training of our model. The chapter is concluded with a fully worked out

example that takes the reader through the entire processing of our model, starting from a

scene and a description to the identification of the correct referent. In Chapter 5 we give

details of our evaluation task and the results we achieved. In Chapter 6 we conclude, and

discuss directions of future research.
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1.5 Contributions

The contributions of this thesis are:

• A computational model for grounding linguistic terms to gestalt perception

• A saliency measure for groups based on a hierarchical clustering framework, using a

weighted distance function

• A framework for learning the weights used to combine the influence of each individ-

ual perceptual property, from a visual referent identification task.

• A program that takes as input a visual scene and a linguistic description, and identifies

the correct group referent.
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Chapter 2

Background

Our aim is to create a system that connects language and gestalt perception. We want

to apply it to the task of identifying referents in a visual scene, specified by a linguistic

description. This research can be connected to two major areas of previous work. The

first area is visual perception and perceptual organization and the second area is building

systems that integrate linguistic and visual information.

2.1 Perceptual Organization

Perception involves simultaneous sensing and comprehension of a large number of stimuli.

Yet, we do not see each stimulus as an individual input. Collections of stimuli are organized

into groups that serve as cognitive handles for interpreting an agent’s environment. As an

example consider the visual scene shown in Figure 2-1. Majority of people would parse the

scene as being composed of 3 sets of 2 dots, in other words 3 pairs rather than 6 individual

dots. Asked to describe the scene, most observers are likely to saythree pairs of dots. This

example illustrates two facets of perceptual organization, (a) the grouping of stimuli e.g.,

visual stimuli, and (b) the usage of these groups by other cognitive abilities e.g., language.

Wertheimer in his seminal paper [30] on perceptual organization coined the termGestalt

for readily perceptible salient groups of stimuli,wholes, to differentiate from the individ-

ual stimulus,parts. He also postulated the following set of laws for forming groups from

individual stimuli:
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Figure 2-1: Three pairs of dots

• Proximity - two individually perceived stimuli that are close to each other are grouped

together.

• Similarity - two stimuli that are similar along a perceptual dimension, tend to be

grouped together.

• Common Fate - stimuli sharing a common direction of motion tend to be grouped

together.

• Continuity - two stimuli that fit the path of an imaginary or discontinuous straight

line or smooth curve tend to be grouped together.

• Closure - two stimuli are grouped together so as to interpret forms as complete. This

is due to the tendency to complete contours and ignore gaps in figures.

• Figure ground separation - a set of stimuli appear as the figure (positive space), with

a definite shape and border, while the rest appear as background (negative space).

• Goodness of form (Pragnanz) - a set of stimulia will be perceived as a better group

compared to another set of stimulib if a is a more regular, ordered, stable and bal-

anced group thanb.

Though not stated as a separate rule, using a combination of these principles simultane-

ously to visually parse a scene, is another important and as yet unresolved [31] element
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of perceptual organization. Wertheimer further gave examples from visual and auditory

perception to show the applicability of these principles across different modalities.

Previous work related to perceptual organization has focused on computational mod-

eling of the laws of perceptual organization. This involves creating a mathematical model

that given all the current stimuli as input, will return groups of stimuli as output. The

groups should be the same as formed by human observers. In the case of visual stimuli this

amounts to forming groups from elements perceived in a visual scene. The formation of

these groups could use one or all of the rules listed above. Each law of perceptual organi-

zation, in itself, has given rise to whole bodies of work of which we give a few examples

here.

Zobrist & Thompson [33] presented a perceptual distance function for grouping that

uses a weighted sum of individual property distances. We use a similar distance function,

but have a different weight selection method that learns the probability of usage of specific

weight combinations by training on human group selection data. This is discussed in detail

in Section 3.3 and Section 4.2. Quantifying similarity, especially across different domains

has been discussed by Tversky [27], and Shepherd [21], and has given rise to the set the-

oretic and geometrical functions for similarity judgment. In our work we use geometrical

functions. A comprehensive discussion on similiarity functions can also be found in Santini

& Jain [18].

For detecting curvilinear continuity, the concept of local saliency networks was intro-

duced by Sha’shua & Ullman [20]. Curved shapes can be detected by defining a saliency

operator over a chain of segments. Optimization over all possible chains using a dynamic

programming method leads to the detection of salient curves. For the principle of figure-

ground segmentation and object detection, work has been done by Lowe [14] to use visual

grouping for object recognition, and by Shi & Malik [22] for scene segmentation using

normalized-cuts. One of the first methods for quantifying goodness of a group, in infor-

mation theoretic terms, was presented by Attneave [9]. This work quantified goodness of

a group through a measure of the simplicity of the group (the smaller the description of a

group in some encoding scheme, the simpler it is). Amir & Lindenbaum [1] introduced a

domain independent method for quantifying grouping. It abstracts the set of all elements
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into a fully connected graph, and uses a maximum likelihood framework to find thebest

partition of the graph into groups. Using perceptual organization principles in applications

has been an area that has received relatively lesser attention. Saund [19] presents a system

for deriving the visual semantics of graphics such as sketches using perceptual organiza-

tion. Carson et. al. [5] present another example in which gestalt grouping analysis is used

as part of an image query system.

The references listed above tackle identifying salient groups as a purely visual problem,

and try to model characteristics of low level human vision. In this thesis we wish to present

work that uses not only visual, but linguistic information as well, to identify salient groups.

We however, abstract the grouping problem to a higher level, where object segmentation of

a scene is given, and the problem is to combine objects into groups that are referred to in

the scene description.

2.2 Language and Perception

Research in the field of language and perception attempts to identify how what we perceive

is affected by linguistic context, and how word meaning is related to perceptual input. The

close link between language and perception has been studied [cf. 29] and modeled [cf. 15]

in the past Special attention has been devoted to research on computationally modeling the

relation between language andvisualperception. It involves work related to building sys-

tems that use visual information to create language descriptions, language descriptions to

create visual representations or systems that simultaneously deal with visual and linguistic

input [23].

In our work we are primarily interested in investigating how the semantics of lan-

guage can be derived through visually grounding linguistic terms. The problem of building

grounded natural language systems using visual context, has been addressed in previous

work such as the work done by [12], [10], [17] and [16]. The VITRA system [12] is a

system for automatic generation of natural language descriptions for recognized trajecto-

ries of objects in a real world image sequence such as traffic scenes, and soccer matches.

In VITRA verbal descriptions are connected to visual and geometric information extracted

26



from the real-world visual scenes.

Gorniak & Roy [10] describes a system, Bishop, that understands natural language de-

scriptions of visual scenes through visual grounding of word meanings and compositional

parsing of input descriptions. It also provides a list of different strategies used by human

subjects in a scene description task. In this list of strategies grouping is stated as an impor-

tant but not fully resolved (in the paper) part. We have attempted to extend this work by

specifically tackling the problem of understanding scene descriptions in which grouping is

used as a descriptive strategy.

Roy [17] presents DESCRIBER, a spoken language generation system that is trained

on synthetic visual scenes paired with natural language descriptions. In this work, word

semantics are acquired by grounding a word to the visual features of the object being de-

scribed. There is noa priori classification of words into word classes and their corre-

sponding visual features, rather the relevant features for a word class, and the word classes

themselves are acquired. The system further goes on to generate natural and unambiguous

descriptions of objects in novel scenes. We have used a similar word learning framework

as [17]. Work done by Regier [16] provides an example of learning grounded representation

of linguistic spatial terms.

The main point of difference in our work is the handling of conceptual aggregate terms.

Most language understanding systems handle linguistic input that refers to a single object,

e.g.,the blue block. We attempt to extend this work by trying to handle sentences like,the

group of blue blocks, or the blue stuffusing a visually grounded model.

How language connects with perception has been studied extensively in the fields of

psychology, and linguistics as well. The connection of language and spatial cognition and

how language structures space was discussed by Talmy [24]. In it he stated that language

schematizes space, selecting certain aspects of a referent scene, while disregarding others.

Tversky [28] discusses the reverse relation of how space structures language. She presents

an analysis of the language used in a route description task with an emphasis on discovering

spatial features that are included or omitted in a description. These analyses support the

notion of a bi-directional link between language and vision. Landau and Jackendoff [13]

explore how language encodes objects and spatial relationships and present a theory of
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spatial cognition. They further show commonalities between parsing in the visual system

and language.

2.3 Initial Approaches

In this section we discuss, in brief, our initial approaches, and the insights we gained that

led us to define and solve our final problem. As mentioned previously in Section 1.2, the

initial motivation for tackling the problem of grouping was from the perspective of build-

ing an application for document navigation and description. As we envisage the document

description program, it will visually parse a given scene and then generate a natural lan-

guage description of the scene, or read out information from a referent specified through a

language description.

Documents can be handled by abstracting them to scenes composed of blocks encom-

passing each letter and image. In this abstract form the problem resolves to finding salient

groups in the document that correspond to how a reader might segment the document. The

ideal segmentation would result in a set of groups at different levels of detail. At the low-

est level letters will cluster to form words, and at the highest level paragraphs will cluster

to form articles, or sentences will cluster to form lists. The descriptor program1 should

perform the following four steps:

1. Segmentation

2. Grouping

3. Scene Hierarchy

4. Natural Language Generation

Of these four steps we worked on the first two, segmentation and grouping in web

pages.

1A document discussing such a system can be found at http://web.media.mit.edu/∼sheel/publications/dyd-
paper-final.pdf
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2.3.1 Segmentation of web pages

To analyze a document from the visual perspective it must first be segmented into atomic

units that form the lowest level of the document hierarchy. This lowest level could be the

pixel level, or even the letter level, depending on context. Thus, segmentation involves clus-

tering at multiple levels of detail. The web pages were captured as images and converted

to black and white. Run length smoothing followed by connected component analysis [6]

was used to create bounding boxes for entities in a document e.g., letters and images.

2.3.2 Grouping

We implemented four different grouping/clustering algorithms. The first algorithm by Tho-

risson [25] was used only on hand segmented images. The other three were used on images

that went through the segmentation process detailed above. The three algorithms were (a)

K-means, (b) Gaussian Mixture Modeling, and (c) Hierarchical clustering. Each took the

block segmented document image as input and returned salient groups.

2.3.3 Discussion on initial approaches

Some of the issues that arose in our initial experimentation were:

• The need for a robust definition of similarity. Within the domain of input that we

considered, black and white block segmented images, simple proximity between the

centroid of two blocks was sufficient. But, for colored images with a greater variety

in shape and size, this would not suffice. Hence, there was a need to define a dis-

tance function that combined the distances along various perceptual properties e.g.,

proximity, color, size, and shape.

• Multiple levels of grouping. The level of grouping is dependent on context, especially

linguistic context. The level decides the granularity of the elements to be grouped

e.g., pixels, or objects. With this condition in mind, hierarchical clustering stood out

as the best method.
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• The language used for visual description. In describing web page images the lan-

guage used is composed of higher level terms such asarticlesandlists. These terms

are domain specific higher level examples of words whose semantics imply a con-

ceptual aggregate. This adds a further layer of complexity to the problem. To avoid

that, in our final framing of the problem, the input visual scene was simplified to a

randomly generated synthetic scene made up of blocks. Note, as this was coupled

with increasing the number of perceptual properties used in grouping there was a

trade off in simplifying one aspect of the problem while complexifying another.

These issues helped define our final problem - building a model that looks at visual

scenes composed of block objects having random location, size, and color, and trying to

identify the correct referent based on a linguistic description. In the next chapter we present

details of the gestalt grouping stage of our model.

30



Chapter 3

A model of Visual grouping

Visual grouping refers to performing perceptual grouping on a visual scene. It enables us to

seegestalts, i.e. create wholes from parts. In the grouping stage a visual scene is taken as

input and the output is a search space populated by groups that are perceptually observed on

viewing the scene. In this chapter we frame the grouping problem as an unsupervised clas-

sification (clustering) problem, discuss clustering algorithms, give reasons for our choice

of using hierarchical clustering, and finally present the details of implementation.

3.1 Clustering algorithms

A visual scene can be viewed at different levels of granularity. At the most detailed level,

it is an array of pixels, and at the coarsest level it is composed of objects that compose

the foreground, and the background. Grouping occurs at all levels. This is the reason why

neighboring pixels combine to form objects, and why objects combine to form groups.

The forming of groups in the visual domain can be mapped to the forming of conceptual

aggregates in the language domain. For example, a group of birds can be referred to as a

flock. Many other words in language such as,stuffused in the phrase -that stuff, pair used in

the phrase -a pair of, reveal semantics that classify such words as conceptual aggregates.

Thus, the first step towards connecting language and gestalt perception is to identify the

groups in a visual scene that correspond to the conceptual aggregates in language.

In our work we abstract the problem of grouping to object level grouping.We have
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selected an experimental task in which a visual scene is composed of rectangular objects

or blocks. The blocks are allowed to overlap. The problem of grouping can be stated as a

clustering problem. Here, the aim is to classify each object as belonging to a classci from

amongst a possiblen classes. The value ofn is unknown.

For modeling gestalt grouping we compared two specific classes of clustering algo-

rithms Partitioning, and Agglomerative clustering [7]. Partitioning algorithms tend to form

disjoint clusters at only one level of detail. In contrast, Agglomerative algorithms e.g., hi-

erarchical clustering attempt to classify datasets where there is a possibility of sub-clusters

combining together to form larger clusters. Agglomerative algorithms thus provide de-

scriptions of the data at different levels of detail.

The ability to perform grouping on a scene at different levels of detail is similar to how

our vision system does a multi-level parsing of a visual scene, as evident from the example

of a group of birdsbeing referred to as aflock. Due to this similarity hierarchical clustering

was chosen. Another reason for our choice was the ability to define a goodness measure

based on the hierarchical clustering algorithm that captures the gestalt property of stability

of a group. We discuss this measure in detail in section 3.6.

Before using hierarchical clustering a distance function between objects needs to be de-

fined. The distance function should be such that, ifdistance(ob ject1,ob ject2) < threshold,

thenob ject1 andob ject2 are grouped together. This criterion is related to similarity, be-

cause in our context similarity is inversely proportional to distance. We formally define our

distance function in the next section.

3.2 Perceptual Similarity

To group two objects together there must first be a quantification of how similar they are.

We define the problem of quantifying similarity as one of calculating the distance between

two objects in a feature space. Similarity can then be extracted as it is inversely proportional

to distance. Conversely distance values can be treated as a measure of dissimilarity.

Each objecto is defined as a point in a feature space, the dimensions of which are equal

to the total number of perceptual properties. For example, the location of an objectoi can
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be represented by the object’s x-coordinate (f1) and y-coordinate (f2) values, with respect

to a fixed reference frame, as a vector, f i
1

f i
2

 (3.1)

More generally, the perceptual property of an objectoi can be represented by a feature

vectorx of sizel as,

x =


f i
1

·

·

f i
l

 (3.2)

We assume our feature space to be euclidean, hence the distance between two objects is

given by,

d(oi ,o j) =

[
l

∑
n=1

( f i
n− f j

n)2

]1/2

(3.3)

We have used features whose perceptual distances can be approximated well by a eu-

clidean distance in the chosen feature space, and can be termed as metrics because they

satisfy the minimality, symmetricity and triangle inequality conditions [27]. The euclidean

assumption is invalid for some measurements of perceptual similarity [18], but in this work

we do not lay any claim to the universality of our similarity functions beyond the specific

domain.

Distance between two groups, denoted bygn andgm is defined as the minimum distance

between any two objects from the two groups,

gn−{o1,o2, ...,ov} (3.4)

gm−{o1,o2, ...,ow} (3.5)

d(gn,gm) = min{d(oi ,o j)} ∀ i , j such that oi ∈ gnand oj ∈ gm (3.6)
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Properties Features

area P number of pixels covered by an object

color

L lightness

a positive values indicate amounts of red and
negative values indicate amounts of green

b positive values indicate amounts of yellow and
negative values indicate amounts of blue

proximity
x (centroidx)

y (centroidy)

shape
h (height)

b (width)

Table 3.1: Perceptual Properties and Features

3.2.1 Perceptual properties and Perceptual features

We wish to make a distinction here between perceptual properties and perceptual features.

In language we refer to perceptual properties e.g., shape, that are physically grounded

to perceptual features e.g., height and width. A perceptual property is calculated from

perceptual features. Our discussion until now has dealt with defining the distance between

two objects along only one perceptual property e.g., area, color etc. However, an object can

be defined by more than one perceptual property. In our model we have currently included

four perceptual properties -area, color, proximity, shape. Table 3.1 lists the properties and

the features associated with each. The individual perceptual property distances are defined

in the following sections.

Proximity

Given two objectsoi ando j , the contours of both objects are calculated. LetCi andCj be

the set of all points belonging to the contours ofoi ando j respectively. The distance is
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given by,

dp(oi ,o j) = ∀i, j ,min{
√

(xi−x j)2 +(yi−y j)2} (3.7)

such that(xi ,yi) ∈ Ci and(x j ,y j) ∈ Cj

Area

Given two objectsoi ando j , all pixels corresponding to an object are counted. Assuming

oi has aPi pixel size, ando j has aPj pixel size,

da(oi ,o j) = |Pi−Pj | (3.8)

Color

For representing color we use the 1976 CIEL*a*b* feature space. This is a system adopted

by the CIE1 as a model for showing uniform color spacing in its values. It is a device

independent, opponent color system, in which the euclidean distance between color stimuli

is proportional to their difference as perceived by the human visual system [32]. The three

axes represent lightness (L*), amounts of red along positive values and amounts of green

along negative values (a*), amounts of yellow along positive values and amounts of blue

along negative values (b*). The perceptual distance between any two colors can be found

by calculating the euclidean distance between any two points in L*a*b* space. Given two

objectsoi ando j having color values,Li , ai , bi andL j , a j , b j respectively the perceptual

color distance can be stated as,

dc(oi ,o j) =
√

(Li−L j)2 +(ai−a j)2 +(bi−b j)2 (3.9)

The formula for conversion from r,g,b space to CIEL*a*b* space is given in Appendix C.

1Commission Internationale de L’Eclairage (International Commission on Illumination)
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Shape

The shape of an object is quantified by its height to width, i.e. aspect ratio. This measure

can be calculated for arbitrary shapes by considering the bounding box of a given object.

For objectoi having heighthi , width bi , and objecto j having heighth j and widthb j ,

ds(oi ,o j) = |hi/bi−h j/b j | (3.10)

3.2.2 The combined distance function

The final distance function needs to combine the individual property distances. Our ap-

proach to combining perceptual properties is using a weighted sum combination of the

individual distances [33] for each perceptual property. The weight assigned to a percep-

tual property is denoted byw and the the weights for all properties is denoted as a vector

w. This approach assumes independence between perceptual properties. That is to say,

area distance between two objects is independent of their color distance. In our model we

measure area by calculating the number of pixels in the region covered by an object. This

generalized method maintains the independence between area and shape, even though for

rectangular objects area could be calculated using the height and width features that are

used for shape.

The final distance between two objectsoi and oj , havingP perceptual properties is

denoted bydall (oi ,o j) can thus be defined as,

dall (oi ,o j) = [w1 . . .wN]


d1(oi ,o j)

·

·

dP(oi ,o j)

 (3.11)

where,

∑
i

wi = 1 (3.12)
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In our case,

P = 4 (3.13)

d1 = dp, d2 = da, d3 = dc, d4 = ds (3.14)

3.3 Weight Selection

Selecting different weight values, for distance calculation, leads to different sets of group-

ings. As an example, consider the visual scene in Figure 3-1.

The objects can be grouped together using area to give one set of groups or they can

be grouped together using color to give another set. Further still, a combination of color

and proximity effects could give yet another set of groups. A point to note here is that

none of the resultant groupings are intuitively wrong. On a subjective basis one may be

chosen over the other giving rise to a probability for each weight vector. A weight vector

having a higher probability will give a more intuitivepop-outgrouping in comparison to

a weight vector with lower probability. We formulated a method to derive the probability

values associated with each weight vector using data collected from a group selection task.

For each group selected by a subject, in a particular visual scene, we calculated the weight

vectors that would generate the same group from our grouping algorithm. For example,

if a subject chose the selected group (shown by a white bounding box) in 3-1(a), then all

weight vectors that gave the same grouping as output from the grouping algorithm would

be recorded. The probability distribution over weight space is created using these recorded

weight vectors. Thus, selecting which of the groups is best is similar to asking the question,

which of the weight vectors used to form each group is the best.

3.3.1 Psychological basis

Triesman [26] conducted studies on referent search in visual scenes composed of objects

that showed that search for a referent object in certain cases is parallel, hence very fast,

while in other cases it is serial, and comparatively slower. Based on this evidence she

put forward a visual model that created separate feature maps for salient features and
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Figure 3-1: Effect of different weight vectors on grouping
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showed that the parallel searches correspond to searches in only one feature map, while

serial searches correspond to searches through multiple feature maps.

Our notion of weights for each perceptual property is related to Triesman’s feature

maps. For example, if a scene referent is identified only on the basis of color, in Triesman’s

model this would correspond to a search in the color feature map, and in our model this

would correspond to a group formed with color having a weight of 1, while all other prop-

erties have a weight of zero. Thus, the most distinctive,pop-outgroup will correspond to

weight vectors that have a non-zero value only for one of the properties color, or proximity,

or area, or shape. This corresponds to the case where referent identification is done using

a parallel search. The instance of a serial search is handled when thepop-outgroup cor-

responds to a more complex weight vector similar to a combination of feature maps. We

have expanded on the definition of a pop-out by trying to identify not just a single object,

but rather a set of objects, i.e. a group pop-out.

3.4 Notation

Before presenting further details, we wish to familiarize the reader with the following no-

tation which will be used here on. Some notation used previously has been listed again as

well, to provide a ready reference for all symbols used in the discussion to follow. Figure

3-2 contains visual examples of some of the notation presented here.

• o - an object in the visual scene

• O - { o1, o2, ... ,oN} set of all objects in a given scene

• g - { o1, o2, ... ,on } a group made up of one or more objects

• w - { w1, w2, ... , wl } a weight vector composed of weights for each perceptual

property. All weight values lie between 0 and 1, and the sum of all weightswi is 1

• gw
θ - { g1, g2, ... , gk } a grouping made up of a set of groups created when weight

vector isw, and threshold value isθ
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• Gw - { gw
θ1

, gw
θ2

, ... ,gw
θm
} a grouping hypothesis composed of one or more groupings.

Each weight vectorw corresponds to a unique grouping hypothesisG

• π - {Gw1, Gw2, ... , Gwk } the entire group space composed of all the grouping

hypotheses generated from a specific visual scene

3.5 Hierarchical Clustering

We have used a hierarchical clustering algorithm to generate groups in a visual scene. The

choice of this algorithm was motivated by the need to generate groups at different levels

of detail, and further to know the relationship between groups at each level. This means

generating groups having few objects, when analyzing the scene in detail, or generating

groups with a large set of objects, when analyzing the scene at a coarser level.

The grouping module takesO as input and returnsπ as output. The hierarchical group-

ing algorithm for a given weight vectorw is given in Figure 3-3.

The grouping model returns all possible groupings (composed of groups) over a range

of weight vectors. We sample the value of each weight in the range[0,1], at intervals of

0.2 to come up with 56 different weight vectors. 56 weight vectors result in 56 group-

ing hypotheses (Gw), together forming the group spaceπ. This is the input to the Visual

grounding module.

The reason for carrying this ambiguity to the next stage is to be able to utilize linguistic

information. This is an instance of our strategy to resolve ambiguities by delaying decisions

until information from all modalities has been collected and analyzed.

3.6 Estimatingpragnanz of a group

Starting from the seminal papers on Gestalt theory, one of the hardest qualities to define

has been the goodness of a group. In traditional literature this is referred to by the term

pragnanz. Goodness of grouping gives a measure for ranking the set of all possible groups

in descending order of quality.
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Figure 3-2: Stages of grouping for (a) weight vector w = [1 0] (proximity = 1, shape = 0),
and (b) weight vector w = [0 1] (proximity = 0, shape = 1)
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variables
n← number of groups
δ← threshold increment
θ← threshold
dist()← distance function

algorithm
n = N; δ = 0.1;gi = { oi }, i = 1, ... , N;
for θ = 0 to 1
k← 0
for i = 1 ton
for j = 1 ton
if ( distance(gi , g j ) < θ )
g′k← mergegi , g j

k← k + 1
else
g′k← gi

g′k+1← g j

k← k + 2
end

end
end
n← k
θ← θ + δ
gw

θ ← { g′1, ... ,g′n }
end
Gw = { gw

θ1, gw
θ2, ... ,gw

θk }
return Gw

Figure 3-3: Hierarchical Clustering
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In our grouping algorithm a greedy approach is adopted, where the distance threshold

valueθ is iteratively increased to initially allow formation of small groups until finally the

threshold is large enough to allow all objects to fall into one group. The amount by which

the threshold value has to change before any two groups merge to form a larger group is

called the goodness/stability of the grouping. The formal definition is as follows.

Assume that for a fixed weight vectorw, at a particular stage in the clustering process

the distance threshold isθ1 with an associated groupinggw
θ1

. Further assume, on incremen-

tally increasing the threshold toθ2 the corresponding grouping isgw
θ2

. If,

gw
θ1

= gw
θ2

(3.15)

gw
θ1−δ 6= gw

θ1
(3.16)

gw
θ2+δ 6= gw

θ2
(3.17)

(3.18)

then,

goodness(g) = (θ2−θ1)/sizeo f(gw
θ1

) where g∈ gw
θ1

(3.19)

the sizeof() function returns the total groupsg in a groupinggw
θ .

This value can be best described as measuring the gestalt property of stability, goodness,

or pragnanzof a group. The figure 3-4 plots the formation of clusters versus the the dis-

tance threshold. The plateaus represent the points in grouping where changing the distance

threshold did not result in the merging of any groups. This is the graphical representation

of the goodness of a group. The adjoining image shows the grouping that corresponds to

the longest, hence most stable plateau for number of clusters/groups equal to 7.

3.7 Summary

In this chapter we discussed the details of the grouping stage. The input to the grouping

stage is a visual scene, composed of a set of block objects. The output, which is passed to
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(a)

(b)

Figure 3-4: (a) visual scene, (b) corresponding stability curve
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the visual grounding stage, is the set of groups formed using all the weight vectors (π), and

a goodness of group/stability value corresponding to each group.
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Chapter 4

Visual Grounding

We use the term grounding to mean deriving the semantics of linguistic terms by connecting

a word, purely symbolic, to its perceptual correlates, purely non-symbolic [11]. Thus, the

word red has its meaning embedded in color perception, as opposed to a dictionary, where

red would be defined cyclically by other words (symbolic tokens).

The ability to formgestaltsis a quality of human perception and in this chapter we

present a methodology for grounding words to gestalt perception.

4.1 Word Learning

The problem we wish to solve is, given a novel scene and a description phrase, to accurately

predict the most likely set of objects, i.e. a group, to which the phrase refers. An example

of this is given in 4-1. Our solution involves training word conditional classification models

on training pairs made up of a description and a group selection from a visual scene. As

detailed in the following sections we first learn the semantics of individual words and then

solve a joint optimization problem over all words in the input phrase to calculate a phrase

conditional confidence value for each candidate group in the scene.
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green

green

Figure 4-1:S: the green pair on the right

Word class Words Visual Features

grouping pair, group, stuff w (weight vector),N (number of objects in a group)

spatial top, bottom, left, right x, y (location)

color red, blue, brown L, a, b

area large, small, tiny h (height), b (width)

Table 4.1: Word classes, words, and visual features

4.2 Feature Selection

In our model we deal with a limited vocabulary set that is divideda priori into four word

classes. Through data collected from subjects in a visual selection task, we wish to ground

each term in our lexicon to its appropriate set of visual features. Table 4.1 lists the word

classes, their corresponding visual features, and example words belonging to each class.

The full list can be also be seen in Appendix A.

Our prime focus is on connecting the meaning of words to features of a group. For this

purpose, in the following section we define the group features that are connected to a word

(belonging to the grouping word class) and present our method for extracting those features

from collected data and the current visual scene.
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Grouping terms

Visual grouping, in our model, occurs by clustering objects using a weight vector with each

element of the vector specifying a weight over a perceptual property distance. Different

groups can be generated using different weight vectors. We believe this weighting ability

is part of gestalt perception. Thus, the true perceptual correlate to a grouping term is

composed of (a) the size of the groups e.g., apair implies a group of size 2, and (b) the

combination of goodness of a group as defined in Section 3.6, and the weight vector. This

is defined in section 4.5.1.

The size of a group, and the goodness of a group are calculated in the visual grouping

module. Here we discuss how to calculate the probability of usage of a weight vector. We

choose groups selected by subjects in our collected Dataset and correlate the group selec-

tion with the weight combination that gives rise to the same group in our model. Figure

4-2 shows the probability of occurrence of a given weight combination in connection with

a grouping selection. This surface has a maximum at proximity=1, color=0, area=0 (only

those cases where the weight for shape is zero were counted for the purpose of visualiza-

tion).

This provides evidence for the general intuition that proximity dominates the groupings

that we form. We interpret each point on this surface as the likelihood that a particular

weight combination was used to perform a grouping.

4.2.1 The composite feature, from object properties to group proper-

ties

Averaging of group features is not a good method as the average along certain feature

sets does not accurately represent the perceptual average of that set. For example, the

average color of a group composed of a red, green, and blue object would be a fourth

distinct color, which is perceptually wrong. What we really wish to do, is pool the word

conditional likelihood of all objects that form a group. The method we employ calculates

individual word conditional probabilities for each object and takes a logarithmic sum over

those values. The logarithmic sum is equivalent to estimating the joint likelihood over all
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Figure 4-2: Distribution over weight space

objects in a group, where the word-conditional probability of each object is independent of

all other objects. Thus, given a wordt, and a groupg composed of objectso1, o2, ... ,on,

log[p(g|t)] = log[p(o1|t)p(o2|t)...p(on|t)] (4.1)

4.3 The data collection task

Data was collected in the form of pairs of linguistic descriptions and visual scenes. Subjects

were shown two windows on a computer screen, as shown in 4-3.

One window displayed a visual scene composed of 15 rectangular objects, and the other

window contained buttons to select description phrases. The properties of the objects in the

visual scene e.g., area, position, color were randomly chosen and overlapping was allowed.

The subjects were asked to select using a mouse, a phrase from the second window and

all sets of objects that matched the phrase description from the first window. A new scene
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button could be clicked to proceed to the next scene. Each selected object was highlighted

by a white boundary (the background color of all scenes was black). Deselection of an

object was allowed. The subjects were told to make a selection if they felt an appropriate

set of objects existed in the scene, otherwise to make no selection at all. Ano selectioncase

was recorded when a phrase was selected but no objects were selected, or a phrase was not

selected at all.

Figure 4-3: The data collection task

The phrases chosen for the task were constructed from words from our lexicon listed

in Appendix A. Data was collected from 10 subjects, with each subject being shown a

set of 10 phrases. The 10 phrases for each subject were chosen from a set of 48 unique

phrases. Some phrases were shown to more than one subject. All the phrases can be seen

in Appendix B. Along with the 10 phrases each subject was shown 20 different scenes,

of which the first and last five were discarded, leaving 10 scenes, resulting in 100 phrase-

scene pairs per subject. Aggregated over 10 subjects, this amounted to a total of 1000

51



unique phrase-scene pairs. As we use information from theno selectioncase to train our

model, we have counted those cases as well. In the initial data collection it was noticed

that there were insufficient exemplars for color terms, hence a 11th subject was used to

collect data, but only for color description phrases e.g.,the brown one. The selection of

the number of objects in the scene (15) was done with an aim to elicit complex grouping

choices. Appendix B contains a listing of all the phrases used according to subjects along

with a histogram of word-class occurrence.

4.4 Grounding a word to its visual features

The collected data is composed of phrases and group selections. Each word in a description

phrase is paired with the visual features of the objects in the corresponding group selection.

Which visual features to associate with a word is based on the word class to which the word

belongs. Formally, a phraseSk is composed of wordsti , and is paired with a group selection

gk from sceneI . Each wordti is associated with a visual feature vectorx that is dependent

on the word-class ofti . We wish to estimate a distribution over all examples of a word and

the corresponding selection. This in essence is a distribution estimated over all thegood

examples of a word. For example, an object selected asred would be a good example of

red, while one that is not selected asred would be a bad example ofred. Thus we refer to

the values estimated over all good examples as thepositivemodel parameters for a given

word. We use the maximum likelihood estimates of the Gaussian parameters to estimate a

word-conditional distribution over the feature space corresponding to the semantics of the

word ti :

µti =
∑

k,wi∈Sk

∑
j,o j∈gk

x j

∑
k, ti∈Sk

∑
j,o j∈gk

1
(4.2)

Σti = E[(x−µti)(x−µti)
T ] (4.3)
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θti =

 µti

Σti

 (4.4)

For each word in our lexicon we also estimate a word-conditional distribution over all

bad exemplars associated with a word. For example, in a scene where a subject chose a

particular object as red, all other objects are classified as bad examples of a red object.

The parameters of this distribution are referred to as the background model. Objects with

features having a high probability value in the background distribution would qualify as

goodexamples of an object that could be described asnot red.

µti =

∑
k, ti∈Sk

∑
j,o j /∈gk

x j

∑
k, ti∈Sk

∑
j,o j /∈gk

1
(4.5)

Σti = E[(x−µti)(x−µti)
T ]

θti =

 µti

Σti

 (4.6)

4.5 Selecting the best group, using good exemplars and

bad exemplars

The decision on how well a word describes a group of objects is based on calculating two

confidence values:

1. Confidence that a group of objects is a good exemplar for a wordti ,

2. Confidence that a group of objects is a bad exemplar for a wordti .

Consider the case shown in 4-4. Even though there is no truly red object in the scene,
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blue blue

yellow

purple
green

Figure 4-4: Detecting the absence of a red object

we will be forced to make an incorrect decision by choosing the object that has the highest

rank, when sorted by confidence score. This raises the question of how to make a decision

on the validity of the final answer given by our model. In the case shown in the figure,

our model should be able to judge that an object is not red. Rather than building in a hard

threshold value, we employ the information gained from the background model for a given

word. Thus judging the validity of a group given a word can be framed as a two class

classification problem, where the classes are good exemplars giventi , and bad exemplars

giventi .

Once we have established the validity of a group, we rank the groups using the confi-

dence value that it is a good exemplar for a given word. Our final answer for a group that

corresponds to a given word will be the valid group that has the highest confidence value

for being a good exemplar for the given word.

The validity of a group is based on satisfying the condition,

p(gi |θti) > p(gi |θti) (4.7)

where,

p(gi |θti) = N(µti ,Σti) (4.8)

p(gi |θti) = N(µti ,Σti) (4.9)
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Selecting the final answer can be formally stated as,

g = argmax

i

p(gi |θti) ∀i,gi ∈ I and gi is valid (4.10)

4.5.1 The case of grouping terms

Recall from section 3.3 that each group formed can be a member of multiple groupings,

each of which is associated with a goodness measure, and a weight vector. The corre-

sponding weight vectors are used to create a distribution over weight space that gives the

probability of a given weight vector being used to form a selected group, labeled a good

group, the parameters of which are labeledθti , whereti is a word belonging to thegrouping

word class. We also estimate a distribution over weight space of the probability of a given

weight vectornot being used to form a selected group, the parameters of which constitute

the background model and are labeledθti .

We now combine the information from the positive and the negative examples to bias

our final decision. Letw be the weight vector that corresponds to a groupinggw
θ of which

groupg is a part. The groupg must satisfy the following conditions:

p(g|θti) > p(gk|θti) ∀k, gk ∈ π, g 6= gk (4.11)

p(g|θti) > p(g|θti) (4.12)

As defined in the Chapter 3,π is the entire search space of all possible groups returned

from the visual grouping module. We can calculatep(g|θti) andp(g|θti) as follows,

p(g|θti) =
56

∑
i=1

p(g|θti ,wi)p(wi |θti) (4.13)

p(g|θti) =
56

∑
i=1

p(g|θti ,wi)p(wi |θti) (4.14)
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p(g|θti ,w) = goodness of the grouping given wordti

p(w|θti) =
probabilityw was used to make a group selection found in the

training data

p(w|θti) =

probabilityw

was used to make a group selection that was not found in the

training data

4.6 Accounting for word order in scene descriptions

Word order plays a role in determining the importance of a given word in a phrase. For

example,on the right of the middle oneversus,in the middle of the right onein the majority

of cases will have two distinctly different referents. The problem can be resolved if each

word can be assigned a rank that is a function of its position in the phrase. Gorniak in [10]

alludes to how spatial and descriptive terms that occur closer to the noun terms seem to be

more important for referent identification. Thus in the phrasein the middle of the right one

the wordright will have a higher rank and a filtering process will be performed shortlisting

referents that more strongly qualify for the spatial phraseon the rightand then among those

referents look for the one that best qualifies for the spatial phrasein the middle.

Given an input phraseScomposed of wordsti each having a weightαi , phrase condi-

tional confidence is defined as,

con f idence(g|S) = ∏
i

αi log[p(g|ti)] (4.15)

The weights are a function of the distance of a word in a phrase from the noun term,

and the total length of the phrase ( only counting words in our lexicon). Thus, the weights

α are calculated as,

αi = exp(−d) (4.16)
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whered is the distance in words counted from the noun term.

4.7 Backtracking

Most of the discussion above has dealt with resolving reference to what can be termed

good groups. Ones that pop out for obvious reasons such as proximity, color etc. But, there

are other cases in which grouping judgments do not correspond to the formation of good

groups. For example, consider Figure 4-5 with the accompanying phrase descriptionthe

red pair.

red

red

Figure 4-5:The red pair, a case handled by backtracking

Even though the two red objects are not a good example of a group (along the dimen-

sions of area, proximity and shape), yet it is clear that they are the set of objects being

referred to. This points towards the need to have a mechanism that in the absence of a good

answer can backtrack, loosen its search restrictions, and re-populate the set of candidate

groups. Our backtracking algorithm can be stated as follows,

search for best group;

if ( a group is found as the best fit )

return the group;

else

if ( restriction1 not removed )
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remove restriction1 specified in equation 4.7 for all words ex-

cluding words belonging to the grouping word class;

search for best group;

else

if (restriction2 not removed)
remove restriction2 specified in equation 4.12 for all words be-

longing to the grouping word class;

search for best group;

else

return no valid referent in scene;

end

end

end

4.8 A dry run

To further explain the details of our model, in this section, we work through an example

scenario. Consider the visual sceneI shown in Figure 4-6 and the accompanying descrip-

tion phraseS. The processing steps are as follows:

green

green

Figure 4-6:S: the top left pair
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1. Visual grouping

Input: Visual sceneI

Output: Group search spaceπ

Hierarchical clustering forms the full set of groupings. Two free parameters are

changed to give rise to different groupings, the grouping threshold and the distance

weight vectorw. The full set of groupings, that form the grouping search spaceπ, is

returned.

2. Word conditional confidence

Let the features corresponding to a perceptual property of an object belonging to

groupg be represented by a feature vectorxi whereoi denotes the object. Taking the

word topas an example, the word conditional probability for words belonging to the

spatial, color or area word class can be stated as,

p(xi |θtop) = N(µtop,Σtop) (4.17)

p(g|θtop) = ∏
i

p(xi |θtop) oi ∈ g (4.18)

Takingpair as an example, the word conditional probability for words belonging to

the grouping word class can be stated as,

p(g|θpair) =
56

∑
i=1

p(g|θpair,wi)p(wi |θpair) (4.19)

3. Semantic weighting based on word order

The word order of a phrase gives an order for semantic resolution. Each word in

the phrase is weighted according to its position in the phrase as follows (only words

belonging to our specific vocabulary are counted),

S : the top le f t pair

word distance(top, pair) = 2
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αtop = exp(−word distance(top, pair))

4. Phrase conditional confidence values

After calculating word conditional confidences, the evidence from each word condi-

tional distribution is pooled together to create a composite phrase conditional confi-

dence value,

con f idence(gi |S)= log[p( f i |top)]·αtop+ log[p( f i |le f t)]·αle f t+ log[p( f i |pair)]·αpair

(4.20)

5. Final selection

For a group to be selected it must satisfy the following conditions

(a) p(gi |θt j ) > p(gi |θt j
), ∀ j, wheret j ∈ S

(b) p(gi |S) > p(g j |S), ∀ j, wherei 6= j

6. Backtracking

If the final selection procedure does not allow any groups to filter through, the search

criteria are loosened and can be summarized as,

• loosen restriction (a) from the Final Selection procedure with respect to spatial,

color and area terms. Repeat Final Selection procedure

• loosen restriction (b) from Final Selection procedure with respect to grouping

terms. Repeat Final Selection procedure
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Chapter 5

Evaluation

We evaluated the performance of our model on a visual identification task. The task mea-

sures the percentage accuracy of our model in identifying the correct referent group for a

scene description. A decision is judged correct when it matches the decision of a human

judge for the same scene and linguistic description pair. The method of data collection was

previously detailed in Section 4.3.

5.1 Task details

The description phrases were composed of terms from four word classes, (1) grouping e.g.,

pair, (2) spatial e.g.,top, (3) color e.g.,red, and (4) size e.g.,large. The entire vocabu-

lary is listed in Appendix A and the the breakdown of phrases used for testing is listed in

Appendix B.

We performed leave one out testing on our dataset. We employ this techniques so as to

best utilize our limited amount of data and to present results that account for the individual

subjectivity in the decisions made by each person from whom data was collected. Data

collected from a particular subject was marked as testing and training was done using the

data collected from the remaining 9 subjects. In this manner 10 separate evaluation results

were calculated that are presented in the Section 5.2.
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5.1.1 Evaluation function

We evaluate our model using two different criterion. In the first criterion, labeledC1, a

decision is considered correct, when the decision made by a human subject is the same as

the best decision returned by our model. When a human subject has made sayn different

decisions for a given description, then we compare each decision with the firstn best groups

returned by our model. We employ this method because, the order in which a group is

selected by a human subject cannot truly be said to be an indicator of whether the group fits

the given description better relative to other groups. It could be chosen first simply because

the subject started parsing the visual scene from a particular spot in the scene.

Using the second criterion, labeledC2, a decision is considered correct, when the de-

cision made by a human subject is in the set of all final possible groups returned by our

model.

5.2 Results

To provide a comparative analysis we evaluated three methods for grouping. In method 1,

labeledMR, for any given input phrase a set of objects is randomly chosen as the answer. A

program was created to generate random answers (only one answer per description, hence

it is compared using criterionC1 only), and the values shown are an average over 10 trials

usingMR. The theoretical probability for choosing a group in a scene is 1/2n, wheren is

the number of objects, as there can be 2n possible subsets. The actual probability however is

significantly increased by the availability of linguistic information. Method 2, labeledMP,

is a variant of our model, in which distance is calculated using only one perceptual property,

proximity. We implement this, by fixing the weight vector of our distance function to have

a weight value of 1 for proximity and a weight value of 0 for all other perceptual properties.

Method 3, labeledMG, uses our model with all weight vectors taken into consideration.

All results are shown for two sets, (a)S1, in which all answers given by a subject, in-

cludingno selectionanswers are counted, and (b)S2, in which only those answers in which

an actual selection was made are counted. The average percentage of selections made by

subjects was 59.5% of the total phrase-scene pairs shown, and the standard deviation was
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S1 S2
Subject Random (MR) Model (MG) Proximity (MP) Model (MG) Proximity (MP)

1 2.2 46.6 57.3 26.1 30.3
2 3.5 28.9 36 9.1 10.4
3 4.5 32.7 45.5 16.7 16.7
4 5.4 24.1 37.5 6.8 21.6
5 3.6 22.3 20.5 11.4 6.8
6 1.3 15.8 9.9 15.8 9.9
7 6.1 36.6 42.6 34.4 26.3
8 4.1 26.2 34 14.7 19.6
9 5.3 22 27.27 8.3 7.1
10 4 10.9 18.8 9.6 14.4

Average 4 27.5 32.9 15.3 16.3

Table 5.1: Evaluation results per subject using criteriaC1

S1 S2
Subject Model (MG) Proximity (MP) Model (MG) Proximity (MP)

1 49.5 59.2 39.1 39.1
2 36.8 36 20.7 10.4
3 57.4 54.5 41.7 25
4 42.9 42.9 35.1 29.7
5 33 21.4 25 7.9
6 24.8 15.8 24.8 15.8
7 37.6 42.6 39.4 28.1
8 46.6 42.7 49.2 34.4
9 25 27.3 13.1 7.1
10 31.7 26.7 34.9 24.1

Average 38.5 36.9 32.3 22.2

Table 5.2: Evaluation results per subject using criteriaC2

26. This shows that the selection process in our task has a lot of subjective variability as

regards the presence or absence of a described set of objects.

Table 5.1 shows the percentage accuracy results for the referent identification task, us-

ing evaluation criterionC1. Proximity alone does better in this evaluation. This indicates

that the effect of proximity on group selection is disproportionately larger compared to

other perceptual properties. Table 5.2 shows the percentage accuracy results using eval-

uation criterionC2. In this evaluationMG does better thanMP. The better performance

reflects the accuracy with which using multiple perceptual properties helps to shortlist the

correct referent group. In Figure 5-1 we present average values for the results using eval-
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uation criteriaC1 with error bars (one standard deviation above and below). Figure 5-2

presents a similar graphic for evaluation criteriaC2.

Figure 5-1: Average values of results calculated using evaluation criteriaC1

5.3 Discussion

Our dataset was composed of randomly created synthetic scenes, with all visual properties

selected from a continous feature space. Hence, regular patterns or groups of objects with

absolute similarity along a visual property occurred very few times. This imposed a greater

degree of hardness on the task, that is reflected in the low accuracy values in the results.

The results show that as expected our model performs better than random selection

MR. The similar performance ofMG andMP indicates the influence of proximity in the

integration of visual properties. The possible conclusions to be drawn from this result are

that, (a) proximity alone is enough for a model of grouping, and (b) that proximity plays

a disproportionately larger role in influencing a grouping decision but does not suffice by

itself. The first explanation is invalid because simple test cases can be constructed in which

proximity will be unable to pick out the right group. Such an example is given in Figure

5-3. For the linguistic descriptionthe pair, the most intuitive choice is selecting the two
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Figure 5-2: Average values of results calculated using evaluation criteriaC2

white blocks. But any proximity measure will group the red and white block together first,

thus preventing the formation of the correct pair. As we used randomly generated scenes

the probability of creating two objects with the same shape, size and color was very low.

In the absence of strong similarity along these perceptual properties, proximity is used as

the most stable visual property.

Figure 5-3: Visual grouping scenario in which proximity alone fails

The second conclusion, that proximity plays a disproportionately larger role is in ac-

cordance with our results. Our initial hypothesis, that preference for different weights,

derived from the collected data, will indicate a preference for using proximity is evident in

the distribution derived over all weights shown in Figure 4-2. Our results indicate though
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that the bias towards proximity, in our model, is not in a proportion sufficient enough to

show significant gains over using proximity alone. This could have resulted due to lack of

sufficient training data. Another reason for this could have been the inability, within the

framework of our task, to assume a direct causality between a particular weight combina-

tion and a grouping. Hence, all weight combinations that produce the grouping must be

taken into account, thus spreading out the derived weight distribution. In future, we wish to

explore methods for learning the weight distribution with a mutual inhibition mechanism,

so as delineate the effect of a perceptual property relative to all others. Ecological statistics

collected for gestalt grouping phenomenon [8], [3] also support the explanation, that prox-

imity is more important than other perceptual properties. As a future direction, we wish to

devise an experimental task to collect data from which we can elicit more accurate statistics

for how the influence of individual perceptual properties is integrated, and use that data for

building our distribution over weight space.

The difference in results when using evaluation setS1 andS2 indicates that our model

performs well in selecting the absence of a correct referent. This provides a measure of per-

formance for the method of using a positive and a background model for word conditional

classifiers to judge the validity of a referent for a scene description.

As a first step towards modeling the interdependence of language and gestalt grouping,

these results show promise, and provide a critical analysis of the various challenges posed

by the problem.
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Chapter 6

Conclusion

6.1 A summary

We have devised and implemented a computational model that grounds linguistic terms to

visual gestalt perception, and uses data collected from a linguistic description task to train

a program to identify salient groups in a visual scene.

We presented our model in two parts, (1) visual grouping, and (2) visual grounding. In

visual grouping, taking a visual scene as input, we implemented a hierarchical clustering

algorithm to form a hypothesis set of groupings (π). As our distance function, we used

a weighted combination of the distances between two objects, along individual percep-

tual properties e.g., color. We created a distribution over weight combinations from data

collected in an experimental visual group selection task. This distribution represents the

confidence that a given weight combination is used to form a salient grouping. We defined

a stability measure for quantifying the goodness of a grouping as, the change in distance

threshold value from the formation of a group to its merging with another group during

the visual grouping of a scene. We introduced an overall saliency score of a group that

combines the goodness of a group with the confidence of the weight combination that was

used in forming the group. This gives us a hypothesis set of all groups with a saliency score

for each group.

The second part of our model, visual grounding, dealt with the problem of resolving the

semantics of a scene description. The entire lexicon of words is divideda priori into four
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word classes. Each word class has a vector of features associated with it. We learn word

conditional probability models over scene-linguistic description pairs. For each word, we

create a positive model trained on the features of objects that are selected as exemplars

for the word, and a background model over the features of all objects that are not selected

as exemplars for the word. These two models are used to handle cases in which a scene

description does not have a valid referent in the scene e.g., the descriptionthe red pair

for a scene that has no red objects. For handling word order and calculating a phrase

conditional confidence for a group, a weighted pooling of all word-conditional probabilities

is performed. The group with the highest phrase conditional confidence is returned as

the answer. For handling cases where the initial processing does not return an answer,

a backtracking procedure was implemented that loosens the semantic constraints on the

search through the set of all candidate groups.

We evaluated and presented the results of the performance of our model on a visual

referent identification task.

6.2 Future Work

Following are some directions for future work towards extending the ideas in this thesis:

• A more comprehensive model of gestalt grouping that will utilize all the laws of per-

ceptual organization. This involves a two-fold challenge of implementing a detection

function corresponding to each law and further Devising a framework for combining

such functions, a first version of which is the weighted sum combination technique

used in this thesis. We also plan to improve the method for learning weight pref-

erences so as to take into account phenomenon such as the disproportionately large

importance of proximity in grouping. As a step in that direction we wish to create

a new experimental task in which a grouping can be unambiguously connected with

the perceptual property used in the grouping.

• Our intention is to be able to build a program for visual parsing and description of

natural images, specifically document images. For this purpose a direction for the
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future is building a low level image processing module for segmenting scenes before

forming gestalt grouping. The efficiency of the segmentation module will determine

how complex a natural image can be handled.

• Currently our program performs natural language understanding. We wish to extend

beyond this and use our visually grounded model for natural language description.

One prospective step in this direction is to implement the techniques presented in [17]

for adding the capability of forming scene descriptions.

6.3 Contributions

We have presented a computational model for grounding linguistic terms to gestalt percep-

tion. The model is a first step towards building a visual scene description understanding

and generation system. The methods presented in this thesis can be extended to handle

more complex images e.g., web pages, and other types of electronic text documents. As

part of our model we also introduced a saliency measure for groups based on a hierarchi-

cal clustering framework, and a weighted distance function. We used adaptive weighting

of visual properties in our model, where the probability of usage of a weight combination

adapted to human judgement data collected from a visual group selection task. Our model

was implemented as a program that can take a visual scene as input and identify the correct

group referent. This functionality when transplanted into a visual description tool, such as

a document describer for the visually impaired, would allow an interactive, intuitive and

intelligent interface for accessing and navigating the document using natural language.
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Appendix A

Lexicon

Word class Word

grouping pair triplet group
stuff ones one
blocks block

spatial middle top bottom
left right rightmost
topmost leftmost

color red green blue
purple yellow brown
pink grey orange
white black violet

size large small tiny
big

other on the in
rectangles of to
towards at

71



72



Appendix B

Description Phrases

Subject Phrases

Subject 1 the pair in the middle the large green rectangle
the blue pair in the top right the stuff at the bottom
the triplet to the left The red pair
the rightmost pair the group of blue ones
the pair of small rectangles the small rectangle on the left

Subject 2 the pair in the middle the blue rectangle
the green pair on the right the stuff at the top
the triplet to the left The red pair
the topmost pair the group of red ones
the pair of tiny rectangles the small rectangle towards the top

Subject 3 the pair in the middle the pair at the top
the small rectangle towards the top the pair of tiny rectangles
the pair at the bottom the small pair on the left
the red pair the rightmost pair
the group of red ones the large block

Subject 4 the pair the group of green rectangles
the big block the group at the bottom
the red stuff to the left the purple stuff in the middle
the green one at the top the brown pair
the leftmost pair the group of big rectangles
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Subject Phrases

Subject 5 the stuff to the left the pair towards the bottom
the violet pair the rightmost block
the blue pair in the middle the yellow one
the group to the left the topmost pair
the small block the left one on top

Subject 6 the large pair the pair of small rectangles
the tiny blocks at the top the rightmost triplet
the middle one the pair in the top left
the grey stuff the group
the triplet the topmost pair on the right

Subject 7 the red stuff to the left the stuff at the top
the pair in the middle the big block
the large pair the green one at the top
the brown pair the small pair on the left
the group the stuff at the bottom

Subject 8 the group at the bottom the group of big rectangles
the blue pair in the middle the rightmost triplet
the pair of tiny rectangles the tiny blocks at the top
the pair at the bottom the pair at the top
the grey stuff the group of red rectangles

Subject 9 the middle one the triplet to the left
the pair in the top left the large block
the violet pair the purple stuff in the middle
the green pair on the right the group of green rectangles
the pair of small rectangles the small block

Subject 10 the topmost pair on the right the triplet
the group of blue rectangles the rightmost block
the red pair the pair towards the bottom
the pair the group to the left
the yellow one the small pair

Subject 11 the red one the blue one
the green one the purple one
the yellow one the brown one
the pink one the grey one
the orange one the white one
the black one the violet one
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Figure B-1: Word histogram
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Appendix C

r, g, b to CIEL*a*b* conversion

C.1 r,g,b to XYZ

CIE XYZ color space is the cone-shaped space formed by the tri-stimulus values that when

applied to the CIE primaries, match any visible color.


X

Y

Z

 =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227




r

g

b


C.2 Conversion form XYZ to L*a*b*

CIE 1976 L*a*b* linearizes the perceptibility of color differences. The distance between

colors in this system is intended to mimic the logarithmic response of the eye. Coloring

information is with respect to the color of the white point of the system denoted by subscript

n. The conversion formula [2] is as follows,

L∗ = 116(Y/Yn)1/3−16 f orY/Yn > 0.008856

L∗ = 903.3∗Y/Yn else
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a∗ = 500∗ ( f (X/Xn)− f (Y/Yn))

b∗ = 200∗ ( f (Y/Yn)− f (Z/Zn)) where,

f (t) = t1/3 i f t > 0.008856

f (t) = 7.787∗ t +16/116 i f t ≤ 0.008856

HereXn, Yn andZn are the tri-stimulus values of the reference white.
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