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ABSTRACT
We introduce a system for visualizing, annotating, and ana-
lyzing very large collections of longitudinal audio and video
recordings. The system, TotalRecall, is designed to ad-
dress the requirements of projects like the Human Spee-
chome Project [18], for which more than 100,000 hours of
multitrack audio and video have been collected over a twenty-
two month period. Our goal in this project is to transcribe
speech in over 10,000 hours of audio recordings, and to an-
notate the position and head orientation of multiple people
in the 10,000 hours of corresponding video. Higher level be-
havioral analysis of the corpus will be based on these and
other annotations. To efficiently cope with this huge corpus,
we are developing semi-automatic data coding methods that
are integrated into TotalRecall. Ultimately, this system and
the underlying methodology may enable new forms of mul-
timodal behavioral analysis grounded in ultradense longitu-
dinal data.
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1. INTRODUCTION
The rapidly increasing capacity and decreasing cost of

data storage is allowing the generation of very large databases
of multimedia content. These data warehouses are currently
present in the entertainment, medical and security indus-
tries, but will soon find their way into personal applications.
Making sense of these massive corpora leads to new technical
and user interface design challenges.

Inexpensive and very large capacity storage has also opened
new doors in the behavioral sciences, allowing observational
corpora to be collected at unprecedented scales. The Human
Speechome Project (HSP)[18] motivates the work presented
here. The goal of HSP is to study early language develop-
ment though analysis of audio and video recordings of the
first two to three years of a child’s life. The home of the
family of one of the authors (DR) with a newborn has been
outfitted with fourteen microphones and eleven omnidirec-
tional cameras. At the time of this writing, approximately
10 hours of audio and video have been captured on a daily
basis from multiple cameras and microphones over the past
22 months. The corpus thus far consists of over 75,000 hours
of audio and 35,000 hours video. This data provides many
new opportunities to understand the fine-grained dynamics
of language development. We plan to study the child’s early
words by tracing back to the contexts in which they were
used by adults interacting with the child.

Video is recorded at approximately 15 frames per second,
1 megapixel resolution from cameras with fisheye lenses em-
bedded in the ceiling. 16 bit, 48 KHz audio is recorded
from ceiling mounted boundary layer microphones. To be
useful for analysis, a large portion of speech that the child
hears needs to be detected, tagged with a written transcript,
and labeled with the appropriate speaker. Initial annota-
tion of video content will focus on detecting and identifying
all people in the home, with emphasis on head orientation
providing insight into their shared attention. The video an-
notations provide information about the context in which
words are used in natural child-caregiver interactions.

HSP entails some unique challenges for coding:

• HSP gathers far more data than strictly necessary for
language development research. Audio and video is
gathered in rooms without the infant present, when



the child is asleep, and when non-linguistic activity
occurs. Gathering this data is necessary, nevertheless,
to ensure maximal coverage. The approximately 200
hours of multi-track audio and video recorded each day
can be distilled into about three or four hours of con-
tinuous, pause-free speech relevant to the language re-
search.

• Due to the unconstrained vocabulary and topic of nat-
ural speech in the home, the highly spontaneous na-
ture of informal and child-directed speech, and the
pragmatic necessity of placing microphones at a dis-
tance (ceiling mounted), current speech recognition
technology is woefully inadequate for producing accu-
rate speech transcriptions. As a result, human tran-
scribers are being employed. Given the enormous quan-
tity of speech to be transcribed, the efficiency of human
transcribers is of paramount importance.

There are several existing tools that speech and language
researchers currently use to code raw voice data with meta-
data tags such as transcription, prosody, speaker ID, etc[13,
2, 3, 12, 16, 17, 19, 14]1. Coding using existing tools is
tedious and time consuming. Furthermore, these tools are
designed to work with small raw datasets, on the order of
minutes or hours. Current coding tools are not designed to
work smoothly with very large corpora such as HSP. We
present a new software system, TotalRecall, designed to ef-
ficiently cope with very large corpora and to maximize the
productivity of the human data annotator. Our strategy
is to combine human and machine analysis in ways that
leverage complementary strengths. TotalRecall increases
speech transcription productivity by leveraging signal pro-
cessing techniques to automatically classify sound segments,
remove silences and pauses, and chunk speech into short,
easily-transcribable sections. The idea is to use automatic
methods to preprocess audio recordings and prepare easy-
to-transcribe “soundbites” that a human transcriber may
rapidly transcribe without being distracted by secondary
tasks such as finding speech, selecting the best channel to
listen to, and so forth.

In addition to speech transcription, we also seek to anno-
tate salient aspects of human behavior in video. For exam-
ple, when studying language acquisition by young children,
one may want to look at the effects of caregiver proximity or
joint attention: instances in which the caregiver and child
both focus on the same object. To address these issues,
TotalRecall contains functionality for annotating features of
video, including person identification, location, and head ori-
entation. Similar to audio, we have chosen a semi-automatic
approach that combines manual annotation with automatic
techniques such as a person tracker and head pose estimator.

Many of the key features of TotalRecall are motivated by
one of the initial data coding tasks now underway in our
lab: transcription of all speech heard and uttered by the
child from ages 9-18 months. To perform this task, annota-
tors must first locate and track the child’s location within
the home, identify the audio channel which has the clear-
est signal (a conversation in the house will be picked up by
microphones in many different rooms), find and mark the
extents of speech within that channel, identify the speaker
and finally transcribe the speech. TotalRecall helps auto-
mate these tasks.
1See [7] for a review of these and other annotation tools.
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Figure 1: Three categories of TotalRecall data: raw,
segments and annotations. Raw data is the recorded
audio or video. Segments denote time extents within
the raw data. Because TotalRecall handles many si-
multaneous channels of raw data, segments are also
labeled with a channel ID (not shown in this il-
lustration). Annotations are grounded to segments
in a many-to-many relationship. In this case two
utterances are linked to metadata tags identifying
speaker and transcription. A topic tag has been
grounded to both segments.

The next sections describe the infrastructure and algo-
rithms that make this semi-automation possible. In the
first section, we introduce the TotalRecall annotation model.
Next we describe the TotalRecall interface and explain how
it is optimized to cope with hundreds of thousands of hours
of data via its visualizations and GUI. The algorithms used
to process video and audio are described in sections 5 and
6, respectively. We describe how these algorithms increase
the efficiency of the human annotator’s coding tasks. We
conclude with a discussion of avenues for future work.

2. ARCHITECTURE AND THE ANNOTA-
TION MODEL

Data within TotalRecall is divided into three broad cat-
egories: raw, transform and meta. Raw data is the origi-
nal unmodified video and audio streams as recorded on-site.
Transform data is fully automated transformations of the
raw data. These transformations are frequently lossy. Ex-
amples of transform data include power spectral coefficients
used to display spectrograms of audio and “video volumes”
used to display movement patterns within video (see section
4.2). Metadata refers to annotations that involve human
interpretation. Examples of metadata include speech tran-
scriptions, speaker and activity classifications and motion
tracks of people. Unlike raw and transform data, which are
stored in a time-based file hierarchy, metadata is stored in
a relational database.

Raw and transform data are divided into files, each of
which contain one minute of data for one channel. A file
tree rooted at the year and progressing down through month,
day, hour and minute holds these files. TotalRecall automat-
ically stitches each channel’s disparate data sources into a



Figure 2: Screenshots of the TotalRecall system. In the left image, one video and one audio channel are
being displayed. The video channel displays video volumes tracing two people moving in the kitchen. Below
it, the accompanying audio track shows transcription and speaker ID annotations over spectrograms of the
sound. The details window on the right shows additional information about the currently selected segment
and its attached annotations.

single continuous stream. This allows TotalRecall to han-
dle audio and video data of arbitrary length, with limits
imposed only by storage capacity.

Annotations within TotalRecall are grounded to the raw
data via many-to-many relationships. The intermediary we
use are segments, globally unique locators to extents of time
and particular audio or video channels. Each segment is
a triplet: channel ID, start time and stop time, where the
times are measured at millisecond resolution in UTC. The
channel ID is an identifier of the microphone or camera with
which the raw data was recorded. Figure 1 shows an exam-
ple where a single annotation is grounded to two distinct
segments and each segment is linked to three annotations.

TotalRecall is built to handle many millions of annota-
tions across tens of channels and years of raw data. It is a
collaborative tool, designed to support multiple users with
different levels of data access (maintaining the privacy of
the HSP subjects). Each annotation is tagged with the user
who created it, as well as time(s) of creation and subse-
quent modification. Because annotations are grounded to
segment intermediaries, changes to a segment’s extent prop-
agate to all linked annotations. Overall program efficiency
is increased by storing metadata in a relational database.
This allows sections of raw data to be coded by multiple
annotators, and lets statistical inferences about the quality
of annotations be made.

3. USER INTERFACE
The user interface of TotalRecall is organized into three

primary windows. Figures 2 and 3 show screenshots of the
TotalRecall system. In figure 2, the first window displays a
synchronized timeline view of the multiple audio and video
channels. Users view transform data in this window as well

Figure 3: The TotalRecall video player, displaying
low resolution video clips of all active channels on
the left, and a single full resolution clip of the se-
lected channel on the right.

as view and edit annotations. The second window (the de-
tail view) displays additional information about selected seg-
ments and holds the various configuration options for the
program. The third window (figure 3) displays a single video
channel at full resolution and ten video channels at reduced
resolution and acts as a basic video player. This window is
also used to make annotations to video.

The timeline interface of TotalRecall borrows from the
visual vocabulary of multitrack audio and video editors in



Figure 4: Detailed view of a video volume, showing two people moving. The video frame is displayed for
clarity.

order to minimize training time of human annotators. Like
these editors, the user can “zoom” the temporal resolution
displayed though a continuum of ranges. The timeline view
spans seven orders of magnitude of temporal resolution: at
widest, a TotalRecall user can examine a year’s activity, and
at the highest resolution, she can examine sub-second inter-
vals. A fisheye view[9] of the timeline allows users to exam-
ine and annotate a particular moment in time while being
aware of the annotations which make up the context. A
scroll bar at the bottom of the window allows the annotator
to change the view backward and forward in time. Scrolling
in this way is done nonlinearly. As the user strays farther
from the initial position, the view zooms out. We have found
it qualitatively easier to maintain a clear sense of the period
of time under examination in this way.

4. VISUALIZATIONS
The visualizations for metadata and transform data are

shown in the timeline window. Visualizations are view-
able across all levels of temporal zoom. The visibility of
data visualizations can be filtered. For example, the user
can choose that only segments containing transcripts by a
specific speaker are visible. Visibility for transform data is
coarse (on/off).

4.1 Metadata: Segments and Annotations
The basic metadata of temporal extents (segments as de-

scribed in section 2) are displayed as rectangles. Within
these rectangles are strips for the annotations which are
grounded to it. Each strip shows a summary of that anno-
tation’s data; for example speaker ID, transcript, etc. Seg-
ments are selected by clicking on them or by keyboard navi-
gation. When selected, details about the segment appear in
the detail window. There, less-frequently needed metadata
such as confidence score, modifying user and globally-unique
ID, are displayed. The size of the segment rectangle limits
the number of simultaneous annotations that can be seen at
once in the timeline view. This limitation does not exist in
the detail view.

4.2 Transform data
In the timeline window of TotalRecall, video is displayed

using a video volume technique similar to [6]. Visualizing
video in this manner allows an annotator to rapidly find
activity in the house and mark the video channel that shows
the infant. One day’s video—approximately 50 hours of raw
data—can be so annotated in approximately 2 hours.

The video volume visualization works by first applying
an alpha mask to each frame of video such that pixels which
contain motion or activity are made opaque and pixels which

remain static are made transparent. Specifically, the alpha
value for each RGB pixel is computed as the scaled, abso-
lute distance between itself and the corresponding pixel in
the previous frame of video. Each processed frame is then
placed on a horizontal timeline such that each frame overlaps
the previous frame almost entirely, causing time and hori-
zontal space to intermix on the horizontal axis, while vertical
space occupies the vertical axis. The resulting image dis-
plays people as worm-like patterns that give an immediate
summary of the locations of people throughout the video.
This technique relies on a fixed camera position. Figure 4
shows a detailed view of a video volume.

Similarly, audio is displayed visually using spectrograms,
enabling users to locate, and often visually identify, different
types of audio activity.

The timeline window can display one additional video vi-
sualization, called “actigrams.” Actigrams show the level of
motion occurring in multiple, hand-coded regions of inter-
est, such as “motion near the refrigerator” or “motion at the
dining table”. While actigrams may provide a human an-
notator with a very coarse summary of activity, they are
specifically designed to be easily readable by machine and
have been used as input for the activity recognition system
described in [8]. This system uses actigrams to identify and
annotate such activities as a person making a cup of coffee
or getting a drink of water.

5. VIDEO ANALYSIS
TotalRecall contains functionality to annotate the iden-

tity, location, and head orientation of people in video. Head
orientation provides an estimate of gaze direction where eye
tracking is not possible. These annotations are created in the
video player component of TotalRecall. The annotator may
specify person location in any given frame of a video stream
by drawing a bounding box around a person and selecting
an identity label from a popup menu. When annotating
head orientation, the annotator first draws a bounding box
around a head, which causes three images to appear on top
of the video frame as shown in Figure 5. The first image
shows a 3D head model, the second shows a magnified view
of the real head, and the third overlays the 3D model on top
of the real head. Using an off-the-shelf input device with six
degrees of freedom, the annotator may adjust the position,
scale, roll, pitch and yaw of the 3D head until it aligns to
the real head.

While annotating a single frame in this manner takes
only a few seconds, annotating one hour of continuous video
would require at least several hours of labor. Several efforts
are underway to increase the efficiency of these annotation
tasks. First, a person tracker has been integrated into To-



Figure 5: The head annotator allows the user to
specify head pose by manipulating a 3D model with
a 6-DOF input device.

talRecall to automate the location annotation task and to
propagate identity labels throughout sections of video. Sec-
ond, a head pose estimator is under development to auto-
mate the head annotation task.

5.1 Person Tracking
The prototype tracker is based on the mean-shift algo-

rithm[5]. Typically, such a tracker is initialized by provid-
ing a single bounding box around a target. The target is
modeled as the color distribution within this box. In each
subsequent frame of video, a nearby region is located which
contains a color distribution that best matches the target
model.

In contrast to trackers that use only motion information,
the mean-shift tracker provides excellent stability in cases
where a person remains still for a long period of time, which
is crucial when the video is taken from a home. A common
enhancement is to continuously update the target model,
which increases invariance to lighting and target orienta-
tion. The tracker in TotalRecall is further augmented to
incorporate motion data from a fast foreground-background
segmenter[15].

5.2 Head Pose Estimation
The HSP video poses several challenges for accurate head

pose estimation: the cameras are mounted overhead and of-
ten only the hair and forehead are visible, a typical head
is only 20x20 pixels in resolution, and the lighting condi-
tions vary considerably. The current head pose estimator
is designed to address these issues by using a textured 3D
model-based approach similar to the system described in [4].

The estimation process begins with a single annotated
head provided by the user, as described in section 5. The
head annotation uses six parameters used to define head
pose: three for angular orientation, two for position, and
one for scale. For each subsequent video frame, the estima-
tion algorithm can be summarized as a three step process.
First, the system applies a mean-shift tracker to obtain the
approximate region of the head. Second, a color classifier
is run on each pixel in this region. The classifier uses a

Gaussian mixture model to determine the probability that a
given pixel is hair, skin, or neither. Based on the classifica-
tion results, each pixel is transformed from an RGB vector
to a vector that contains the probability of skin, probability
of hair, probability of background, and the luminance of the
original pixel. Last, a hill climbing search is performed over
all six pose parameters. This search is performed by ren-
dering a 3D model of the target head in a number of poses
and finding the pose that maximizes the cross-correlation
between the rendered head and the real head. For best ac-
curacy, it is necessary to manually construct a 3D model for
each person’s head, which may not be feasible for data sets
containing a larger number of people.

The head pose estimation system is currently under de-
velopment and the initial results from this system are not
yet available. Although we expect the system to make fre-
quent mistakes, we believe it will be sufficient to automat-
ically annotate short stretches of video and greatly reduce
the number of annotations that must be made manually.

6. AUDIO ANALYSIS
There are three components of the audio analysis which

help semi-automate the tasks of speech transcription and
speaker identification. First, the best audio channel is se-
lected from the 14 tracks based on signal power. This forms
a“virtual channel,”which is then processed into short speech
segments by the speech detection algorithm. Finally, a speaker
identification algorithm is applied to the segments labeled as
speech.

6.1 Channel selection
The channel selection algorithm computes the power of

the audio channels as a function of time. For each au-
dio channel, we compute the RMS amplitude of a sliding
300ms window of samples. Choosing the channel with high-
est power at each window sometimes results in overly rapid
switching between channels. Smoothing is performed using
a dynamic programming cost minimization algorithm that
assigns a fixed cost for switching channels and a cost for
staying in the channel that is not the currently observed
loudest. By changing the relative values of these costs, the
degree of smoothing can be adjusted. The output of the
channel selection algorithm is a set of segments.

One shortcoming of this approach is the inability to dis-
tinguish multiple simultaneous sound sources in different
parts of the house (i.e., captured in different concurrent au-
dio tracks). In such cases, only the louder source will be
detected. Fortunately, it appears that such situations are
relatively rare in the speechome corpus.

6.2 Voice detection and segmentation
The sequence of segments from channel selection serves

as the input to the speech detection and segmentation algo-
rithm. The algorithm’s output is a new set of speech seg-
ments and confidence estimates. The algorithm works by
first downsampling the 48KHz input audio stream to 8Khz,
partitioning the audio stream into 30ms frames, extracting
a feature vector for each frame, classifying the feature vec-
tor as speech or non-speech, and then applying a smoothing
and segmenting algorithm to the sequence of frame labels.
Smoothing and segmenting for speech detection is similar to
that of channel selection.

There are constraints on the minimum and maximum length



of a speech segment. If a segment is too long, it is split into
multiple segments by finding the “split points” that have
both a minimum energy (we prefer to split at silence points)
and yield a small number of new segments that satisfy the
length constraints. A confidence score is also returned for
the speech segment, based on the fraction of frames labeled
as speech.

The feature vector used to classify each frame contains 13
MFCCs[10, 20], energy at two different frame widths, zero
crossing rate, spectral entropy, maximum amplitude and the
relative power between different frequency bands. In total,
there are 19 feature dimensions. Each frame is 30ms long,
with a frame shift of 15ms. The classifier is built with the
Weka machine learning library[22], using boosted decision
trees. Training proceeds by gathering a set of human veri-
fied speech and non-speech segments from the database, ex-
tracting the above-mentioned features for each segment, and
training the algorithm using 5-way cross-validation. The no-
tion of human verified segments includes speech annotations
modified by a human, or speech annotations attached to a
segment that has other human modified annotations.

6.3 Speaker identification
The speaker identification algorithm processes a set of

speech segments, and outputs speaker annotations grounded
to these segments. Feature extraction begins by first down-
sampling the audio stream to 16KHz. The features used
for classification are a superset of the speech detection fea-
tures in that MFCC deltas and double deltas are also ex-
tracted[10]. Components of the Sphinx-4[21] package are
used for this extraction. Each 30ms frame is independently
classified into one of the possible speaker classes. The fi-
nal classification for the segment is the majority vote of all
the frame level classifications. A confidence score is also re-
turned which is the fraction of frame classifications with the
final segment label. If the confidence is below a specified
threshold, then no classification is returned.

7. ANNOTATION TASKS
TotalRecall is optimized for certain coding tasks. Primary

among these is speech transcription. The previous section
described the algorithms used to find and segment speech.
Once these automatic steps are complete, a human annota-
tor must still listen to the recordings and enter the actual
transcription. The transcription task proceeds as follows:
the annotator selects a speech segment and adds a transcrip-
tion annotation, playing the audio only for that segment
with a single keystroke. Once a transcription is entered,
pressing the return key automatically advances to the next
speech segment and begins to play it. Playback speed can
be adjusted by the annotator with a pitch-shifting system
that maintains intelligibility[11]. The primary time savings
comes by automatically segmenting the audio into short spo-
ken utterances and by limiting the amount of mouse move-
ment required to create an annotation.

The task of labeling speech segments with speaker ID (a
necessary step to train the speaker classifier algorithm) is
optimized with a user interface similar to speech transcrip-
tion. The TotalRecall user configures single keys to add a
speaker ID annotation to a selected segment. When this key
is pressed, the current segment is annotated and then the
next speech segment is automatically selected and played.

Trial Tool Average time (mins)

1 CLAN 50.0
2 CLAN 44.5
3 Transcriber 32.6
4 Transcriber 27.0
5 TotalRecall 21.5
6 TotalRecall 20.5

Table 1: Average transcription times for transcrib-
ing five minute audio segments containing similar
amounts of speech.

8. EVALUATION
A pilot evaluation of TotalRecall compared it to CLAN[13]

and Transcriber[2]. In this evaluation, transcription and seg-
mentation were performed completely manually in TotalRe-
call. A separate evaluation looked at manual segmentation
time in TotalRecall to get a sense of the time demands of
the segmentation task, which the automatic speech detection
component eliminates. Further evaluations are needed to
compare transcription in the semi-automatic system against
other systems.

Audio from the Human Speechome Project was exported
to several WAV files that could be processed with CLAN
and Transcriber. Only audio containing dense speech in
a single channel was used, to be fair to CLAN and Tran-
scriber which do not support multi-channel audio. Both
CLAN and Transcriber are split into a transcription panel
and a audio waveform panel. Segments of audio can be high-
lighted, played, and associated to transcriptions. One dif-
ference between CLAN and Transcriber is that Transcriber
does not allow overlapping segments. In CLAN, transcrip-
tion typically proceeds by identifying candidate speech from
the waveform display, highlighting and playing a segment of
the audio, and refining the segment until the desired speech
clip is highlighted. A transcription is then typed, and bound
to the segment. In Transcriber, an annotator might perform
a coarse segmentation of the speech first, and then transcribe
and refine segment boundaries. Alternatively, an annotator
might segment and transcribe simultaneously.

Two annotators were instructed to transcribe speech only,
ignoring speaker identity. In CLAN, entering the speaker
code is part of the transcription syntax, so entering the true
speaker identity did not seem to be more time consuming
than typing a single code for all speakers. Each annota-
tor practiced using the tool on a short trial run before per-
forming their transcription task, which they timed using a
stopwatch program. In TotalRecall, the same method was
employed, focusing on a single channel of audio. Hot-keys
for creating segments and transcriptions were defined, elim-
inating the need for excessive mouse movement. Table 1
and figure 6 compare the average annotator times for these
transcription tasks. For each task, the individual annota-
tor times were within a few minutes of each other. This
evaluation shows that TotalRecall is, by itself, a faster tran-
scription tool than both CLAN and Transcriber.

An evaluation of manual speech segmentation (without
transcription) was conducted for TotalRecall in order to de-
termine how time is required by a human annotator to seg-
ment speech. Two ten minute blocks of single channel HSP
audio were segmented in TotalRecall by human annotators.
They took roughly 22 and 24 minutes each. Time checks



Figure 6: Graph of transcription times from table 1.

at intermediate points during the segmentation showed that
segmentation time to progressed at a steady rate. This sug-
gests that segmenting a block of audio in TotalRecall takes
approximately twice as long as the actual audio duration.
Assuming this segmentation rate, about 10 minutes of the
transcription time for TotalRecall in table 1 is due to seg-
mentation. Although there may be subtleties to transcrib-
ing automatically segmented speech, such as segmentation
errors introduced by system, automatic segmentation should
still provide significant time savings over purely manual seg-
mentation and transcription.

9. BROWSING AND SEARCHING
As the amount of data in TotalRecall grows, finding anno-

tations can become difficult. By using a relational database
to store annotations, queries can be arbitrarily complex and
efficiently executed. Nevertheless, exposing the relational
back end to the user requires them to be familiar with the
database schema as well as the query language. TotalRecall
massively reduces the complexity of making queries by pro-
viding a natural-language query tool. Input sentences are
parsed and the parse tree evaluated with lambda functions
associated with a hand-written grammar. These evaluations
translate the input query into valid SQL[1]. Figure 7 shows
a screenshot of the query tool.

10. CONCLUSIONS
The key contributions of TotalRecall are its user inter-

face and integration with signal processing algorithms de-
signed to semi-automate annotation tasks. The interface
maximizes the efficiency of annotators and allows them to
browse a continuum of multichannel recordings and meta-
data. Specific coding tasks such as speech transcription and
speaker identification are highly optimized by: using video
volumes to locate human activity, processing audio to auto-
matically select the best signal to annotate and pre-segment
utterances, adjusting playback speed and minimizing the
user’s need to switch between mouse and keyboard. The
annotation model used by TotalRecall is flexible, extensible,
scalable and efficiently queried.

One of our long term goals is to study the development of
specific words by tracing all contexts in which a word was
used by either child or caregivers. Our plan is to use Total-
Recall to transcribe all child-directed and child-generated

Figure 7: Screenshot of the TotalRecall natural lan-
guage query tool.

speech in the corpus, and then use the speech transcripts
as an index into co-occurring video. Speech transcripts will
focus our efforts to annotate selected portions of video using
the video analysis methods described in this paper. Building
on these speech and video coding efforts, we will investigate
the role of various cross-modal behavioral interactions in
early language acquisition.
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