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Abstract
The proliferation of inexpensive video recording hardware and enormous storage
capacity has enabled the collection of retail customer behavior at an unprecedented
scale. The vast majority of this data is used for theft prevention and never used to
better understand the customer. In what ways can this huge corpus be leveraged to
improve the experience of customer and the performance of the store?

This thesis presents Mimic, a system that processes video captured in a retail
store into predictions about customer proclivity to purchase. Mimic relies on
the observation that aggregate patterns of all of a store’s patrons—the gestalt—
captures behavior indicative of an imminent transaction. Video is distilled into a
homogenous feature vector that captures the activity distribution by first tracking
the locations of customers, then discretizing their movements into a feature vector
using a collection of functional locations—areas of the store relevant to the tasks of
patrons and employees. A time series of these feature vectors can then be classified
as predictive-of-transaction using a Hidden Markov Model.

Mimic is evaluated on a small operational retail store located in the Mall of
America near Minneapolis, Minnesota. Its performance is characterized across a
wide cross-section of the model’s parameters. Through manipulation of the training
data supplied to Mimic, the behavior of customers in the store can be examined at
fine levels of detail without foregoing the potential a↵orded by big data.

Mimic enables a suite of valuable tools. For ethnographic researchers, it o↵ers
a technique for identifying key moments in hundreds or thousands of hours of raw
video. Retail managers gain a fine-grained metric to evaluate the performance of
their stores, and interior designers acquire a critical component in a store layout
optimization framework.

Thesis Supervisor: Deb K. Roy
Title: Associate Professor
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Chapter 1
Introverview

When was the last time you went to the store? Was it over the weekend,
investigating a new washing machine? Or last night, visiting the supermarket
to pick up fresh tomatoes and milk? This morning buying a watch battery?
Retail shopping is unavoidable, an integral part of the American experience.
And if you are like the average American, over the next year, you will spend
nearly ten thousand dollars in retail stores. Retail is an enormous driver of
the economy. Americans spend in excess of three trillion dollars each year in
retail, roughly 20% of the national gross domestic product. The total sales
less the cost of goods sold—the gross margin—tops eight-hundred billion
dollars (US Census Bureau, 2011a,c,b).

With such enormous stakes, retailers have spent enormous e↵ort to
understand the behavior of the consumer. They have analyzed reams of
transactional footprints, examined surveys and focus groups. They viewed
thousands of hours of video through the lens of an ethnographer. An entire
industry is devoted to consulting on customer behavior, and providing tools to
capture various quantitative measures of customer behavior and preferences.

The last twenty years have seen tremendous technological change that has
multiplied by orders of magnitude the data available to retailers: inexpensive
video recording devices and immense data storage warehouses have enabled
the collection of behavioral data at unprecedented scale. Till now, this
data has been collected primarily for loss prevention. Once recorded, this
video data is left untouched, never to be reviewed. To gain insights about
customer behavior—the patterns of behavior which inform a customer’s
decisions—several questions are prompted: Who will watch the millions of
hours of recorded video? How can any manual process extract meaningful

13
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insights from such a data deluge? This thesis takes advantage of inexpensive
computational processing power to automate some of the tedious customer-
watching tasks and provide a set of tools that can help characterize behavior,
find episodes worthy of detailed examination, and, potentially, help evaluate
and optimize the physical layout of stores. The following chapters present
this computational tool for quantitatively understanding human behavior in
stores, an end-to-end system that uses patterns of movement captured on
video to make predictions about customer purchases. Ultimately, the hope is
to create a better experience for the customer and to increase the e�ciency
of retail stores, driving down the cost for consumers and raising the profits
of the retailer.

1.1 Consumer Behavior in a Brick-and-mortar Store

The most admired company from a retail perspective is Apple Computer.
Last year, Apple’s retail sales per square foot exceed all other major retailers
by a huge margin, nearly twice the second-place finisher, Ti↵any & Co. (Retail
Sails, 2011). Why are Apple stores so productive? Certainly, Apple’s products
engender strong emotional reactions from their customers—an emotional
connection that ultimately manifests in sales. Apple’s stores are productive
because there is strong demand for the products within, but walk into an
Apple store, and it is hard not to notice a di↵erence compared to other
stores. Apple’s retail environments are inviting, with a clean aesthetic that
matches their products and a spacious, uncluttered layout of tables, benches
and displays. If we wanted to divide an Apple store’s performance into
the individual influences of product, employee, lighting, aesthetics, layout—
among a wide variety of other factors—how can we separate these intertwined
factors? Retail stores are never isolated. Their performance is influenced by
factors far outside the building’s four walls. The visceral reaction to a brand
of car is cultivated long before a buyer sets foot in the showroom floor. This
is the rabbit-hole of complications studying the retail environment.

Taking a broader view, a retail store is an instance of the class of narrowly
goal-directed spaces. Goal-directed, in this context, means that the ultimate
users of the space—the customers in the retail store—are motivated to
accomplish one or more of a small set of tasks.1 Other examples of these
goal-directed spaces include public transit hubs, libraries, medical o�ces
and factories. We can contrast this with spaces without such regularity of

1 Of course, the employees also have distinct goals in their use of the space. Here, I focus
on the consumer.

( 14 )
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Figure 1.1: The Apple retail store in the upper west side, New York City. (Images:
c� Apple)

purpose. Homes and o�ce buildings have enormously greater variety in the
activities that take place within.

The smaller set of expected behaviors in goal-directed spaces gives design-
ers, analysts and managers a better way to evaluate the space. These spaces
have clearer objective measures of performance than their more multifaceted
cousins. Herein lies two important consequences. First, a restricted set of
behaviors implies an easier task of modeling macroscopic phenomena—all
things being equal, a model of fewer behaviors will have greater predictive
power. Second, if one’s goals are to optimize the performance of the space,
the objective measures a↵orded by highly goal-directed spaces are crucial.
They give guidance whether one space is “better” or “worse” than another.
The multitude of competing interests in more general-purpose spaces make
comparison between candidate spaces a more subjective judgement.

Returning our view to the retail space, some objective measures in stores
are clear. A store’s profit margin is objective, important and easily measured;
ultimately, it is the final arbiter of success or failure. Other measures of
concern to retailers are not as clear. A customer’s relationship with the
brand, store or employees is subjective. These emotional consequences of
the contact of customer and store are hard to measure without an exit
survey or other explicit intervention. Another challenging confound is the
interaction between the retail experience and other sales channels. If you
need to buy a washing machine, you might visit the local Sears to learn
about the technologies and di↵erent products available—to kick the tires,
so to speak—then choose to buy while sitting on your living-room couch,

( 15 )
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making the purchase through Sears online or other internet retailer.2

Consumer behavior in a retail store—or the behavior of occupants in
goal-directed spaces—is an enormously broad and rich field. This thesis
examines one relevant and constrained corner of the discipline.

1.2 The Scope

Even in a restricted retail setting such as a boutique chocolatier, a framework
for understanding the behavior of the consumer is an enormous undertaking.
Why is the customer there? What motivated her entry into the store? What
factors determine the length of her stay, the size of her purchase (if she
purchases at all)? Do product samples decrease the purchase “activation
energy”? What behavior changes when the purchase is for personal consump-
tion versus a gift? How does the location of the store in the neighborhood
a↵ect the quantity and frequency of customer visits? What e↵ect color?
Smell? Light intensity? The texture of the materials of product packaging?
One should not forget the consequences of a customer’s demographic: gender,
age, economic-segment, culture. A list of these influences and potential
influences could continue ad infinitum, but importantly, these influences are
intertwined and inseparable through simple models.

This thesis frames a narrow but very important sector of retail consumer
behavior. Herein, I develop a model for small retail spaces on the order of
several thousand square feet, typical in size for the small stores that fill the
central portions of the traditional American mall. As an objective measure
of performance, this model assesses the final arbiter of a store’s success:
sales. The bases for the model are the physical patterns of movements of
customers within the store. Of the knotted bundle of influences, the one
I try to disentangle is the gross physicality of customer movement. More
specifically, this thesis pivots on a central hypothesis that there are qualities
of patterns in the comprehensive distribution of people in the store that are
predictive of sales. Essentially: what other customers are doing in a store
correlates with your propensity to make a purchase. Stated succinctly:

The occurrence of a transaction can be predicted from the tempo-
ral patterns of activity distributions in the entire store. That is
to say, there are measurable di↵erences between the distribution

2 Though internet commerce has radically shaped the landscape of sales, this cross-channel
confound has long history. Take for example this story of a Sears retail store. For
decades, the printed catalogs of Sears drove a significant fraction of their revenue.

( 16 )
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of customers in a store preceding a sale and the distribution of
customers when no sale occurs.

The validation of this hypothesis will empower retailers with a suite of
tools to measure and improve their stores, an outcome that will ultimately
help the consumer as well. The validation comes through the demonstration
of an end-to-end system that successfully predicts customer transactions in
an operational store.

The demonstration begins with raw video data captured using overhead
cameras in a store. The video is processed in several steps to distill customer
motion which is then fed to a classification model which discriminates patterns
of customer motion indicative of purchase from those which are not. Each
step along the processing pipeline employs techniques from computer science—
chiefly computer vision and machine learning. The aim is not to advance
individual processing components, per se. Rather, the objective of this
holistic system is to demonstrate-by-example the validity of the central
hypothesis and inaugurate the consequent suite of tools. The goal is to build
a system. Beyond the immediate learnings and tools this system a↵ords,
this thesis is an arrow pointing to future paths. One can have a sensible
expectation that performance of the system will be improved by substituting
best-in-class algorithms for components in the framework.

1.3 The Challenge

Even with the reduced scope of patterns of activity in small retail stores,
there are two deep practical challenges building the system. First is the
inherent di�culty of unwinding the influence of activity patterns from the
multitude of confounds, especially in our case where we have data from
only one store. Second are the technical hurdles that must be overcome to
automate the data collection and processing.

In at least one extreme, activity patterns consciously a↵ect purchasing
behavior: Faced with a long line at the check-out counter, customers will
sometimes choose to abandon their shopping and depart empty-handed. But
in most other circumstances, we might expect the influence of these patterns
of activity to be subtle and subconscious. The signal, in e↵ect, is swamped
in a sea of noise: the many other influences on behavior. The type of product
being purchased also has a huge impact on behavior. Some, like chewing
gum, are impulse-buys. Others (an engagement ring) may demand long
deliberation and negotiation. The cell phone store modeled in this thesis has
a spread of both types of products.

( 17 )
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A panoply of technical challenges bedevil the customer modeling pipeline.
Take as example the problem of tracking the location of customers and
employees in the store using overhead cameras. Occlusions of customers
with each other and store furnishings are frequent. The overhead camera’s
perspective on a person changes radically due to the extreme wide-angle lenses
used. The frequently-seen behavior of customers standing still for minutes
examining a product wreaks havoc on a tracker’s foreground/background
segmentation. Merging the resulting trajectories from multiple cameras into
a single coherent path is fraught with di�culty.

Given all these challenges, an end-to-end system su↵ers an additional
burden. In a system such as ours which connects multiple complicated
parts, errors propagate and expand, diminishing further the signal we are
attempting to capture.

The challenges this thesis confronts are formidable, but the potential
consequences of success are immense.

1.4 The Value of Prediction

Assuming success building a mechanism that can give forewarning of a
purchase, how can retailers leverage the model to improve the experience of
the customer and reduce the cost of selling? I propose three tools.

The first tool aids researchers. Most of the millions of hours of video
collected yearly in retail stores are never seen by human eyes. A successful
model of purchasing behavior can help identify episodes when, with high
probability, there should have been a transaction, but none took place.
Bringing trained human eyes to these “near misses” may identify systemic
opportunities for improvement in sta↵ training or scheduling, the layout of
the store or other retail elements.

Secondly, by bringing real-time or near real-time updates to a store or
regional manager, a prediction tool makes retailers more agile. Finally, when
coupled with a generative model of customer movement, the model can be
used to optimize the physical layout of a store. The ultimate outcome of
each of these tools is to reduce a customer’s frustration, and increase their
satisfaction.

1.5 The Strategy of this Thesis

A fifty-thousand-foot overview of the machinery developed in this thesis—
a system I dub Mimic—will help guide the detailed explanation of the
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Figure 1.2: The data pipeline of the MIMIC transaction classifier. Raw data consists
of multiple video streams from a store and the timestamped transactional record.
Pedestrians are tracked in the video stream and classified as employees or cus-
tomers. Next, trajectories from the multiple cameras are combined then discretized
into a feature vector based on functionally-relevant locations in the store. Finally, an
HMM-based model classifies spans of time as either preceding-transaction or not.

subsequent chapters. A schematic of the flow of data through the steps below
is shown in Figure 1.2.

• We begin with raw data in the form of video captured from several
overhead cameras mounted near the ceiling of the store (A still frame
from one of these cameras shown in Figure 1.3). The raw video then goes
through a series of preprocessing steps to extract customer behavior
patterns and pack them into a form that can be modeled using standard
machine-learning techniques.

• Next, video is spatially subsampled to reduce the computational re-
quirements of subsequent steps. Next, people in each of the video
streams are tracked and classified as either customer or employee. The
tracking module generates these trajectories in image coordinates which
must then be translated into a global Euclidean space. Trajectories
generated from di↵erent cameras are then merged due to overlap in
the camera’s fields of view. Several cameras track the same person at
the same time, and as a person moves from one part of the store to
another, the associated trajectory must be handed o↵ between several
cameras.

• Central to this thesis is the concept of functional locations, or flocs.
These are volumes surrounding areas of the store that may have rele-
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Figure 1.3: A typical
frame of video from an
in-store overhead camera.
This frame is from the Best
Buy Mobile case study
described in Chapter 4.
Video was recorded at
960 by 960 resolution at
approximately fourteen
frames per second.

vance to the various goals or tasks of customers in the store. Flocs are
primarily used to quantify the patterns of customer activity in the store
by discretizing very high-dimensional trajectories output by the tracker
into a homogenized sequence of feature vectors. This sequence of fea-
ture vectors discards potentially relevant information, especially the
individual trajectories of customers, but also mitigates the propagation
of errors present in the tracking data.

• An electronic transaction record (i.e. the receipts of store sales) serves
as a secondary input to Mimic in addition to the raw video. The
timestamped records identify training data in the stream of activity
pattern feature vectors, dividing it into fixed duration episodes labeled
as preceding-transaction or not.

• The final stage of Mimic is a classifier comprising hidden Markov
models trained on the labeled episodes.

This holistic system is used to validate the core hypothesis—that pat-
terns of activity are predictive of transactions—using data collected from an
operating store. Mimic’s ability to successfully predict transactions serves as
a proof-by-example that there exists a predictive signal present in the aggre-
gated dynamic patterns of customer distributions in a store. By inspecting
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the models learned in the final stage of the system and by exploring the
learned model on variations of activity data, we can learn about customer
behaviors in the store.

1.6 Roadmap

The structure of this document follows:

Chapter 2: Context and Related Work This chapter gives background
to the many fields touched by this thesis, outlining previous research and
commercial solutions in the domain.

Chapter 3: MIMIC: Prediction using Functional Locations Next, I in-
troduce functional locations as a low-dimensional feature useful for charac-
terizing the patterns of activity within a retail store, and Mimic, a model
I developed to predict transactions from the low-dimensional patterns of
activity observed in a retail store.

Chapter 4: A Case Study We teamed with Best Buy to install a video
capture system within one of Best Buy’s smaller stores in the Mall of
America near Minneapolis, Minnesota. This chapter details the design and
implementation of a system that captures real-world activity pattern data
from a retail store—fodder for evaluating the Mimic model.

Chapter 5: Performance of the MIMIC model Here, I examine the perfor-
mance of Mimic on the corpus of data collected in our case study, explore the
patterns of behavior captured in a model, and describe several experiments
enabled by Mimic.

Chapter 6: Conclusion I end with a discussion of the tools that are
enabled by Mimic, directions for future research and a summary of this the
contributions of this thesis.

A Note About Language

The work presented in this thesis stands on the shoulders of several collab-
orators in our research group, especially Philip DeCamp, Matthew Miller,
and George Shaw. Where elements of this thesis result from collaborations,
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I have made references to the individuals and any existing documentation
of the work. Furthermore, I make distinction between my work and that
completed in collaboration by shifting the subject in the writing: work com-
pleted alone uses the first-person singular, work completed in collaboration
uses the first-person plural.
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Chapter 2
Context and Related Work

As an end-to-end system that predicts customer behavior from video, this
thesis touches several di↵erent domains of study, each with long history
worthy of a complete chapter. The goal here is to situate the thesis in
context and reflect it against related approaches in each of the several
disciplines rather than exhaustively survey each field of study. Mimic, the
model described and demonstrated in the subsequent chapters, tries to
understand physical behavior of consumers in indoor environments.

In this chapter, I will be discussing models of human (and more specifically,
customer) behavior in buildings, as well as computational tools modeling
behavior in video.

The activity of shopping can be broken along many dimensions. There
are sub-activities common among most shopping experiences: activities such
as browsing, comparing, searching, and purchasing. There are subclasses
of shopping events dependent on what and how much is being purchased—
compare, for example, grocery-shopping to jewelry-shopping. Shopping
behaviors overlap within a single shopping episode as when a customer’s
directed search for a staple such as milk is displaced by a tempting ancillary
item discovered during the search.

Detailed analysis of consumer behavior falls under the purview of sociol-
ogists, ethnographers, and most specifically, consumer marketing researchers.
These researchers draw many of their conclusions from intensive human ob-
servation, a methodology that has the advantage of bringing all a researcher’s
cognitive power to understand the subtleties of human behavior. In contrast,
some researchers studying behavior in public spaces (space-syntacticians,
for example) bring a computational and data-driven perspective—modeling
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Figure 2.1: How this thesis fits in among its many related disciplines.

pedestrians using their trajectory through space, and correlating that behav-
ior with measures derived from the shape and configuration of the space.

Another relevant connection for the Mimic model is computer vision;
Mimic touches on several decades of research in computational vision—from
low-level background/foreground segmentation to high-level event-under-
standing. Many of these techniques employ temporal models, of which
Mimic’s use of hidden Markov models (HMMs) is but one example.

The rest of this chapter examines these areas of study in greater detail and
reflects on how the Mimic model and the case study described in Chapter 4
relate to them. Figure 2.1 places this thesis in context visually.

2.1 Sociology and Ethnography: Methodologies for
Examining Customer Behavior

The methodological approach of many researchers interested in consumer
behavior can best be exemplified by Erving Go↵man’s 1966 work, Behavior
in public places: Notes on the social organization of gatherings (Go↵man,
1966). Go↵man developed a framework for social engagement—face-to-
face interactions, social occasions, self-involvement, and the boundaries of
social engagement—from personal observations made in a small farming
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community, in a mental institution, and from generalizations drawn from
etiquette manuals. Go↵man is concerned with an individual’s sense of self
within a community; he scrutinizes facial expression, gesture, and stance
within a social gathering, relating them to the formality of the moment (what
he describes as “tightness and looseness”) and the structure and allocation
of a person’s involvement. Go↵man’s interpretations rely on his personal
understanding of the human condition; his analysis of behavior comes from
an ability to place himself “into another’s shoes” and imagine the conscious
and unconscious desires and obstacles present in those participating in social
engagement. The observation methodology exemplified by Go↵man is used
by sociologists and ethnographers interested in consumer behavior in retail
environments.

Paco Underhill’s influential book, Why we buy: The science of shopping,
brings this approach to consumer behavior in retail settings (Underhill, 2000).
Underhill directs a consultancy focused on customer behavior and draws
conclusions from the years of detailed ethnographic studies his consultancy
performed in stores. His employees followed customers during shopping trips,
diligently recording actions taken.1 He writes:

In addition to measuring and counting every significant motion of
a single shopping trip, our trackers also have to contribute incisive
field notes describing the nuances of customer behavior and make
good inferences based on what they’ve learned. These notes add
up to yet another, this time anecdotal, layer of information about
a particular environment and how people use it. (p. 7)

The great advantage of the observational methodologies used by ethnogra-
phers and sociologists is that researchers bring their personal understanding
of the human condition. Most of Underhill’s inferences and recommendations
are derived from this anecdotal layer of information. Several examples: The
“decompression zone” at the entrance of a store moderating a customer’s first
moments in the store, “hand-allotment” and the availability of shopping
baskets, and the e↵ects of signage and seating location. Take as another
example the “butt-brush e↵ect” described by Underhill: in clothing stores,
when clothing racks are so closely packed that a customer makes contact with

1 It is likely that Underhill would not think too highly of the method applied and presented
in this thesis. He writes in Why We Buy : “Some of the stu↵ I get is outright silly,
like a software package designed to track tank movements from spy satellites. Put
enough cameras with wide-angle lenses into your ceiling and voilà!—instant science of
shopping.” (p. 27)
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objects or people behind them, they are likely to move away. The discomfort
of being touched, he argues, subtly suppresses the browsing impulse. That
simple observation—and its explanation in particular—embeds an under-
standing of the human experience that is unlikely to be easily encoded in a
computational model.2

The human observers that ethnographers employ are also the discipline’s
disadvantage: human observers are expensive, both in time and money.
Observations are costly to collect and to code; they are unscalable beyond
short studies in a handful of locations. Regardless of precise coding methods,
data is influenced by the subjectivity of the person doing the observing.

In contrast, some quantitative measures can be gathered automatically.
Underhill describes criteria retailers can use to quantify the performance of
their stores in relation to the customer experience such as the commonly used
conversion rate (the fraction of shoppers entering the store that make a pur-
chase), time spent in the store, the confusion index (how navigable is a store),
interception rate (fraction of shoppers who make contact with an employee)
and waiting time. Many of these measures can be collected automatically
and there is a burgeoning industry of commercial solutions which provide
such data inexpensively via cameras or counters. No doubt, much retail
customer behavior research remains proprietary; a better understanding of
the customer gives a retailer competitive advantage. Underhill’s book results
from his experience consulting to large retailers, as does, for example, Herb
Sorensen’s Inside the mind of the shopper, and Martin Lindstrom’s Buy •

ology and Brand Sense.
The ethnographic stance of intensive human observation is extremely

valuable in understanding consumer behavior, but its drawbacks of cost and
e�ciency prevent ubiquitous deployment as an instrument for retail. This
presents an opportunity for automated tools to aid ethnographers and retail
analysts—tools such as those presented in the following chapters. Next,
we discuss data-driven approaches that capture some aspects of customer

2 The subtlety of the solutions proposed by Underhill and others consulting in consumer
behavior is reminiscent of a famous anecdote from Operations Research lore: Complaints
of long wait times for elevators in a high-rise hotel led to an analysis by operations
researchers as to how elevator queuing could be improved. The simple, human, solution:
place mirrors near the elevators allowing those waiting to “fix their ties, comb their hair,
and even perhaps coyly flirt via the mirror with others who are likewise waiting. . . [T]hose
hotels that invested in such mirrors received far fewer complaints about elevator delays
than competitors who did not.” (Larson, 1987) This thesis enables the identification of
cases when an expected purchase was not made. These can later be classified by human
observers who may o↵er solutions (like the mirrors by elevators) that increase purchasing
behavior.
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behavior, analogues to this thesis’ work.

2.2 Quantitative Approaches to Customer Behavior
Analysis

In retail, the easiest data-trail to harness for customer behavior modeling is
the transactional record made at the point-of-sale (POS). Since large-scale
statistical programs became a↵ordable, this data has been used to model
behavior as diverse as brand choice (Guadagni and Little, 1983) and the
impact of promotions (Gupta, 1988). Long-term customer patterns can be
mined when transactions are associated with customer ID, for example, with
loyalty cards (Hamuro et al., 2002; Yada et al., 2006). Though point-of-sale
records can be used to align what was purchased with where in the store the
products were retrieved, the path taken by customers to collect the products
is lost. This path information can be enormously informative—illuminating
the successes and failures of both product and venue. Online retailers do not
su↵er from this drawback.

Compared to the point-of-sale transactional record available to retailers
with physical stores, online retailers have enormously more data to mine.
When a customer browses the Amazon online store for a baby carriage,
he leaves behind a valuable record of the route taken before a purchase is
made. Amazon knows what other carriages were considered; how long the
customer spent on each page before proceeding; they know when (and how)
a user browsed for a baby carriage even if a purchase was never completed.
This “trajectory” data is invaluable for providing quality recommendations
to the consumer, pricing items appropriately, and understanding the cus-
tomer at a much finer level of granularity than the strictly transactional
techniques of retailers. Researchers have been mining patterns in web us-
age (Catledge and Pitkow, 1995; Srivastava et al., 2000; Borges and Levene,
2000; Montgomery et al., 2004; Moe, 2006) and automatically adapting to
user browsing (Perkowitz and Etzioni, 1997; Anderson et al., 2002) since the
early days of the world wide web.

Retail websites have an experimental advantage over brick-and-mortar
retailers. Subtle changes to the wording of a promotion or the navigation of
the site can be rapidly tested on subpopulations of customers; each iteration
is fast and inexpensive.3 Retail stores can neither change their physical

3 This type of A/B testing is now very easy to apply to any sort of website. The last few
years saw a crop of new companies specializing in tools to make testing easier, Visual
Website Optimizer, SiteSpect, and Google Website Optimizer to name a few.
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layout as quickly, nor as easily control the demographics of the customers in
such experiments. One goal of this thesis is to provide a key component of
a toolset which can be used to virtually test the physical configuration of
stores, reducing the need for costly real-life experiments in stores.

One of the richest sources of quantitative data about customer behavior
are the paths customers take through stores. Customer paths are highly
constrained by a store’s layout; and Herb Sorensen argues that eighty percent
of the purchase decisions made by a customer are decided by a store’s
layout (Sorensen, 2009).4 In a coarse way, retailers already act on this
conjecture. Consider the familiar example of refrigerated staple goods like
milk placed at the rear of the supermarket, forcing customers to walk past a
panoply of purchase opportunities.

2.2.1 Where Customers Go: Analyzing Consumer’s
Trajectories

Farley and Ring’s stochastic model of customer’s paths was one of the earliest
models of customers in a retail store (Farley and Ring, 1966). This model
divided supermarkets into several large regions. Customers pass from one
region to another with a probability derived and modeled using the content
of the areas (modeled as a “force” connected to sales volume) as well as
the characteristics of the store’s configuration—for example, the observation
that customers often circle the perimeter of the store in a counter-clockwise
direction. Farley and Ring validated their model through direct observation
in five Pittsburg supermarkets.

In the 1990s, RFID and WiFi technologies made the collection of large
datasets of the paths consumers take within a store economical. One technol-
ogy, PathTracker (Sorensen, 2003), developed by Herb Sorensen and Sorensen
Associates has been used in several studies of customer paths. PathTracker
locates RFID tags attached to shopping carts and baskets using a network of
sensors at the periphery of a store. It has an accuracy of several feet, small
enough that customer paths can be localized to a specific register and then
associated with a transactional record. Using data from this system, Lar-
son et al. clustered several thousand customer trajectories in a supermarket,
normalizing their durations and using mean point-wise Euclidean distance as
the path distance metric to a modified k-means clustering algorithm (Larson
et al., 2005). The exploratory dataset confirmed conventional wisdom that

4 Many of the examples Sorensen cites are in supermarkets; it’s unclear if sales in other
types of retail environments are also so highly dependent on layout.
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the periphery of the store (the “racetrack”) was utilized much more than
aisle-ways.

Yada also used trajectories of supermarket customers gathered using
RFID (Yada, 2011). Trajectories were discretized into a sequence of passages
through labeled areas; decision trees were then used to classify customer
paths as either “high-volume” or “low-volume”. The manually annotated
areas used in this classifier are similar to the functional locations described
in the following chapter. In both cases, these areas are used to dramatically
reduce the complexity of trajectory data. Unlike the functional locations used
in Mimic, the supermarket’s subdivided areas are very large, encompassing
several aisles each. In a related supermarket study, Kholod et al. found strong
correlation between a customer’s total path length and the volume of his
purchases (Kholod et al., 2010). In addition, they clustered customer behavior
into three types (wandering, decisive and mixed) using the distribution of
wandering-degree, a ratio between distance traveled and the area of shopping
zone in which a shopper moves.

Hui et al. proposed several hypotheses of customer behavior and used
supermarket customer trajectory data to validate their hypotheses (Hui
et al., 2009a). In particular, they argued that customers become more
purposeful—spending less time exploring and more focused on purchases—as
they spend time in the store, that the presence of other customers in an area
attracts visits yet repels purchases, and that shopping virtuous categories
(e.g. health food) gave customers greater license to purchase vice categories
(e.g. ice-cream).

A disadvantage of those studies using RFID technologies such as Path-
Tracker is that the tags are attached to carts and baskets. Paths taken by
shoppers walking without carriers are not recorded. In the supermarkets
where many of these studies were performed, very few customers do not
use a cart or basket, but in many other retail environments—such as the
Best Buy store studied in this thesis—customers peruse the store without
accoutrement. Alternative methods for tracking customer movement are
required. We gathered customer trajectories using video collected from over-
head cameras for the case study retail store. We will return to video based
tracking shortly, after a discussion of more general pedestrian movement
models.
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2.3 General Models of Pedestrian Movement

Another thread of analysis which aims to make predictions of pedestrian
behavior from the shape and configuration of the environment is Space
Syntax. This subfield at the intersection of architecture and sociology was
inaugurated by Bill Hillier in (Hillier et al., 1976) and expanded in The Social
Logic of Space (Hillier and Hanson, 1984) (an accessible overview of the ideas
of space syntax analysis can be found in Bafna, 2003). The theory posits
that the interconnectivity of spaces a↵orded by movement or visibility both
reflects the functions of the space5 and influences the behavior of its users.
The analysis transforms the plan of a building or urban environment into an
abstract graph which can be analyzed computationally, deriving measures
such as depth (the mean distance travelled by shortest route to each of the
other nodes in the graph), choice (a measure of the number of alternate
routes from one space to another), and integration (the reciprocal of the mean
number of nodes traversed to travel from a node to each other node.) (March
and Steadman, 1971; Hillier et al., 1987). These measures correlate with the
functions of the space—a hallway will have high integration, a bathroom low
choice. The graph structure describing a building or cityscape is formed by
the intersection of axial lines, long vistas which connect distinct physical
spaces. Hillier and Hanson’s original definition of the axial line, and the
axial map are procedural (Hillier and Hanson, 1984). Writing about their
use in the analysis of settlements:

Next make an axial map of the settlement by first finding the
longest straight line that can be drawn in the y and drawing it
on an overlaid tracing paper, then the second longest, and so
on until all convex spaces are crossed and all axial lines can be
linked to other axial lines without repetition are so linked. (p. 99)

The definition was later formalized in Carvalho and Batty (2003) and Turner
et al. (2005). An example axial map of a building is shown in Figure 2.2.

In the past decade, viewshed analysis has become a prominent tangent
to space syntax. Rather than considering a macroscopic unit such as a maxi-
mal volume—roughly speaking, a room—or axial line of visibility, visibility
analysis derives quantitative measures at every point in a space from its
isovist or viewshed, the shape defined by the set of all points visible from

5

Function here refers to the occupant’s use of the space; in the nomenclature of architec-
ture, the program. For example, a hallway’s function as a passage from one place to
another, or a doctor’s waiting room as a bu↵er and gateway.
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Figure 2.2: The axial map of a single-family residence, and the corresponding axial
graph. Nodes in the graph represent axial lines. There exists an edge between
every two axial lines (nodes) which intersect. Measures such as depth, choice, and
integration are calculated using this graph.

a vantage point (See Figure 2.3). These measures were shown to corre-
late to qualitative experience (Wiener and Franz, 2004) and also mental
representations (Meilinger et al., 2009).

Whereas the space-syntactic and viewshed analysis place emphasis on the
e↵ect of a space’s geometry on pedestrians within, another approach takes an
egocentric perspective. These models of human movement can be categorized
as flow, cellular, and agent-based. Flow models (for example Henderson,
1971) make an analogy between the discrete individual actions of people
and continuous physical phenomena like the flow of a fluid—–individuals
are modeled essentially as particles of a gas or incompressible fluid. Cel-
lular models discretize a physical space into a collection of connected cells
whose state changes as a function of local interactions with neighboring
cells (Burstedde et al., 2001; Kirchner and Schadschneider, 2002; Kaneda and
Suzuki, 2005). In agent-based models, individual people (or cars, ants, etc.)
are modeled as independent entities, each capable of sensing its surrounding
environment, and choosing actions as a function of both internal and external
state. Agent-based models operate in both discrete (e.g. Gipps and Marksjö,
1985) and continuous environments (e.g. Hoogendoorn, 2003)—in the former,
they resemble cellular automata models.

Of the three classes of pedestrian models—flow, cellular and agent-based—
agent-based models have been most e↵ective matching the microscopic move-
ments of people in buildings and cities. Social-force and vision-based models
of motion are among the more successful. In the former, other pedestrians,
obstacles and objects in the environment apply “forces” on the modeled
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Fig 3. Generating isovists: Left: a hypothetical indoor environment; middle: the gray area is
visible from the person’s observation point within the environment; right: the resulting isovist and
its basic measurands

statistical analyses, the rating data was treated as even interval scaled. Correlation coef-
ficients were calculated using linear Pearson’s product moment correlation.

5 Experiment 1

5.1 Objective

In accordance with the overall objective of investigating interrelations between spatial
properties and spatial behavior, the purpose of the experiment was twofold: First to
test whether basic isovist properties can be perceived at all, and second, to explore
correlations between global isovist measurands (see Section 4.3) and behavioral data.
The behavioral data were gained both from a navigation task and a rating of experiential
qualities in different virtual environments. It was hypothesized that the differently shaped
environments used in this experiment systematically influenced subjects’ behavior in
both tasks. If the isovist measurands captured behaviorally relevant properties, significant
correlations with the behavioral data were expected.

5.2 Method

Experimental Procedure. In each of the 16 indoor scenes (see Section 4.2 and Figure
1), subjects had to do a navigation task and a semantic differential rating task. Only
after completing both experimental tasks, they proceeded to the next indoor scene. The
order in which the 16 indoor scenes were presented was randomized for each subject. A
complete experimental session had a duration of about 40 minutes.

The first experimental task was an active navigation task. At the beginning of this
task, subjects were placed at the fixed starting position of the corresponding indoor scene
(see Figure 1) facing a random direction. Subjects were then asked to navigate to the
position within the scene that maximized the visible area (corresponding to maximal
isovist area) as well as to the position within the scene that minimized the visible area

.Figure 2.3: In this illustration (from Wiener and Franz, 2004), an isovist (viewshed)
is drawn for a hypothetical environment. The isovist is the polygon enclosing the
visible areas from a particular vista.

person (Helbing, 1991; Helbing and Molnár, 1995). Social force models
have been used to predict the dynamics of escape panics (Helbing et al.,
2000), the spontaneous forming of lanes of motion (Helbing et al., 2001),
trail systems (Helbing et al., 1997), and to recognize anomalous crowd be-
havior (Mehran et al., 2009). In vision-based agent models such as Turner
and Penn’s, pedestrians choose their next step based on the places currently
visible (Turner and Penn, 2002). Recently, a model based on the a↵ordances
of visibility was shown to match pedestrian movement at a finer level of
detail (Moussäıd et al., 2011). A very thorough review of pedestrian models
can be found in Winnie Daamen’s PhD thesis (Daamen, 2004). She develops
a detailed agent-based pedestrian model for public transit facilities named
SimPed, which models walking, route-choice, alighting and activity. The
model is validated and calibrated using pedestrian tra�c data gathered at a
public transit station in Delft.

Video has often been used to validate models of pedestrian movement.
Experiments are often performed in highly controlled environments with
pedestrians sometimes physically tagged to facilitate their tracking during
analysis (See, for example Hoogendoorn et al., 2003; Hoogendoorn and
Daamen, 2005; Moussäıd et al., 2009). Support for pedestrian models also
comes from video captured in unconstrained settings such as from city
streets (Willis et al., 2004) and public transit hubs (Berrow et al., 2005).
Bauer and Kitazawa also validated and calibrated a social-force pedestrian
model in a controlled setting, but used laser scanning instead of using video
to capture data (Bauer and Kitazawa, 2010).
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2.4 Tracking People

Validating and calibrating pedestrian models by tracking people evokes the
much broader field of person tracking. The most basic way to track a person’s
movements in a building is by following them, clipboard in hand, recording
their paths manually. One of the early and oft cited studies which used this
simple yet expensive technique is an analysis of the Tate Gallery, Millbank,
performed by the Bartlett School of Graduate studies (Hillier et al., 1996).
This study manually traced ninety-three gallery patrons for ten minutes,
gathering a dataset that has subsequently been used in several space-syntax
publications aiming to connect the paths to the social logic of the building
(Turner et al., 2001; Wiener and Franz, 2004) as well as validate the behavior
of vision-guided pedestrian simulations (Turner and Penn, 2002).

Radio-based technologies, like the RFID PathTracker system described
earlier and the WiFi used in Uotila and Skogster (2007), have been used
to actively track human movement in buildings. Mobile phones o↵er an
alternative, passive tracking approach (Bourimi et al., 2011). Rather than
tracking an individual person using tags as in the above examples, Ivanov et al.
used a network of closely-spaced motion-sensors to reconstitute coarse-gra-
ained paths in a building (Ivanov et al., 2007). Browarek also used passive
thermal sensors to track individuals in a room; her system is able to localize
individuals at much higher resolution (Browarek, 2010).

Tracking objects—often people—is one of the earliest and best studied
subproblems in computer vision. An excellent overview of recent progress in
tracking techniques can be found in (Yilmaz et al., 2006); an earlier survey of
tracking, specific to human activity, can be found in (Moeslund and Granum,
2001). The Mimic system described in this thesis uses a video-based tracker
developed by George Shaw (Shaw, 2011). An overview of its operation can
be found in Appendix A. One of the greatest obstacles to accurate tracking
in Shaw’s system is the frequent occlusions caused by people walking or
standing behind fixed objects such as furniture, or other tracked people.
Techniques for coping with occlusions is an active subfield of computer vision
research. An early review of approaches to the occlusion problem can be
found in Gabriel et al. (2003). Recent examples of tracking under occlusion
include color appearance-based models such as Yang et al. (2005) and Senior
et al. (2006).

Mimic relies on the trajectories of customers in stores. The techniques
discussed above can be used to gather such data. Mimic uses trajectories to
classify high-level behaviors; in this sense, the system is one which performs
video event understanding.
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2.5 Video Event Understanding

Computational models that deduce human behavior from video, often called
video event understanding, is a lively subfield in contemporary computer
vision. Typically, these computational models cover domain-specific behavior
classification, for example walking/running/waving, sign-language, making-
breakfast/having-a-snack, etc. Lavee et al. broadly categorize these event
understanding strategies into pattern recognition methods, state models, and
semantic models (Lavee et al. 2009, see also Turaga et al., 2008 for a very
complete review). Among the pattern recognition models, one finds discrim-
inative methods such as nearest-neighbor (Zelnik-Manor and Irani, 2006),
neural networks (Vassilakis et al., 2002) and support vector machines (Pit-
tore et al., 1999). State models such as finite-state machines (Hong et al.,
2000), Bayesian networks, Hidden Markov Models and conditional random
fields (Sminchisescu et al., 2006), try to capture the temporal dynamics of a
hidden state (often, the behavior in question). Finally, semantic methods
collapse the often huge state-space of state models by constraining possibil-
ities to those acceptable by a externally imposed semantic model (Borzin
et al., 2007; Kitani et al., 2007; Siskind, 2000). Examples of these semantic
models include petri-networks, grammars, logic and constraint satisfaction.

Perhaps closest in spirit and mechanism to the work of this thesis is
Fleischman’s method for classifying behavior from video (Fleischman et al.,
2006). In Fleischman’s system, overhead video in a kitchen is automatically
classified into macroscopic behaviors such as “eating breakfast” or “making
co↵ee” by composing motion in several hand-labeled regions of the video
frame (analogous to the functional-locations described in the next chapter)
into a hierarchy of temporal relationships. Hierarchies representative of
high-level behaviors are then learned by a tree-kernel support vector machine.
As in Mimic, classifications are made for patterns of activity which may
involve several people.

2.6 Commercially Available Retail Video Analytic
Systems

Retailers have long employed video for loss prevention and more recently
begun using their deployed infrastructure to better understand the operation
of their stores. Inexpensive computing power and digital storage, and the easy
availability of cutting-edge computer vision through open source libraries
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such as OpenCV6 has made retail video analytics a burgeoning commercial
space. Simple doorway people-counters using infrared beams have given way
to computer-vision based counters that use visible light and thermal infrared.7

Video is now used to measure dwell time and occupancy, manage queues,
and gather customer demographics. Verint,8 a representative video analytics
company, uses video to calculate conversion-rates on a per-product basis, find
trends in customer visits with hourly and weekly granularity, and measure
the e↵ects of advertisements and promotions. Other companies involved in
retail video analytics include Lighthaus Logic,9 Scopix Solutions,10 GfK,11

Experian Footfall,12 and Tyco International.13

2.7 Putting It All Together

This chapter has examined several of the research fields this thesis intersects.
We are interested in the behavior of customers in stores—present in both
sociology and marketing research. Unlike the human observation method-
ologies often employed in these fields, the Mimic model of this thesis uses
customer trajectories automatically gathered from video footage. The follow-
ing chapter will introduce functional locations as a mechanism to simplify
paths, a technique which echoes some previous modeling of path data.

From computer vision to ethnographic investigation, the physical scale
of study falls along a broad spectrum. Vision-based classifiers of race and
gender focus on human features measured in centimeters; other models of
mobility which use similar techniques as Mimic operate at an urban scale.
We focus on a middle-ground—the scale of a small to mid-sized store—where
measures are made on the order of feet (Figure 2.4).

Much of contemporary research most closely related to this thesis focuses
on supermarkets. Grocery stores are a good research target: customers buy a
wide variety of goods, staples and impulse purchases, and the larger size of the

6

http://opencv.willowgarage.com/wiki/

7 See: Shoppertrak (http://www.shoppertrak.com)
Countwise (http://www.countwise.com),
SenSource (http://www.sensourceinc.com/peoplecounters.htm),
Honeywell (http://www.honeywellvideo.com/products/ias/va/160978.html),
Sensormatic (http://www.sensormatic.com/Products/StoreBusinessIntelligence2).

8

http://verint.com/corporate/

9

http://www.lighthauslogic.com

10

http://www.scopixsolutions.com

11

http://www.gfkamerica.com/sectors/consumer/shopper_insights/

12

http://www.footfall.com/

13

http://www.americandynamics.net
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Figure 2.4: The scale of study of the disciples touched in this thesis, and where
MIMIC fits. At the most microscopic scale are ethnographic studies and some
computer vision research, which examines body language and facial expression. At
the other end of the scale are models which use path data gathered on a city-sized
scale. This thesis sits in the middle, useful for examining behavior at the scale of
buildings.

stores gives credence to the hypothesis that purchase decisions are intimately
linked to the configuration of the space. Moreover, nearly 20% of US retail
sales occur in food and beverage stores (US Census Bureau, 2011c). Though
a sizable fraction, a large portion of the retail world remains under-explored.
As we shall see in Chapter 4, Mimic can be used to model customer behavior
in a much more challenging setting than supermarkets, a smaller store hosting
higher-priced products much less susceptible to impulsive purchases.

Many techniques discussed in this chapter have potential to be incorpo-
rated as components of Mimic with the likely consequence of improving the
predictive power of the model. This is especially true for the computer vision
techniques. Robust cross-camera tracking of individuals in the store would
enable predictions local to an individual, rather than global to the state of
the store as a whole. The development of Mimic was guided by observations
and conclusions made by sociologists and ethnographers. Completing the
circle, Chapter 6 discusses the opportunities for ethnographers enabled by
Mimic.
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Chapter 3
Mimic: Prediction Using

Functional Locations

The experienced store manager looking out onto her store has an intuition
of the buzz of activity. She knows if customers are focused and intent on
finding the best deal, if the slow wander of a man and his baby carriage
is just biding time, if the children nagging and running from one display
case to another will be appeased by a parent’s purchase of a distracting toy.
We wish to embed some simpler form of this intuition in a computational
model. Like the manager looking onto the floor, our model will take in the
aggregated activity of the whole store and predict an aspect of the patrons’
behavior—the likelihood of a purchase. This computational model is named
Mimic.

The model takes as input the aggregated activity of the whole store repre-
sented by the trajectories of the store’s patrons. The data is then decimated
and dimensionally reduced by discarding those parts not functionally relevant
to a purchase. To classify a period of activity as preceding purchase, the
episode is evaluated by a pair of generative models and a label chosen from
their results. Hidden Markov Models (HMMs) express the dynamic pattern
of activity, using one of several state-models to represent static activity
distributions.

In this chapter, I introduce functional locations as a technique for creating
a homogeneous and dimensionally reduced feature set that captures the
patterns of activity in a building. Next, I describe the static and dynamic
models of activity that operate on this reduced feature set. Finally, I detail
the training of the model and the way it is used to classify purchases.
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3.1 Functional Locations

What is common between a library, train station, store and hospital ward?
Each of these spaces is designed to fulfill a small collection of its occupants’
goals. Library patrons may want to find-a-book, check-out or attend-a-
reading. Travelers in a station want to get-to-their-platform, buy-a-newspaper,
purchase-tickets, or simply, wait. Shoppers want to browse or purchase.
Nurses need to do-rounds and attend-to-calls. These activities are far from
exhaustive, of course, but illustrative of the goal-directed nature of the space.
Contrast these spaces with homes, fairgrounds or convention centers which
serve a large collections of uses.

Naturally emergent from these goal-directed spaces are what I call func-
tional locations, or flocs: small areas within the space directly or indirectly
relevant to the tasks/goals in the space. The ticket counter in the train sta-
tion is a functional location because it is relevant to the task of riding a train.
A bench is a floc, relevant to the task of repose. A ribbon-barrier is relevant
to the task of queueing. The core hypothesis of this thesis—that patterns of
activity in the whole of a store are predictive of an intent-to-purchase—is
a specific instantiation of the intuitive observation that patterns of human
activity within a collection of flocs is predictive of the high-level behavior
of the occupants. For example, there may be a pattern of activity in the
hospital ward, a signature, which is emblematic of a sta↵’s preparation for
disaster-response, even if the individual activities in individual functional
locations are common across di↵erent macroscopic behaviors.

A human investigator or designer should be able to quickly identify
the functional locations in a space from common or domain-specific knowl-
edge. Flocs in this thesis were manually annotated; manually-chosen points-
of-interest have also been used to reduce trajectories to computationally
manageable form in several earlier works (e.g. Fleischman et al., 2006; Hui
et al., 2009b). Flocs can also be determined in a data-driven manner by
clustering activity observed in video, the tracked location of pedestrians,
or other measures. In his masters thesis, Matthew Miller clustered regions
in video captured in a single-family home based on activity derived from
motion within the frame (Miller, 2011). The automatically discovered regions
roughly correspond to what a human annotator might label as functional
locations. For example, in the kitchen, clusters around the sink, refrigerator,
and cabinets were automatically discovered. The strength of using a data-
driven approach to place functional locations is that the floc contours conform
to actual use, and the unforeseen uses of a location can be discriminated
and incorporated. However, automatically discovered regions such as those
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derived by Miller may be harder to integrate from multiple video sources, and
are less malleable to experimental variation, one of the high-level outcomes
of this thesis (described in greater detail in Chapter 6).

How can we define a functional location? A floc is not a single point
in space, but rather a volume encompassing a zone of interaction. The
bench floc in our train station includes both the sitting portion, as well as
the area immediately surrounding it, where a family might congregate with
their children. The boundaries of a functional location are elastic—when
the family departs the bench, its area shrinks so the lone traveler, stopping
to check her Blackberry, is no longer encompassed. The extent of a floc
is fuzzy in the same way that the requirement for functional relevance is
vaguely defined. Take for example, the signage showing train schedules and
track numbers in a train station. The sign clearly has a functional relevance
to the task of boarding a train, but where are its extents? Would some
arbitrarily chosen units of radius best describe the volume? Is its radius
whatever distance from which the sign can be read? Or should the floc be
defined based on observed use, capturing the statistics of where pedestrians
peer up to determine the status of their train?

To make concrete this notion of functional locations, I propose the
following four criteria for a floc. Flocs. . .

1. enable a person to accomplish a goal or subpart of a task tied to some
function of the room or building.

2. are three-dimensional volumes which a person can occupy.

3. are anchored to a fixture in the space.1

4. are sized large enough to capture the activity of humans within, and
small enough to enclose a group focused on a single task.

Of these characteristics, all but the first may be easily encoded in a computer.
Deciding whether a place a↵ords something task-relevant is a task for which
a human researcher/designer is best suited.

Human behavior in buildings is enormously varied; at a high level, a
whole vocabulary of verbs can be used to describe our actions. At a low
level, behavior is dynamic and continuous; we are almost continuously in
motion, fidgeting, walking, sprinting. Flocs can help code observed behavior
as it relates to the physical space. Flocs do this, as we will see later in this

1 That is not to say that flocs are always stationary. Furniture (a chair, couch) is often
moveable. The floc, anchored to the furniture, moves with it.
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chapter, in a way easily integrated into computational models. They help
simplify the complex, varied, continuous and dynamic behavior of people
into discrete data more easily integrated into a host of downstream models.

3.2 The Activity Vector

Functional locations are a mechanism for reducing the dimensionality and
complexity of features derived from video into a form useable by machine
learning algorithms. Here, the high dimensional and complex derived fea-
tures are the trajectories of customers and employees within the store. A
track which describes such a trajectory, ⌧ , is a collection of timestamped
observations of the state of a person within the store.2 This state includes
the position as well as (optionally) secondary characteristics such as size,
color distribution, velocity, etc.

We can encode the distribution of activity—the gestalt—of the store over
a duration in a single high-dimensional feature vector # with n dimensions,
one dimension for each floc in the store. To calculate # for a short duration
from a collection of tracks, first find all tracks which exist during the target
duration. For each of these, look at which flocs the tracks pass through and
add the time spent in each of those flocs during the interval to the associated
dimension in #. More formally, for functional locations {�1, . . . , �n}, tracks
{⌧1, . . . , ⌧m}, and time period [t1, t2], the value #i—the value in dimension i

is:

#

i =
mX

j=1

{duration ⌧j spent in �i between t1 and t2}

This vector captures the distribution of occupancy in the store. The simple
occupancy measure serves as a proxy for a person’s engagement with the
function of the location. With more refined source data than gross-level
trajectories, one could imagine using other relevant measures of activity
within a floc. For example: interaction with key physical elements or other
people within the floc, the physical gestures exhibited, or a↵ect as derived
from facial features.

The vector # codes the static distribution of activity in the store—the
state of activity during brief moment in time. How this distribution evolves
over time, the store’s dynamic distribution, is coded by a sequence of # for
consecutive periods of time. For clarity and simplicity of notation, I use
a fixed timebase (�t) to divide time, so #t represents the feature vector

2 A glossary to the variable terminology used in this thesis can be found in Table 3.2.
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encoding activity between time t and t +�t. The interval �t is short—on
the order of several seconds; on a timescale that captures a unit of human
action such as reaching to pick up an item, or manipulating an object.3

The activity vectors may su↵er from edge e↵ects resulting from the choice
of timebase. Additionally, for short timebases and dispersed flocs, the activity
vectors many have many zeros as pedestrians walk between flocs. Many
zeros often causes the downstream model to converge prematurely to a non-
optimal state. One way to minimize the consequence of these edge e↵ects and
zeros is by smoothing, averaging #t with its temporal neighbors. Smoothing
also allows highly granular data to be further reduced by subsampling the
smoothed sequence.

Let’s step back and define what is meant by the “pattern of activity”
that is coded by these feature vectors. Each activity vector describes a
snapshot of where people are in the store with regards to the places that
matter in decision-making. A sequence of these snapshots shows how this
distribution evolves but discards a potentially revealing characteristic: who
went where. Extracting an accurate trace of a person’s movements from
video is a significant challenge; in the case of multi-camera settings such as
that in the Mimic case study, several common failure-modes of tracking and
cross-camera hando↵s make accurate complete trajectories nearly impossible.
Moreover, some of these failure modes, such as a single track which incorrectly
jumps from one person to another, could be significantly damaging to those
models incorporating an individual’s passage through multiple functional
locations. The activity vector # is robust to these types of errors yet still
represents an important facet of overall behavior within the store. The vector
codes not just the quantity of activity, but also where people are relative to
each other. A sequence of activity vectors is a compact and interpretable
representation which filters out likely irrelevant motion and enables a wide
range of downstream machine learning techniques.

3.3 Models of the Static Distribution

A generative model of the static distribution calculates the likelihood of the
distribution #. Below are three proposals for static activity distributions.
Simplest is a binomial model which looks for merely the presence of activity,
and makes a key independence assumption. The multinomial model also
takes into account the magnitude across each dimension. Finally, a mixture-
of-Gaussians model considers the distribution of activity as a point in a

3 In the case study described in the next chapter, a five-second interval was used.
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very high dimensional space (whose dimensionality is the number of di↵erent
flocs). Each of these models has a tunable free parameter, and a collection
of parameters learned from the data.

Binomial: This model ignores the total activity in any dimension and only
considers the presence of activity. Each dimension in the feature vector is
modeled as independent. The model’s parameters are a threshold ↵, and a
set of probabilities, one for each dimension of the activity vector #:

✓binom = {↵, p1, . . . , pn}

The value pi represents the probability that the activity in dimension i is
greater than the threshold ↵ (typically zero). So the likelihood of an activity
distribution # is:

P (#|✓) =
Y

n

(
pi if #i > ↵

1� pi otherwise

In other words, the activity vector # is transformed into a binary feature
vector #0 by passing each dimension through an indicator function

I(x) =

(
1 if x > ↵

0 otherwise
.

then
P (#0|✓) =

Y

n

�
pi#

0
i + (1� pi)(1� #0i)

 

The observation space here is the binary feature vector #0.
Training the binomial model is trivial: given training data of many

distribution examples, the probability for each dimension is estimated using
counts. A Laplace correction is added to prevent zero probabilities and
smooth the model.

In summary, the binomial activity distribution model has one free pa-
rameter: the threshold ↵ which the activity within a floc must exceed to be
counted as a positive activation.

Multinomial: The multinomial is a natural extension of the binomial model
which incorporates the magnitude of activity. Multinomials, like binomials,
are not suited for modeling continuous values. The input activity vector,
which may contain real values (e.g. fractions of seconds), is first discretized
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into counts of small time-units each of duration �: discrete quantums of
activity.

As before, the real-valued feature vector # is first transformed, this time
into a integer-valued feature vector # (which makes up the observation space)
by passing each dimension through the discretization function

D(x) =
j
x

�

k
.

As with the binomial, the multinomial is parameterized with a set of
probabilities:

✓mulinom = {�, pzero, p1, . . . , pn} such that:
nX

1

pi = 1, 1 > pzero > 0

Multinomials are only well defined when the trial count (here, the total
number of activity quantums,

P
n #

0
i) is greater than zero; Since it is possible

that #0 = 0, this model is two-staged. If #0 = 0, the likelihood is fixed to
pzero, a parameter of the model. Otherwise, the likelihood of an activity
vector is calculated as:

P (#0|✓) = (1� pzero) · c!
nY

i=1

pi
#0
i

#

0
i!

where c =
nX

i=1

#

0
i

Training the multinomial model is again simple. From training data, pzero

and p1, . . . , pn are estimated by counting. As with the binomial, a Laplace
correction is added to smooth the distribution and prevent zeros in the
distribution probabilities.

Mixture of Gaussians (GMM): This model estimates the distribution of
activity as a mixture of several weighted Gaussian Normal functions, each
with di↵erent mean and covariance. The real-valued activity distribution
#—the observation space of this model—is a sample drawn from this high-
dimensional distribution.

The free parameter to this model is k, the number of gaussian mixtures.
A parameterization of this model is defined as:

✓gmm = {w1, . . . , wk, µ1, . . . , µk,⌃1, . . . ,⌃k} such that:
X

wi = 1
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Model Free Parameters Learned Parameters

Binomial ↵ p1, . . . , pn

Multinomial � pzero, p1, . . . , pn

Gaussian Mixtures k w1, . . . , wk, µ1, . . . , µk,⌃1, . . . ,⌃k

Table 3.1: Free and learned parameters of the three static distribution models.

The likelihood of an activity vector # is calculated as:

P (#|✓) =
kX

i=1

wi · N(#;µi,⌃i)

where N(#;µ,⌃) is the standard multivariate normal distribution of dimen-
sion n with mean µ, and covariance ⌃:

N(#;µ,⌃) = (2⇡)�
n
2 |⌃|�

1

2 exp

✓
�1

2
(#� µ)0⌃�1(#� µ)

◆

The parameters w, µ and ⌃ are learned using expectation maximization (Red-
ner and Walker, 1984). A minimum variance is enforced during training
to prevent over-fitting due to individual training examples forcing mixture
variances to zero.

A mixture model is more di�cult to interpret because of the high-
dimensional space it inhabits. An example may help an intuitive understand-
ing. Imagine a room in a museum, with flocs beside the works of art in the
room. Tour groups routinely visit several of the works in the gallery, with
several people crowding into the art’s respective flocs as they move about.
A model trained on data derived from these tour-group visits would ideally
align individual Gaussians in the mixture model with means centered on
each of the flocs visited by the tour-groups, and variance chosen to capture
the gross activity.

Table 3.1 summarizes the free and derived parameters to each of the
static models.

3.4 Capturing the Dynamic Distribution

Mimic models the temporal evolution of activity distributions using a stan-
dard Hidden Markov Model (HMM) (Rabiner, 1989), calculating the likeli-
hood of a sequence of activity pattern, {#1,#2, . . .}. The sequential series of
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activity vectors, {#1, . . . ,#m}, I call an episode and denote V . In an HMM,
the system is assumed to be in one of several hidden states, {s1, . . . , sz},
from which samples may be drawn. At each time step, a sample is drawn
from the current state, and the HMM transitions to the next state with a
probability governed by the weighted, directed edges of a graph connecting
the states. The free parameters to the HMM are the number of states, the
topology of the state graph, and the generative model representing a state.
The transition probabilities and the initial state probabilities are learned
parameters.

The functioning of the model is best understood in its generating capacity—
drawing a sample from its distribution. Here, a sample is a time series of
floc distributions, V . At each time step (t), the system is assumed to be
in a single state, st. The first state is chosen based on the state priors. A
sample is drawn from state model st and then a transition to the next state
(st+1) is made based on the transition probabilities encoded in the arcs of
the graph. The likelihood of a generated sequence equals the product of
the probabilities of state-transitions used to generate the sample and the
likelihoods of the samples as generated by the state sequence.

P (#1, . . . ,#m|s1, . . . , sm, ✓HMM) = P (s1|✓HMM)

·
m�1Y

i=1

{P (#i|si) · P (si+1|si; ✓HMM)}

· P (#m|sm)

Inference using the model—finding the most likely sequence of hidden states
given a sequence of sampled activity vectors—is done using the Viterbi
algorithm (Rabiner, 1989). The likelihood of the sequence can then be
calculated as above.

Given a set of training data, the parameters to the HMM are learned
using expectation maximization (EM). The prior probabilities of the states
are first set to uniform, and each state is initialized with training examples
drawn without replacement from the training data. Though the EM algo-
rithm increases the likelihood of the training data with every iteration, it
is prone to long periods of nearly flat performance improvement—getting
stuck in local minima—often leading to the premature termination of the
algorithm. Constraining the topology of the HMM’s state transition graph
can improve EM’s performance if the topology better matches the underlying
true distribution. In the experiments that follow in Chapter 5, I used several
graph structures to constrain the dynamic structures captured by the HMM

( 45 )



Rony Daniel Kubat Mimic: Prediction Using Functional Locations

(a) Fully Connected

(b) Simple Chain

(c) Bi-directional Chain

(d) Skip Chain

Figure 3.1: The HMM graph topologies tested.

in an attempt to encourage the model to converge to a better representa-
tion of the data (See Figure 3.1). These graph structures are equivalent to
constraining a fully-connected model by forcing some state transition proba-
bilities to be zero. The intuition behind these topologies makes analogy to
the organization of an individual’s behaviors in a store. We can imagine that
the hidden states correspond to high level behaviors—browsing, questioning,
searching, waiting, purchasing, etc.—for which there are temporal constraints
which can be encoded in graph topology. Whether an analogy may be made
between an individual and the group’s behavior will be borne out in the
model’s performance. The topologies tested were:

Fully connected: This graph structure connects every state to every other
state, including self-transitions. It is the most general topology.

Simple Chain: Each state si has two outgoing transitions, one to itself,
and one to the next state, si+1. This structure is well suited to capture linear
steps in the activity pattern, for example, a “browsing” state leading to a
“purchasing” state.

Bi-directional chain: Like the simple chain with each state (except the
first) having an addition outgoing transition to the previous state.

Skip chain: Also similar to the simple chain, but each state has three
outgoing transitions: to itself, to the next state, the one following that, si+2.
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Variable Use/Meaning

t Time.
⌧ A track: the trajectory of a person in the store.
� A functional location (floc).
# A floc activity vector. The distribution of activity among n

flocs over a duration.
V A sequential series of activity vectors. An episode.
k The number of mixtures in the Gaussian mixture model.
w The weight associated with a single Gaussian mixture.
m The number of activity vectors (#) in a sequence.
s A state in the HMM.
z The number of states in the HMM model.
 The duration of an episode used for training data.

Table 3.2: Glossary to the nomenclature and variables of the MIMIC model.

The increased complexity of this graph structure can support either-or type
patterns. For example, a “browsing” state (say, s1) can transition to either
a “purchasing” state (say, s2) or an “inquiry” state, (s3).

To summarize the dynamic model, we have an HMM with three free
parameters: the number of states, the type of state model (binomial, multino-
mial, or GMM), and the structure of the state transition graph. The learned
parameters of the model are the state priors, the transition probabilities and
the parameters of the chosen state model.

3.5 Classification Using MIMIC

We wish to use the dynamic, generative model of activity patterns to build
a discriminative classifier which labels episodes as either indicative of a
transaction taking place, or not.4 To classify using these models, we train two
HMMs, one positive (preceding transaction) and one negative (not associated
with a transaction). An activity pattern is classified by calculating the
likelihood of the data given each of the two models, then thresholding the
ratio of the two model likelihoods. Above threshold, the example is labeled
as positive; below threshold, the example is labeled negative. The value

4 The rest of this discussion focuses on binary classifiers, though the generalization to
multi-class models is straightforward.
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of this threshold sets the burden of evidence for an episode to be labeled
as either positive or negative. For simplicity, the number of states in both
positive and negative HMMs are forced to be the same.

Formally, the parameters to the classifier are {✓pos, ✓neg, �}, where ✓pos
and ✓neg are full parameterizations of the positive and negative HMM models,
and � is the likelihood-ratio threshold. An episode V is classified as

label(V ) =

(
“positive” if P (V |✓

pos

)
P (V |✓

neg

) > �

“negative” otherwise

This formulation is equivalent to a simple likelihood comparison with a
probabilistic prior. Assuming the prior of a positive class is ⇢, then a positive
label is given to an episode if

⇢ · P (V |✓pos) > (1� ⇢) · P (V |✓neg)

rewritten:

P (V |✓pos)
P (V |✓neg)

>

1� ⇢
⇢

which shows the equivalence of the threshold � and the prior ratio 1�⇢
⇢ .

In summary, classification using the dynamic model uses one free parame-
ter, the likelihood ratio threshold �, and a pair of models of dynamic activity
patterns with their respective parameterizations, ✓pos and ✓neg.

3.6 Training the Model

The positive and negative HMMs used for classification are each trained with
a di↵erent set of episodes. Which episodes should be included in each set?
Supposing we have the transaction record from a store—both the contents
of a transaction and the timestamp of occurrence—and also the recorded
activity patterns from an entire day. From this data we do not know the
exact amount of time a customer was in the store before engaging in a
transaction. Moreover, this duration is di↵erent for each transaction; some
may be quite brief (buying AAA batteries from a kiosk near the register),
while others many minutes long (activating a cell phone with a new provider).
Since this information is not available in the training data, I chose fixed
length windows preceding a transaction to serve as positive examples of
transaction-type activity (See Figure 3.2). The negative space of this set—
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Figure 3.2: Training data derived from timestamped transactions and a long time-
series of in-store activity. In this schematic illustration, time lies on the x axis; vertical
marks indicate timestamps of transactions. Here, the three positive episodes are
marked above the time-line. Negative examples are marked below. Note that the
two training examples V

2
pos and V

3
pos overlap, resulting in some duplicated data.

all data not encompassed within these positive examples was broken into
examples of non-transaction-type activity. The duration of the episode
window,  , is an additional parameter to the classifier. A consequence of
this simplification is that positive example may include a fraction of data
that should be labeled negative, and vise versa. With the ability to trace a
transaction to the moment when the transacting customer entered the store,
both positive and negative examples could be scrubbed of this contamination.
Since oftentimes, several transactions may take place within a window there
is some replication of the training data. Chapter 5 discusses the method
used to prevent cross-contamination of training and testing datasets that
can result from the episode overlap.

The duration  is a coarse means to derive training data; better would
be to use the exact duration of a customer’s stay in a store prior to their
participation in a transaction. The fixed value for  has the additional
consequence of changing the ratio of positive and negative example counts.
A small  leaves more of the day’s data available to be divided and used as
negative training examples; equivalently, a large  leave less “negative space”
available to be divided for use as negative examples.

3.7 Summary

Mimic classifies episodes of in-store activity by first extracting features
from functionally relevant locations, then calculating the likelihood of those
features in each of the label scenarios. Likelihoods are calculated using a
traditional Hidden Markov Model, with one of several generative state models
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which capture the static distribution of activity.
The concept and use of functional locations operationalizes the hypothesis

of this thesis: that patterns of activity within a store are characteristic
of customer intent-to-purchase. The next chapter presents a case-study
experiment where the Mimic model will be put to test. Chapter 5 evaluates
the performance of the model on real data captured at this operating store.
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Chapter 4
A Case Study

The Mall of America, located near Minneapolis in Bloomington, Minnesota,
is the largest mall in the United States, with 4.2 million square feet of gross
area.1 It is square in shape, with each side roughly the size and configuration
of a typical American suburban mall: three stories in height, with a long
central hall and stores at either side. The center of the square is a glass
enclosed space with a small amusement park, complete with several roller
coasters. The mall attracts forty million annual visitors, 40% of whom are
tourists. The Mall of America—the heart of American retail—is the site of
our case study.

In collaboration with the Best Buy corporation, we installed a video
recording system in one of the smaller shops in the mall, a Best Buy Mobile
stand-alone store located on the first floor of the mall.2 This store serves as a
case study for the evaluation of the Mimic model. This chapter describes the
store and its operation, the video recording and tracking systems, and the
preparation of the data for use by Mimic to model and predict transactions.
It also details some of the real-world challenges facing end-to-end systems
like that of this thesis.

First, a cursory overview of the data pipeline.3 Data from the case study
comes from two sources: a corpus of multi-camera video captured from
ceiling mounted cameras onsite, and the transactional record of purchases
made at the store. Video is processed in several steps through a pipeline that
terminates with the Mimic prediction model. First, people are tracked within

1

http://www.mallofamerica.com/about/moa/facts

2 A full-sized big-box Best Buy store is located on the mall’s third floor.
3 Technical details about the recording and data pipeline can be found in Appendix A.
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Figure 4.1: The Best Buy Mobile Mall of America Store. This photo collage was
taken near the rear of the store. The store’s entrance can be seen on the right-hand
side. Four of the video cameras installed in the store are visible attached to panels
on the ceiling.

the store, and those trajectories segregated into employees and customers.
The trajectories are next filtered to remove systemic errors, smoothed, and
merged between cameras. Finally, floc activity features are generated from the
trajectories, and training and evaluation sets are created with the electronic
transaction record. This curated real-world dataset is used to evaluate the
Mimic customer model.

4.1 The Best Buy Mobile Stand-alone Store

Best Buy Mobile (BBM) is a separate business unit within the Best Buy
corporation. BBM operates small retail stores with a product spread focused
on their core competence of mobile phones and mobile computing. The case
study store measures approximately 1850 square feet (171 m2) in retail area
and carries a variety of cell phone and laptop computer products, as well
as a diverse array of accessories. The portable phones are divided among
three of the four major carriers (Sprint, Verizon, and T-Mobile). Contractual
obligations prevent the fourth major provider, AT&T, from being sold at this
store. The store has a small sta↵ of which one to three members are typically
on-site during weekday opening hours and as many as seven during weekend
hours. For Best Buy, this was considered a concept store, with greater
emphasis on portable computing than in their traditional retail locations.

The store is deeper than it is wide, with a glass facade that faces the
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interior of one of the hallways of the mall’s first floor. A point-of-sale register
is located at the front on the left as you enter. Both left and right walls
of the store are devoted mostly to mobile device accessories with a few
specialized kiosks displaying a particular brand or device. In the center
of the store are four single-person lounge chairs and a small co↵ee table.
The floor space is shared among several tables which carry display units of
various cell phones and portable computers. Three smaller tables are devoted
to the major cell-phone service providers, and a fourth shows smart-phone
and customization options. Along the rear of the store are three additional
points-of-sale, as well as a Geek-Squad help desk and small passageway to
a publicly accessible restroom. A doorway at the rear also allows access to
a back-of-house storage and staging area. Also at the rear of the store is a
small play area for children, and a laser-engraver for device personalization
services o↵ered at the store. Figure 4.2 shows a plan-view of the store.

Discussions with the store’s sta↵, as well as with executives within Best
Buy gave a general sense of the customer’s behavior. Customers primarily
come to the store for cell phones and accessories. Oftentimes, their visits
are exploratory; they come to learn about di↵erent models of phones and
the features and plans o↵ered by service providers. Customers who purchase
cell-phone accessories are often more goal-directed: they come with the intent
to purchase, even if they have not decided which of several options to buy
before arrival. Finally, a significant portion of customers visit the store with
no intent to purchase; they arrive as part of a group, accompanying friend
of family, or circumstantially (from boredom, or, for example, when their
partner is visiting another store nearby).

A significant portion of the sales at this Best Buy store, in quantity
rather than revenue, are of cell-phone related accessories. Sixty percent of
transactions contained mobile-phone accessories. In comparison, twenty-six
percent of transactions included cell phone hardware from one of the three
major cellular carriers sold at the store (Verizon, Sprint and T-Mobile). The
graph in Figure 4.3 shows the categorical breakdown of purchases in the
store during the duration of the study.

Best Buy’s business goal—beyond the selling of goods and services—is
to develop long-term relationships with customers. Significant emphasis is
placed on employees educating customers about products, teaching how use
the often complicated technology, and servicing and troubleshooting phones
that have been problematic for customers. As is the case with many other
retail stores, employees make contact with customers entering the store as
soon as possible with a “Hello,” or “May I help you?”
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Figure 4.2: A plan of the Best Buy Mobile stand-alone store at the Mall of America.

1 Entrance
2 Laptops
3 Sprint Phones
4 Verizon Phones
5 T-Mobile Phones
6 Smart Phones & Personalization
7 Laptops
8 No-contract Phones
9 Computer Accessories
10 Cases
11 Headphones & other accessories
12 Cases
13 Broadband
14 Cases & Shields
15 Chargers & Earpieces
16 Motorola Kiosk
17 Play area for children
18 Back of house
19 Public bathroom
20, 22–23 Points-of-sale
21 Geek Squad
24 Chairs

The location of the eight cameras used for data-capture are marked in the image
with colored dots. These locations were derived from camera calibrations.
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Figure 4.3: The fraction of transactions at the case-study store containing various
product categories. Categories for each SKU present in a transaction were provided
by Best Buy. This chart shows all categories present in at least 0.5% of transactions.

4.2 Recording at the Store

In the summer of 2010, we installed a video recording system in the store.4

Each of the eight cameras installed captures images at one megapixel resolu-
tion (cropped to 960 by 960 pixels) at approximately fourteen frames per
second. The images are encoded using JPEG compression, and pulled from
the camera via IP networking. Custom recording software, developed for the
Human Speechome Project (Roy et al., 2006; DeCamp, 2007), accumulates
frames from all eight cameras, and records them to a hard disk array located
in the back-of-house room of the store. Cameras are equipped with fish-eye
lenses with approximately 180� field of view. Cameras timestamped each
frame with microseconds since the epoch, UTC (January 1, 1970), and were
synchronized via NTP.5 Every few weeks, we shipped the disk array to the
MIT Media Lab, where the recordings were transferred to a local disk array.

4 This study was approved by the MIT IRB. “Retail Behavioral Pattern Analysis,”
COUHES application number 0809002886.

5 Due to some errors with the on-site NTP server, the clocks on individual cameras began
to drift for many of the recorded days. This required a manual resynchronization of data.
The algorithm used to find individual camera delta-times is described in section A.3.
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Unlike the Human Speechome recordings, no audio was captured at the Best
Buy store. All processing of the video data—tracking, classification and
prediction—was completed at the Media Lab.

We recorded video during the store’s opening hours sporadically over the
course of several months. Gaps in recording were due to either failure of the
recording software or lack of su�cient onsite disk storage. Several days have
partial recordings—video from fewer than all eight cameras; these recordings
were not included in any of the modeling experiments. In total, 105 days
were recorded, of which 75 days included video from all eight cameras (See
Figure 4.5).

4.2.1 Electronic Transaction Records
Our collaborators at Best Buy provided a database of anonymized transac-
tions for the recorded dates. Each record in the transaction database consists
of fields for:

transaction ID A unique identifier for each transaction.
timestamp in microseconds since the epoch, UTC.
sku The stock keeping unit identifying a unique product.
quantity The number of SKU items purchased (negative values

indicate returns).
register ID Which of the four points-of-sale were used for the given

transaction.

Additionally, Best Buy provided the hierarchy of internal categories used
for each product. Each product (stock-keeping unit, or SKU) is a leaf in a
category-tree that includes product subclass, class and department.

The mean number of transactions per day in the corpus was 32.29
(std. dev. 15.85), with a mean of 2.8 di↵erent SKUs per transaction. This
translates roughly to a transaction every 4.75 minutes. Visual inspection of
the video confirmed that the timestamps in the transactional record matched
the timestamps of camera frames.

4.2.2 Camera Calibration and the Store Model

Electronic floor plans for the store were provided by Best Buy. Those plans,
coupled with detailed measurements made on-site, were used to build a three-
dimensional model of the store interior and key fixtures within. A global
Euclidean coordinate frame was chosen in this model, and used during camera
calibration. The origin of the coordinate system—a corner on the floor near
the entrance—was chosen due to its visibility from several cameras. Custom
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Figure 4.5: A calendar of days recorded at the Best Buy store. Days marked in
green have data from all eight cameras. Days marked in red have partial data from
less than all cameras. All modeling was done with data from days with complete
recordings.

calibration software was used to calibrate both the location, orientation of
each camera (its extrinsic parameters), as well as the parameters of a spheric
model of the camera’s lens (its intrinsic parameters). A detailed account of
the lens model and parameter optimization can be found in DeCamp et al.
(2010). Figure 4.6 shows a screenshot of the tool used to calibrate camera
parameters.

The eight cameras were located at a height of approximately 3.1 meters
o↵ the floor (min: 3.03 meters, max: 3.21 meters).6 Their height and locations
a↵orded near-complete coverage of the public spaces in the store. Only the
walkway behind the counter in the rear of the store, and the passageway
near the public restroom were not fully covered. Each camera’s field of view
significantly overlapped with its neighbors. There was no video coverage of
the exterior of the store (i.e. the windowed facade facing the inner gallery of
the mall).

4.3 Tracking Customers

Pedestrians in the 5711 hours of recorded video data were tracked using
a system named 2c, developed by George Shaw (Appendix A details the
tracking algorithm. The system is also fully explained in Shaw, 2010, 2011).
To speed tracking, video was first down-sampled to a resolution of 120 by 120
pixels. Tracks output by 2c each contain a camera ID, a set of (x, y, t) tuples,
and a collection of color histograms from the target person being tracked.
Output x and y values are in image-coordinates; these are transformed into

6 Camera heights are the values of their calibration’s extrinsic parameters.
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Figure 4.6: The 3D CAD model of the store, and a screenshot of the tool used
to calibrate the intrinsic and extrinsic parameters of the cameras and lenses. The
calibration tool is used to annotate the points in the image with their corresponding
coordinates in the global Euclidean frame. Those global coordinates are read from
the 3D CAD model. The grid displayed in this image represents squares one meter
per side at the floor-level.

a global Euclidean coordinate space using the camera calibrations, then
smoothed with a Kalman filter.

Using the camera’s calibration, {x, y} coordinates in an image can be
mapped to a vector originating at the camera’s location and extending in
the direction targeted by the image coordinates. For a trajectory from a
single camera, an approximation for the location of a person in the global
Euclidean frame was calculated by finding the intersection of this vector
and a plane located at a height one meter above the ground plane.7 The
choice of one meter was empirically motivated. To build a training set for
the cross-camera merger (see Appendix B), I gathered a ground-truth set of
tracks from di↵erent cameras tracking the same person. For each pair of these
tied tracks, and for each frame of overlap between the tracks, I calculated
the closest point equidistant from rays extending from each camera toward
their targets. The average height of these points across all tracks and all
annotated pairs was 1.088 meters.

The tracks generated using 2c undergo a series of post-processing filtering
and consolidation steps. Very short tracks of duration less than a second
or fewer than ten points—often the result of noise—are removed. Spurious
tracks created from images on computer monitors and televisions in the store

7 Metric units are used internally throughout all systems in described in this thesis.
Imperial is used for descriptive purposes only.
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are discarded using image masks. During several days of the video recording,
balloons were posted at kiosks as part of a promotion. The movement of
these balloons in ambient air currents caused a significant number of tracking
false positives. Manually created image masks were also used for these days
to remove these erroneous tracks.

Among tracking errors, the failure of the background-detection module of
2c is often the cause. In the Best Buy Mobile store, customers and employees
will often stay still for several minutes at one spot to examine a product or
process a transaction (cell phone activations often take in excess of twenty
minutes)—long enough for the background-detection module to incorporate
the customer or employee into the background model. When the people
finally move, the true background is incorrectly labeled foreground, and
a motionless track is created and sustained until the background model
reabsorbs the region. Fortunately, this class of systematic tracking error is
easy to detect and correct. Even when staying in the same location, the
small movements of people in the video cause the tracker to occasionally
shift its target a few pixels. The errors caused by a polluted background
model can be detected and removed by looking for portions of a track where
the target is at the exact same pixel for an extended period of time.

Another frequent type of tracking error results from occlusions. In
the overhead fisheye views of the store, customers and employees often
pass in front of each other; from the perspective of the 2c tracker, the
two tracked objects appear as one. When this occurs, the 2c tracker will
sometimes prematurely end one of the two tracks. When two people pass
each other and create an occlusion, 2c will sporadically switch the targets
of tracks. For example, if someone exits the store at the same time that
another person enters, 2c may output a single track, rather than correctly
registering two distinct tracks. This class of error has significant implications
for downstream processing, especially with regards to cross-camera track
merging. Advanced tracking algorithms which use more sophisticated object
models would undoubtedly improve pedestrian tracking, the implications of
which are discussed Chapter 6. The use of the floc activity vector mitigates
this problem.

A final preprocessing step synchronizes track timestamps, adding an
o↵set distinct for each camera. This synchronization step was necessary due
to the intermittent failure of the NTP daemon on the on-site recording server.
The algorithm used to generate time-o↵sets for each camera is described in
Appendix A.

A person in the store generates simultaneous tracks from several cameras
due to the overlap of fields-of-view of the eight cameras. Tracks targeting
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the same person are clustered in a post-processing step described in detail
in Appendix B. Clusters are then merged into a single trajectory in the
global coordinate frame by averaging stereoscopic estimates from each pair
of cameras which target the same person:

Algorithm 1 Procedure for calculating a merged track in the global coordi-
nate frame from a cluster of multiple trajectories.

⌧ = {⌧1, . . . , ⌧k} : tracks in cluster.
t earliest start time in ⌧
te  latest end time in ⌧
while t  te do
for all track pairs {⌧i, ⌧j} which exist during t do

li  the line defined by the location of camera i and the target image
coordinates ⌧i(t).
lj  the line defined by the location of camera j and the target image
coordinates ⌧j(t).
pij  the nearest point equidistant from li and lj . I.e. the point
closest to intersection between the two lines.

end for
⌧(t) mean of all points pij

t t +�t {�t is a constant time increment.}
end while

With tracking and merging completed, the roughly 600 GB of daily
video is reduced to approximately 700 MB of tracks. On average, each day
produces 23.4 thousand tracks (std. dev. 16.8 thousand). Figure 4.7 shows
an overlay onto a plan of the store a single day’s tracks. Across the entire
corpus, 41,245 GB of video was transformed into 68 GB of tracks.

4.3.1 Customer / Employee Classification

Employees at the Best Buy store wear a consistent uniform of black pants
and dark blue shirt with a small yellow logo. On some days, a specialist
employee worked with a black sports jacket or white shirt and black tie. The
uniformity of their garb makes viable customer/employee classification using
a track’s associated color histograms.

Color histograms output during tracking were used to build a simple
discriminative classifier to divide tracks between customers and employ-
ees. Histograms were sampled at the first and last frames of every track,
and at regular intervals during the track. Color histograms consist of 512
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Figure 4.7: Above: tracks from a short three minute timespan. Below: The filtered
and merged tracks of a single day (August 8, 2010) in the Best Buy Mobile store.
In this image, red tracks correspond to those tracks classified as customers; blue
tracks to those classified as employees.
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bins, uniformly divided across the RGB color-space (eight bins across each
dimension).

The classifier is simple: Two color histograms are built based on training
data—one for customers, the other for employees—by summing training
histograms. The histogram for employees is very “peaky”, with much of
the mass centered on the dark grays and blues; that for customers is more
uniformly distributed across the color spectrum. The color histograms, with a
Laplacian smoothing, were used as estimates of the probability distribution of
the colors of employees and customers. To classify a track, its aggregate color
histogram—the sum of all histograms associated with the track—is compared
against the two trained histograms. Whichever histogram better matches the
candidate, as measured by lower Kullback-Leibler (KL) divergence, wins the
label. Explicitly, if the histogram for the target track is h⌧ and aggregate color
histograms for the customers and employees are hcust and hempl, respectively;
where h(i) is the probability of bin i:

label(⌧) =

(
“customer” if KL(h⌧ , hcust) < KL(h⌧ , hempl)

“employee” otherwise

where the KL divergence of two color histograms h1 and h2 is:

KL(h1, h2) =
X

i

h1(i) log
h1(i)

h2(i)

The employee/customer classifier training set is comprised of the color
histograms of 3456 manually labeled trajectories (1876 customers, 1580 em-
ployees). Table 4.1 lists details of the classifier’s performance on a held
out test set. Customers classified as employees (false positives) were cus-
tomers whose attire too closely resembled employees. Employees classified
as customers (false negatives) were typically of the employee wearing a black
sports-coat.

Activity pattern features were generated using the tracks classified as
customers and the functional locations described below.

4.4 Selection of Store Functional Locations

I defined thirty-nine functional locations for the Mall of America Best Buy,
placed around distinct areas in the store. Flocs were chosen to divide product
categorical boundaries as well as areas with distinct uses (for example, a
small play area for children, or each lounge chair). Figure 4.8 shows the
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Predict Pos. Predict Neg.

Actual Pos. 885 42
Actual Neg. 190 832

Metric

Accuracy 0.881
Precision 0.955

Recall 0.823
MCCa 0.772

a Matthew’s Correlation Coe�cient

Table 4.1: Performance of the color-histogram based Employee/Customer track
classifier. Here, labeling a candidate track “employee” is the positive case.

location and extent of flocs in the store. Points of sale were explicitly not
chosen as functional locations. Their inclusion in transaction modeling would
lead to a trivial result: since transactions are completed at registers, we
could expect activity at those locations immediately before a transaction’s
timestamp.

Some functional locations, the central chairs in particular, were defined
around furniture that can move. I observed by watching video from each
recorded day that the location of these flocs remained relatively constant
during the course of a day—employees would reposition furniture to its
“default” location when moved. Over the course of several days, some pieces
of furniture could be jostled and moved slightly to create a new “default”
location. I built an annotation tool (see Figure 4.9) to locate furniture within
the store and collected location data for each floc-associated piece of furniture
for days in the dataset.

4.4.1 Store Layout Changes

During the period of data collection, there was one significant change to
the store’s physical layout. Initially, two smaller tables with cell phones
were placed together at the front of the store. A second pair of tables were
placed deeper inside, split to the left and right side. At the rear of the store,
between the chairs and back-wall point-of-sale, two larger tables carrying
laptop computers were placed together. Prior to the holiday shopping season,
one of the two larger laptop-carrying tables was brought to the front of the
store, and the pair of smaller cell-phone tables split and placed on either
side of the store. Figure 4.10 shows the variants of the store configuration.

The thirty-nine flocs followed changes in the store configuration: func-
tional locations target function rather than location. I.e. the floc encompass-
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0 1 ' 2 ' 4 ' 8 '

Figure 4.8: The layout of flocs within the store. Some flocs were attached to objects
or locations that can move (for example, the chairs at the store’s center). For those
flocs, I annotated daily location changes. Note that points-of-sale were explicitly
not chosen as flocs.

Figure 4.9: Screenshot from the furniture-placement annotation tool.
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0 1 ' 2 ' 4 ' 8 '

0 1 ' 2 ' 4 ' 8 '

Figure 4.10: The layouts of the Best Buy store during the case study’s data
collection.
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ing “sprint-phones” always encloses the kiosk displaying phones from that
provider.

4.5 Data Preprocessing

The final step in the preparation of data for the Mimic model is the gen-
eration of floc activity vectors and the selection of positive and negative
examples for training and testing. Activity vectors were generated for open
hours of the store (9:00 AM–8:00 PM) with a feature timebase �t of five
seconds. This timebase is long enough to capture meaningful interactions
between customers, employees and products in high fidelity. Before being
modeled by the HMMs of Mimic, the activity patterns are further temporally
smoothed by convolution with a rectangular window. This smoothing is
further described and explored in the following chapter. The decimation of
track data into floc features further compresses the data; the 700 MB of a
day’s tracks is reduced to 2.4 MB of activity patterns.

4.6 Challenges in the Best Buy Mobile Store

Compared to many other types of retail stores, this Best Buy Mobile store
poses particular challenges to predicting purchases. Unlike similar studies
performed in stores vending staple goods, or an array of products liable
to be purchased spontaneously (see for example Hui et al., 2009a; Kholod
et al., 2010; Yada, 2011; Larson et al., 2005, which examined behavior in
supermarkets), the high price-point of products at this store, and the contrac-
tual obligations demanded by cell-phone service providers, lead customers
to make more deliberative choices. Customers will visit retailers several
times to physically handle products and investigate di↵erent options before
a purchase decision is made.

Moreover, there are a huge array of potential confounds. Promotions may
drive one particular product’s sales, and employees may have di↵erent skills
closing a sale. These factors are divorced from the physical configuration of
a space, and hence invisible in the data input into the Mimic model.

4.7 Conclusions

The Best Buy Mobile stand-alone store used as a case study to evaluate
the Mimic model is a representative, if challenging, retail space to model.
Identifying episodes of transactions within this class of store is enormously
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di�cult. Tracking pedestrians in the video is problematic due to frequent
occlusions, long periods when customers and employees remain relatively
still, and the compounding of errors when handing o↵ trajectories from one
camera to another. The type of products being sold within the store further
complicate the classification task; due to the high cost of many of the items
sold in this Best Buy, customers make less frequent impulse buys, and often
come to the store to learn about the products only to return at a later date
to make a purchase.

The retail store is not a controlled experimental environment where the
physical configuration can be treated as an independent variable. There are
huge fluctuations in the store’s sales: temporal (the holiday shopping season,
promotions), categorical (the iPhone is the most popular smart-phone), and
social (e�cacy of employee salesmanship). Each of these contributes to the
challenges to modeling transactions.

The next chapter evaluates the performance of Mimic on the Best Buy
Mobile Mall of America data and several subsets.
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Chapter 5
Performance of the Mimic model

How well does the Mimic model predict transactions? In this chapter, the
floc activity pattern data gathered in the case study retail store is used to
evaluate the model, both in its sensitivity to free parameters, and in contrast
to several alternative models. Following a description of the training data
used, parameter learning, and the metrics of evaluation, is an exploration of
the space of free parameters of the model and a discussion of their e↵ects on
model performance. Next follow several experiments with the model, and a
discussion of the findings.

5.1 Positive and Negative Training Sets

Mimic requires a training set of labeled example episodes. As discussed in
Chapter 3, a day’s activity patterns is divided into positive and negative
labeled examples by first labeling positive examples as all time-periods of
duration  preceding transactions, then dividing the remaining unclaimed
data into  length episodes with a negative label. The ratio of counts between
positive and negative examples is determined by the value  . Ideally, the
duration  captures the typical, important period where purchase decisions
are made.

Unless otherwise noted, models were evaluated using randomized five-
fold cross-validation. A fold’s training and test data were selected without
replacement from the randomized complete set of positive and negative
examples. This poses a complication due to the overlapping data used in
positive examples. In a näıve cross-validation, examples in a cross-validation
fold’s test-set may contain data used to train that fold’s model due to
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the overlapping data present in some positive examples (see Figure 3.2),
which could mask over-fitting of the model. To prevent artificially inflated
performance results by cross-contamination, I removed from a fold’s test-set
any episodes which temporally overlap episodes in the fold’s training data.

Randomized cross-validation obscures any potential e↵ects of changing
store layout, promotions, and seasonal variations (i.e. the Christmas shopping
season). The individual e↵ect of these confounds is di�cult to disentangle; an
experiment with the model investigating seasonal/layout e↵ects is described
in Section 5.9.3.

5.2 Parameter Learning & Implementation Notes

The general techniques used in learning the static and dynamic models
of activity patterns—counting and expectation maximization (EM)—are
described in Chapter 3; some implementation-specific aspects merit mention.
For all models, log-likelihoods were used rather than direct probabilities for
numeric accuracy and computational simplicity.

The Gaussian components in the GMM static model used only a diag-
onal covariance. This reduction in model expressivity can be mitigated by
increasing the number of mixtures in the model. As mentioned in Chapter 3,
a minimum variance was enforced along each dimension to prevent mixtures
of single examples with zero variance and infinite maximum likelihood.

Expectation-maximization based parameter-fitting of both static and
dynamic models terminated when the ratio of log-likelihoods between EM
iterations was less than a threshold �. If the likelihood of the data x at
iteration i is L(x|✓i) then EM terminated when

logL(x|✓i�1)� logL(x|✓i)
logL(x|✓i�1)

< �.

In all experiments presented here, � was set to 0.000001. I cross-validated a
typical parameter setting five times with di↵erent random initialization. The
AUC (area under the ROC curve) of the resulting models was near identical
(standard deviation of 0.00313), evidence that the model does not terminate
prematurely in a local optima.

All model parameters were initialized using a random subsampling of the
training data.

Cross-validation of mimic models was performed on a heterogeneous
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computing cluster of approximately fifty computing cores1 which could
complete several thousand parameter configurations during a weekend.

5.3 Metrics of Evaluation

Rather than use a single binary confusion matrix or derived characteristics
such as accuracy, f -score or Matthew’s Correlation Coe�cient (MCC), to
evaluate the performance of any single model parameter setting, I use the
area-under-curve (AUC) of the receiver operating characteristic (ROC) curve.
The AUC is a measure of the overall performance of a binary classifier as a
parameter is varied (Davis and Goadrich, 2006). In the cases presented here,
the model prior—classification likelihood-ratio threshold—was varied. The
AUC ranges between zero and one. A perfect classifier has an AUC of one,
and a classifier performing at chance has an AUC of 0.5.

An ROC curve compares the false-positive rate (on the x-axis) against
the true-positive rate (on the y-axis); both rates can vary between zero and
one. A perfect classifier yields a point at the top-left of the curve, indicating
100% true-positives and 0% false-positives—i.e. no errors. The curve is
pinned at the bottom left—declaring all examples negative—and at the top
right—declaring all examples positive. A random classifier, one that chooses
the class label with a weighted coin-flip, yields an ROC curve along the
diagonal as the probability is varied. This is the chance line; classifier ROC
curves that are above the diagonal perform better than chance. Comparing
two models is done against chance performance. For example, a model with
an AUC of 0.7 is considered to perform twice as well as a model with an
AUC of 0.6; i.e. 0.7�0.5

0.6�0.5 .

5.4 Data Normalization

Figure 5.1 shows a clear relationship between the amount of activity in the
store and the propensity for a purchase. We would like the floc activity
model to capture patterns deeper than this trivial correlation. To force the
model to find activity patterns in the data divorced from the total activity,
the datasets were normalized to have proportional numbers of examples. The
normalization procedure was as follows: positive and negative examples were

1 Many of the machines in the cluster are the desktop workstations of my colleagues.
These machines were removed from the cluster during the daytime. The size of the
cluster was also reduced for memory-intensive tasks. This cluster was also used in earlier
steps in the data processing pipeline such as tracking.
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Figure 5.1: This graph shows the correlation between total activity during an
episode and the number of transactions occurring during the episode. The graph
was generated by sampling ten-minute episodes every five minutes, sorting the
episodes by the number of transactions occurring during the episode, then calcu-
lating the mean of total activity (the sum of all activity vectors in the episode) per
ordinal transaction count. A clear trend can be seen: the greater the amount of
activity, the more likely a transaction is to take place. This makes intuitive sense: if
every customer has a propensity for making a purchase, increasing the number of
customers will increase the number of transactions that would be seen in a window
of time.
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Figure 5.2: Graph showing the relationship between total activity and entropy of
the activity pattern distribution, showing the trend of episodes with greater total
activity having greater entropy as well.

binned by their total activity (the sum of all floc activity across all time
samples). The bin size was 100 total seconds of activity. Examples were
then drawn, without replacement, from each bin in fixed proportion between
positive and negative examples. With this procedure, the distribution of
total activity in both positive and negative training sets is identical.

An alternative normalization technique—scaling the features of every
time-step so that they sum to one—is not a viable alternative to the method
described above. At least, insofar as it does not completely remove infor-
mation about the total amount of activity in an episode. Assume the true
distribution of activity in the store is D. Every quantum of activity (i.e. the
activity of a single person) at a moment in time is sampled from this true
distribution. Every episode is made from a collection of many of these drawn
samples. As the number of samples increases, the divergence between the
true distribution and the sampled distribution goes to zero.

How could a classifier take advantage of this fact to predict the total
activity? One possibility is to calculate the entropy of an episode’s activity
distribution; the lower the entropy, the lower the likely total activity. Fig-
ure 5.2 shows a plot of an episode’s mean activity distribution entropy versus
the total activity, revealing the clear correlation between the two factors.
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Parameter Values

state count z 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
state model binomial, multinomial, GMM

state graph topography Simple-chain, Bi-directional chain,
Skip-chain, Fully connected

mixture count (GMM only) 1, 2, 3, 5, 10, 15
episode duration  10 minutes
smoothing window 10, 50, 100 seconds

dataset balanced & unbalanced

Table 5.1: The cross-product of the above parameter settings was evaluated in the
coarse-grained exploration of the MIMIC parameter space.

Parameter Value

state model Multinomial
multinomial � 1 microsecond
state count z 3

state graph topography Fully connected
episode duration  10 minutes
smoothing window 110 seconds

Table 5.2: Parameters of the baseline MIMIC model. The AUC of this model is
0.5822.

5.5 An Exploration of the Parameter Space

The full free parameter space of Mimic is huge: the cross-product of seven
parameters. I performed a course-grained exploration of the full space,2

evaluating over fifteen thousand di↵erent settings, with more fine-grained
evaluations in several parts of the space. These explorations varied the seven
model parameters described below (Table 5.1). Rather than an exhaustive
summary of the results of this exploration, I present here the e↵ects of the
variation of several parameters as all other parameters are held constant.
Unless otherwise noted the results reported here vary parameters relative
to this baseline parameter setting, which I found yielded middle-of-the-road
performance. Table 5.2 enumerates the parameters for the baseline model.

2 Up to fifteen GMM mixtures and ten HMM states.
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Figure 5.3: ROC curve for
the three variants of static
state models.

State types Model performance using the three static distribution models
is shown in Figure 5.3. Here the AUC for static state models of type
binomial, multinomial and GMM are 0.5721, 0.5822 and 0.5493, respectively.
Compared to other model parameters such as state counts or example size for
which one might expect smooth changes in performance as the parameter is
varied, the choice of state model structures di↵erent performance manifolds.
Although the multinomial static model bests alternatives relative to the
baseline parameters, this result does not generalize to the best-performing
Mimic models (see Table 5.3). In general, the GMM-based classifiers were
outperformed by both multinomial-state and binomial-state variants with
comparable parameter settings. Building an intuition that explains these
variants is di�cult, especially when the rank order of model performances
change as other parameters are varied (for example, with the best performing
models).

HMM state counts The number of states in the HMM is associated with
the complexity of temporal patterns that can be modeled. If there exists
common subsequences of activity patterns in the data, that we expect that
models with more states would be better performing. This is not the case.

Independent of state model, the best performing classifiers had few states,
with little variation in performance as state-counts are increased (Figure 5.4).
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States Baseline 
Parameters

Best-
performing 

GMM
1 0.600305 0.599095
2 0.582533 0.602744
3 0.582239 0.599777
4 0.577763 0.615827
5 0.593219 0.575014
6 0.587637 0.594806
7 0.581679 0.566556
8 0.578048 0.582822
9 0.597005 0.582492
10 0.594093 0.586979

0.50
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State count vs. Model Performance

AU
C

Number of States
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Figure 5.4: The performance of the model as the number of states is varied. Here
is shown the AUC of the fixed baseline model and best-performing GMM-based
model as the number of states ranges from one to ten.

This indicates that—at the resolution a↵orded by the activity vector features—
there is little dynamic structure that Mimic can capture, especially when
using the less descriptive binomial and multinomial state models. Variations
in performance are more prominent with the Gaussian mixtures state model.
The best performing GMM-based Mimic model on the balanced dataset uses
four states (nine on the unbalanced dataset).

Example size What is the best window of activity one should examine
when predicting transactions? Too short a window may not include activity
patterns indicative of a transaction; too long may stretch before a purchasing
customer has ever entered the store. We might expect that the best perform-
ing Mimic model would use an example size equal to the mean time spent
in the store by customers who make purchases.

Surprisingly, increasing  had the e↵ect of increasing classifier perfor-
mance. Figure 5.5 shows the variations of performance of the baseline
parameterized model when  is varies from two minutes to forty-four min-
utes. Why would performance continue to increase, even for very long episode
lengths? One possibility is that the longer episodes better capture transac-
tions which include sales and service of new cell-phone plans. This class of
transactions often takes thirty minutes or longer as employees register the
phone, perform credit checks and educate the customer about their purchase.
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Psi AUC
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Figure 5.5:
Performance
of the baseline
model as a func-
tion of episode
duration  .

The increasing performance result may also be an artifact of the evaluation
process. As we have already seen, the probability of a transaction occurring
increases with the total amount of activity in the store. Also, any episodes
which temporally overlap with data in the training set are excluded from
the cross-validation test set. Taken together, these points imply that as the
episode duration increases, more positive examples will be systematically
excluded from the test set, artificially increasing the reported performance of
classifiers that perform well on low-activity (and thus more likely negative)
episodes.

HMM graph topology We would expect the topology that matches the
dynamics of the true underlying distribution to be best-performing if the
model training terminates prematurely. For example, if activity in the store
typically transitioned through a sequence of states representing browsing, in-
quiry, and pre-purchase, but infrequently between browsing and pre-purchase
states, then we could anticipate the fully connected graph topology to un-
derperform. The fully-connected topology is a superset of the constrained
variants and can fully model these more restricted sequences. If the fully-
connected topology is most performant, then either there does not exist a
clear underlying temporal structure to the data, or the EM algorithm does
not enter a lull in model improvement.

The fully-connected state graph topology is the most expressive of the
four variants, and evaluations of the model variants bear out the supposition
that the fully-connected HMM would perform best, if only slightly. Fig-
ure 5.6 shows a typical pattern where the fully-connected model performs
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Figure 5.6: ROC curve
for the HMM state graph
topology. Shown are
simple-chain, bi-directional
chain, skip-chain and fully-
connected.
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approximately 24% better than the simple-chain topology, compared to
chance.

The best-performing binomial models are single-stated (i.e. they revert
to the static model) and therefore graph topology is irrelevant. Likewise,
the best-performing multinomial models use two states, so only the fully-
connected and simple-chain variants apply—of that pair, the fully-connected
models perform best.

Data smoothing One of the common characteristics observed in the data
are what might be called “islands of activity”: A customer browsing items in
the store spends several seconds in transit walking from one floc to another,
leaving no trace (i.e. zeros) in the floc activity data. These isolated activities
can be harder for an HMM to model.

To connect these islands, I smoothed the data by convolving it with a
rectangular kernel. Once smoothed, I subsampled the data at fixed time
increments half the width of the kernel. An episode V is smoothed with a
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Smoothing 
Window 

(minutes)

No 
Smoothing

Model AUC

0 0.5443
0.17 0.5443 0.5556
0.33 0.5443 0.5639
0.50 0.5443 0.5624
0.67 0.5443 0.5500
0.83 0.5443 0.5580
1.00 0.5443 0.5720
1.17 0.5443 0.5782
1.33 0.5443 0.5904
1.50 0.5443 0.5971
1.67 0.5443 0.5931
1.83 0.5443 0.5822
2.00 0.5443 0.5820
2.17 0.5443 0.5861
2.33 0.5443 0.5868
2.50 0.5443 0.5890
2.67 0.5443 0.5851
2.83 0.5443 0.5930
3.00 0.5443 0.5934
3.17 0.5443 0.5907
3.33 0.5443 0.5934
3.50 0.5443 0.5902
3.67 0.5443 0.5983
3.83 0.5443 0.5920
4.00 0.5443 0.5933
4.17 0.5443 0.5951
4.33 0.5443 0.5990
4.50 0.5443 0.6007
4.67 0.5443 0.6001
4.83 0.5443 0.6015
5.00 0.5443 0.6019
5.17 0.5443 0.5922
5.33 0.5443 0.5946
5.50 0.5443 0.5961
5.67 0.5443 0.5965
5.83 0.5443 0.5980
6.00 0.5443 0.5985
6.167 0.5443 0.5994
6.333 0.5443 0.5991
6.500 0.5443 0.6007
6.667 0.5443 0.6009
6.833 0.5443 0.5888
7.000 0.5443 0.5888
7.167 0.5443 0.5895
7.333 0.5443 0.5908
7.500 0.5443 0.5914
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Figure 5.7: The effect of data smoothing.
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Subsampling the smoothed data has the additional e↵ect of reducing compu-
tation during training and evaluation.

Smoothing significantly improves classifier performance, with diminishing
returns beyond a smoothing window of approximately two minutes (See
Figure 5.7). To continue the analogy, with smoothing the activity “islands”
are joined with each other, allowing the HMM to more easily hop between
them. With the baseline parameters, Mimic performs twice as well when
data is smoothed with a 2.5-minute kernel compared to without smoothing.

( 79 )



Rony Daniel Kubat Performance of the Mimic model

Parameter Balanced dataset

State model Binomial Multinomial GMM
State count z 1 2 4

State graph topography — Fully connected Fully connected
Mixture count — — 15

Smoothing window (seconds) 110 220 110

AUC 0.6243 0.6158 0.6070

Parameter Unbalanced dataset

State model Binomial Multinomial GMM
State count z 1 2 9

State graph topography — Fully connected Fully connected
Mixture count — — 10

Smoothing window (seconds) 100 10 110

AUC 0.7400 0.6740 0.7119

Table 5.3: Parameter settings for the top three MIMIC models in both balanced and
unbalanced datasets. The episode duration ( ) for each of these models was fixed
at ten minutes.

5.6 Best-performing Models

Of the thousands of parameter variants evaluated, the settings of the best
performing binomial, multinomial and GMM-based models are listed in
Table 5.3. On the unbalanced dataset, the binomial static model was the best
performer, with an AUC of 0.6243. The binomial also bested the alternatives
on the unbalanced data, with an AUC of 0.7400.

5.6.1 Exploding a Model

By inspecting one of the better performing models, we can gain some insight
into the kinds of activity patterns—and customer behaviors—that the model
captures. The best-performing multinomial-based model contains two states
with initial and transition probabilities shown in Tables 5.4 and 5.5 and
visualized in Figure 5.8.

Both states in the positive model are nearly identical, with much of the
probability mass distributed at one of the laptop tables near the entrance,
and at the three smaller tables holding phones from the three cell-phone
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Prior probability
State Positive Negative

A 0.4993 0.1143
B 0.5007 0.8857

Positive Model

Initial
A B

Next
A 0.5242 0.4657
B 0.4758 0.5343

Negative Model

Initial
A B

Next
A 0.9988 0.0002
B 0.0012 0.9998

Table 5.4: The learned priors and transition probabilities of the best-performing
multinomial-based MIMIC classifier.

providers. Also with a relatively high probability mass is the Geek Squad
help desk, which perhaps indicates that Best Buy employees are successfully
transitioning customer’s problems into sales opportunities. Compared to the
negative model’s states, those of the positive place greater relative emphasis
on the accessories on both sides of the store.

The two states of the negative model are more distinct from each other.
The first state, A, concentrates most of its probability mass on the two
Verizon flocs. In early January, 2010, Verizon o�cially announced that the
popular Apple iPhone would be available on its network, with an availability
of February 10, 2010.3 Rumors of the iPhone’s availability persisted for
month before the announcement. The high probability on Verizon flocs
may be explained by customers investigating Verizon service plans with no
immediate intent to purchase, instead waiting for the iPhone to be available.

The second state, B, places much of the probability mass at the front
laptop table. This state may capture relatively quiet moments in the store,
where a few customers—perhaps window-shoppers—enter briefly to peruse
laptops before exiting. Both states in the negative model infrequently
transition between one another, indicating that store activity patterns remain
comparatively constant for the ten minutes of an episode’s duration.

3 “Battle is Set as Verizon Adds iPhone,” Jenna Wortham, New York Times, January 11,
2010. http://www.nytimes.com/2011/01/12/technology/12phone.htm
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Positive Model Negative Model
Floc A : P (·) B : P (·) A : P (·) B : P (·)

Entrance 0.008544 0.008542 0.008159 0.007942
Laptop-a1 0.017840 0.017841 0.010319 0.024980
Laptop-a2 0.022877 0.022879 0.013008 0.024851
Laptop-a3 0.102910 0.103039 0.045951 0.149602
Laptop-a4 0.083059 0.083043 0.047660 0.113178
Laptop-b1 0.008805 0.008795 0.008296 0.009640
Laptop-b2 0.014688 0.014681 0.016124 0.013374
Laptop-b3 0.012095 0.012083 0.006793 0.011911
Laptop-b4 0.039839 0.039793 0.019968 0.047890
Samsung 0.000305 0.000301 0.001022 0.000199
Cases-1 0.026166 0.026190 0.015350 0.017466

Broadband 0.013193 0.013194 0.007111 0.008471
Cases/shields 0.031847 0.031865 0.018358 0.021944

Chargers 0.010495 0.010499 0.010296 0.006632
Earpieces 0.007682 0.007679 0.008806 0.006956

Motorola-1 0.008178 0.008176 0.010066 0.006896
Sprint-1 0.066465 0.066483 0.035167 0.078602
Sprint-2 0.079296 0.079356 0.027603 0.082009

T-Mobile-1 0.053787 0.053813 0.040613 0.044920
T-Mobile-2 0.044753 0.044762 0.028211 0.052573
Verizon-1 0.049072 0.048942 0.112500 0.028317
Verizon-2 0.044267 0.044196 0.148521 0.024665

Smartphone 0.022944 0.022952 0.032417 0.018050
Personalization 0.025622 0.025619 0.034580 0.022231

Chair-1 0.016323 0.016297 0.064111 0.010595
Chair-2 0.011654 0.011629 0.024510 0.008787
Chair-3 0.013957 0.013917 0.027393 0.008590
Chair-4 0.012623 0.012618 0.068312 0.010068

Geeksquad 0.042825 0.042977 0.017273 0.047931
No contract 0.016469 0.016485 0.014930 0.014651
Motorola-2 0.008170 0.008162 0.004789 0.007151

Comp.-Accessories 0.030254 0.030237 0.026429 0.035081
Wireless-Power 0.006472 0.006458 0.003721 0.004258

Cases-2 0.028775 0.028774 0.015680 0.017164
Headphones 0.007840 0.007827 0.005963 0.005222

Etc. accessories1 0.005803 0.005804 0.004871 0.004110
Etc. accessories2 0.002817 0.002815 0.002031 0.001595

Play Area 0.000338 0.000333 0.003199 0.000339
Backroom door 0.000950 0.000945 0.009886 0.001159

Table 5.5: The learned floc probability parameters of the best-performing
multinomial-based MIMIC classifier.

( 83 )



Rony Daniel Kubat Performance of the Mimic model

Figure 5.9: The probability an
episode contains a transaction
as a function of the episode’s
duration.

Minutes Probability
(transaction)

0.500000 0.025184
1.000000 0.049530
1.500000 0.072954
2.000000 0.095454
2.500000 0.117143
3.000000 0.137955
3.500000 0.158052
4.000000 0.177429
4.500000 0.196071
5.000000 0.213984
5.500000 0.231203
6.000000 0.247746
6.500000 0.263712
7.000000 0.279123
7.500000 0.294082
8.000000 0.308575
8.500000 0.322589
9.000000 0.336056
9.500000 0.349075
10.000000 0.361698
10.500000 0.374032
11.000000 0.386007
11.500000 0.397604
12.000000 0.408788
12.500000 0.419676
13.000000 0.430221
13.500000 0.440457
14.000000 0.450415
14.500000 0.460093
15.000000 0.469505
15.500000 0.478655
16.000000 0.487515
16.500000 0.496086
17.000000 0.504399
17.500000 0.512483
18.000000 0.520374
18.500000 0.528055
19.000000 0.535501
19.500000 0.542726
20.000000 0.549769
20.500000 0.556602
21.000000 0.563280
21.500000 0.569775
22.000000 0.576089
22.500000 0.582288
23.000000 0.588390
23.500000 0.594313
24.000000 0.600081
24.500000 0.605707
25.000000 0.611169
25.500000 0.616480
26.000000 0.621669
26.500000 0.626695
27.000000 0.631594
27.500000 0.636375
28.000000 0.641053
28.500000 0.645650
29.000000 0.650138
29.500000 0.654519
30.000000 0.658824
30.500000 0.663025
31.000000 0.667110
31.500000 0.671085
32.000000 0.674973
32.500000 0.678764
33.000000 0.682456
33.500000 0.685999
34.000000 0.689415
34.500000 0.692767
35.000000 0.696004
35.500000 0.699170
36.000000 0.702246
36.500000 0.705243
37.000000 0.708161
37.500000 0.711006
38.000000 0.713806
38.500000 0.716537
39.000000 0.719166
39.500000 0.721737
40.000000 0.724194
40.500000 0.726591
41.000000 0.728942
41.500000 0.731205
42.000000 0.733399
42.500000 0.735545
43.000000 0.737663
43.500000 0.739734
44.000000 0.741715
44.500000 0.743675
45.000000 0.745614
45.500000 0.747530
46.000000 0.749414
46.500000 0.751271
47.000000 0.753075
47.500000 0.754848
48.000000 0.756575
48.500000 0.758277
49.000000 0.759952
49.500000 0.761588
50.000000 0.763203
50.500000 0.764773
51.000000 0.766300
51.500000 0.767802
52.000000 0.769284
52.500000 0.770741
53.000000 0.772155
53.500000 0.773565
54.000000 0.774964
54.500000 0.776339
55.000000 0.777683
55.500000 0.779014
56.000000 0.780315
56.500000 0.781570
57.000000 0.782803
57.500000 0.783992
58.000000 0.785132
58.500000 0.786240
59.000000 0.787305
59.500000 0.788357
60.000000 0.789398

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

P
ro

b
a
b

ili
ty

 o
f 

Tr
a
n
sa

c
ti
o

n
Episode Duration (minutes)

5.7 Alternative Models

This section compares the Mimic model against several competitors in order
to give grounding to the model’s performance.

5.7.1 Random Chance

The most trivial comparison is against random chance. Suppose a window of
activity of duration � is chosen at random during the store’s opening hours;
what is the probability that the window will encompass a transaction? This
probability is clearly a function of the duration of the window, and can be
calculated directly from the data (see Figure 5.9).

As the duration of the window increases, so does the probability that
the window will contain a transaction. For the ten minute window size used
in most of the evaluations run here, the probability of a transaction in a
randomly chosen episode is 36.2%.

5.7.2 Activity Thresholding

As noted earlier, there is a strong correlation between the total amount of
activity in the store and the propensity for a transaction taking place. An
extremely simple model can be constructed by comparing the total activity
in flocs in an example against a fixed threshold. If the activity exceeds
this threshold, the example is labeled as “transaction”, and otherwise “no-
transaction.” The ROC curve shown in Figure 5.10 was created by varying
this threshold. This trivial classifier shows reasonable performance with an
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Figure 5.10: A trivial activity-based classifier compared to the best performing
Mimic model. The ROC curves on the left were evaluated on unnormalized data;
those on the right were evaluated with normalized data. Taken together, these
graphs show that the Mimic model is capturing patterns more significant that sheer
quantity of activity.

AUC of 0.6832, when evaluated with unnormalized data. The best performing
Mimic model improves on the activity-thresholding model by 31% relative
to chance. As expected, when the trivial thresholding classifier is applied
to the normalized dataset, its performance is indistinguishable from chance,
validating that examples are correctly normalized and that transactions can
no longer be predicted by total activity alone.

5.7.3 Naı̈ve-Bayes

A Näıve-Bayes classifier serves as a baseline to evaluate Mimic performance.
An episode V , with n flocs and m activity vectors, is unravelled into a single
feature vector of dimensionality mn. The grossly simplifying assumption
made in the Näıve-Bayes model is that the activity at each moment in time
is independent of all others—a hypothesis that is clearly not true with this
data.

I used Näıve-Bayes implementation of the RapidMiner machine learning
toolkit to evaluate this baseline model (Mierswa et al., 2006). The Näıve-
Bayes classifier was evaluated with five-fold cross-validation with temporally-
overlapping test-set examples removed. On the balanced dataset, the Näıve-
Bayes classifier achieved an AUC of 0.5520; on unbalanced data, it achieved
an AUC of 0.5685.
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5.7.4 Transformations of the Data

Neither the activity-thresholding nor Näıve Bayes classifiers described above
captures the temporal dynamics of the store’s activity. Transformations of
the raw data may reveal temporal patterns that could be exploited by a
classifier to improve its performance. To test this hypothesis, I transformed
the raw floc activity data using the discrete cosine transform and the Fast
Fourier Transform (using only the real component of the result), both of
which illuminate cyclic patterns by calculating the magnitude of sinusoidal
components into which a signal may be decomposed. The transformation
was performed independently on each dimension of the episode, and the
transformed episode was flattened into a single vector.

So, for episode V = {#1, . . . ,#m} where the number of floc features is n,
the transformed vector becomes (in the case of the discrete cosine transform):

T (V ) =
�
DCT(�11, . . . , �

1
m),DCT(�21, . . . , �

2
m), . . . ,DCT(�n1 , . . . , �

n
m)
 

The input vector was padded with zeros in order to expand the number
of time-steps to be a power of two—a requirement for the Fast Fourier
Transform.

The performance of the Näıve-Bayes classifier on FFT and DCT trans-
formations of the data was identical for unbalanced data (AUC of 0.5989),
and very similar on balanced data (AUC of 0.5619 and 0.5712 respectively).

5.7.5 State-of-the-art Black-box Models

The Google Prediction API4 (GPA) is a black-box machine-learning web-
service providing classification and regression of arbitrarily-dimensioned data
(Google, 2011). Google Predict is a supervised system; users provide labeled
examples to train a black-box model, and can later submit queries to the
trained model. For classification models the query response contains label as
well as label confidence values varying between zero and one. The system
is black-box in that the machine-learning algorithms used by Google are
proprietary—the public has no knowledge of the mechanism used to predict
classes or regress values.

I submitted two variants of the floc activity data to the GPA: a flat-
tened dataset identical to the dataset fed to the Näıve-Bayes model, and a
dataset converted by the discrete cosine transform. I performed a five-fold

4 Application Programming Interface.
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Figure 5.11: The performance of the best performing MIMIC model vs several
alternative models. On the left is the performance using the total-activity balanced
dataset; on the right are the same models, trained and evaluated on the unbalanced
datasets.

randomized cross-validation with the GPA model,5 both on normalized and
non-normalized data. The classification provided by the GPA model was
discarded in favor of the class-confidence values—classification was instead
made by comparing the di↵erence in confidences against a threshold.6 ROC
curves for the GPA classifier were created be varying this classification
threshold. Figure 5.11 shows the resulting ROC curves of the GPA and
Näıve-Bayes models as well as the best performing Mimic model. Mimic is
the clear victor in this contest, outperforming the GPA model by a factor
of 1.6 compared to chance on balanced data, 2.7 compared to chance on
unbalanced data.

5.8 Performance in Context

For those familiar with contemporary machine learning classifiers, the AUC
performance of Mimic may seem underwhelming, especially with those tests
run with balanced training data. But what is the best performance one could
hope to achieve? Mimic attacks a problem where there may be very little

5 As with the cross-validation used to evaluate the Mimic model, any examples in the test
set which overlapped with data from the training were removed.

6 The label given by the GPA is equivalent to a threshold value of zero; in e↵ect, no
information was discarded.
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signal in a sea of noise. How much information can be extracted about an
individual’s choice from data derived from the aggregate behavior of many?

What if I brought my entire cognitive capacity to the problem? Could a
human do better that Mimic? I generated a few hundred short video clips of
episodes from the balanced sets. Each clip showed a plan of the store with
the outline of the flocs within; the flocs lit up proportional to the amount of
activity within. Viewing these videos, I was unable to determine which clips
were generated from positive episodes, and which from negative, even with
my intimate knowledge of the problem and its domain. This anecdote is far
from definitive, but nevertheless illustrative of the challenges faced by any
classifier making choices from activity patterns.

Mimic is useful despite performance slightly better than chance. Criti-
cally, by shifting the burden of evidence with the threshold �, one can gain
confidence in the classification of a subset of episodes. This fact enables
the creation of several tools. These tools are discussed in greater detail in
the following chapter, but the several experiments that follow show some
additional ways Mimic may be harnessed.

5.9 Experiments and Explorations

The following experiments examine several additional factors that influence
the performance of the mimic model.

5.9.1 Product Categories

Are some products or product categories more sensitive to patterns of activity
than others? We can answer this question by selecting positive training
examples filtered by the presence of a product category in a transaction;
negative examples are chosen as in the standard model. Product categories
were defined by the SKU taxonomy provided by Best Buy. In the case-study
corpus, only sixteen product classes were present in fifty or more transactions.
For each of these sixteen product categories, I cross-validated five Mimic

models (varying state count between one and five, using the parameter
settings of the best-performing binomial-based model for all other parameter
values) on an activity-balanced dataset. Of the five models tested, the AUC
of the best performer is shown in Table 5.6.

Episodes from several products categories proved more readily classifiable.
Prepaid phones and related classes saw the greatest lift in performance, up
nearly seventy percent relative to chance from the best performing standard
model. Prepaid phones are physically located immediately to the left as one
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Category # Ex. Model AUC Improvement

Prepaid Plans 135 0.7099 68.87 %
Prepaid Hardware 197 0.7095 68.54 %

Headphones / MP3 Speakers 90 0.6735 39.58 %
Prepaid Cards 185 0.6631 31.21 %

MP3 Accessories 63 0.6586 27.59 %
Verizon Hardware 112 0.6374 10.54 %

Mobile Phone Accessories 1465 0.6340 7.80 %
T-Mobile Contract 147 0.6191 -4.18 %

Reward Zone Loyalty 332 0.6155 -7.08 %
Mobile Phone Service 518 0.6101 -11.42 %

Wireless Warranty 347 0.6064 -14.40 %
Local Markets Plans 507 0.5981 -21.08 %

Sprint Hardware 359 0.5968 -22.12 %
Sprint Contract 316 0.5872 -29.85 %

T-Mobile Hardware 167 0.5843 -32.18 %
Verizon Contract 110 0.5431 -65.33 %

Table 5.6: Performance of the MIMIC model when trained on positive examples
segregated by product category. Those categories for which the model performed
better than the best standard (unsegregated) model are marked in bold. Exper-
iments were run using a balanced dataset. Improvement is relative to chance
compared to the standard model. The AUC of the standard model is 0.6243.
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enters the store (in the floor plans shown here, at the top left corner), behind
a high desk on which sits a point-of-sale. Although the space is publicly
accessible, I believe that the POS creates a psychological barrier that hampers
customer exploration of the display area; as a result, customers that do make
their way to the wall containing these products are more directed. Moreover,
prepaid phones have a lower barrier to purchase than subscription-based plans
which require a credit check and several-year commitment. The other product
categories that saw performance improvement, mobile phone accessories,
headphones and MP3 accessories also are inexpensive and have low barrier
to purchase. A simple way to test this theory would be to physically swap
the locations of prepaid phones with another product category, and observe
if there is a subsequent change to the model performance.

5.9.2 Floc Sensitivity

What is the predictive power of any particular functional location? We can
answer this question by reframing it as: How would model performance
change if any particular functional location was not present in the data?
I reran the three best-performing parameter settings for Mimic on floc
activity data with each floc systematically excluded. By examining the
change in AUC between the performance of the model with and without the
inclusion of a floc, I derived a ranking of the relative importance of each
individual location to model predictive power. The graph in Figure 5.12
shows these results ranked by the average change in model AUC. Negative
values (i.e. worse performance without the floc) indicate that the floc is useful
as a discriminator for purchase behavior; conversely, positive values mean
that the floc confuses the model.

The results of this test show that the multinomial and GMM-based static
models leverage every functional location to improve performance. Moreover,
the ranking of floc values are roughly similar between the two model classes.
Not so with the binomial static model; changes due to the removal of any
particular floc were far less in magnitude and the rank ordering is scrambled
compared to the multinomial and GMM orderings.

Among the three cellphone providers, flocs associated with T-Mobile
were far more more indicative of intent-to-purchase than those attached
to either Verizon or Sprint. As mentioned earlier, the customer service
“Geek Squad” table at the rear of the store was also predictive, indicating
that employees were successfully able transition service visits into sales. I
ran the product-category test from the previous section on a dataset with
the Geek Squad dimension withheld to see if the Geek Squad help desk
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Figure 5.12: The relative importance of each functional location to the model’s
predictive power. This graph shows the change in model performance for each
functional location when the floc was excluded from the input dataset. Positive
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was particularly predictive of some SKU categories. The greatest negative
di↵erences in performance with and without the Geek Squad floc (indicating
that the floc is informative for that category) came with Verizon hardware:
a change from an AUC of 0.5919 to 0.5459—fifty percent di↵erent relative
to chance. Next in order of percent change came T-Mobile contracts and
headphones/MP3 speakers, with changes relative to chance of fifteen and
fourteen percent, respectively.

Perhaps surprisingly, two of the four chair flocs appear in the top quartile
of the ranking. At first scan, these flocs seem to have little to do with
purchases. I believe the model picks up on several behaviors I observed
personally on-site and in the recorded video. I noted many cases where a
couple or pair of friends enter the store together where one has a particular
need (e.g. find a fitting case for a mobile phone). The pair splits, one seeking
the desired product, the other biding time reading a magazine while sitting
in one of the chairs. Another common behavior occurred when the store
was busy and all employees were occupied with customers. Then, patrons
would sit in the chairs waiting for an employee to be available to assist the
customer.

5.9.3 Layout Independence

How tied is the Mimic model to the particular configuration of the store?
What is the connection between function and location? Fortunately, the
Best Buy Mobile dataset o↵ers the opportunity to test this question. During
the recording of the Best Buy dataset, the physical layout of the store was
changed significantly by moving a table of laptop computers to the front
of the store. Unfortunately, there is an enormous confound which makes
answering this question much more di�cult: the holiday shopping season.
The layout change first appears in the dataset on November 17, 2010, shortly
before black Friday, the uno�cial start of the holiday shopping season. As
expected, the number of transactions following black friday and leading up
to the Christmas holiday is higher than before (see Figure 5.14).

I performed a two-fold cross-validation of Mimic, where each fold con-
tained episodes segregated by the physical layout of the store. This split
divided the dataset into 700 positive and 562 negative examples of layout A,
and 1056 positive and 951 negative examples of layout B (See Figure 4.10
for an illustration of the two store configurations).

In the case of the binomial model, the change in layout had a small e↵ect
on classifier performance (AUC of 0.6164 with layout-based cross-validation
vs. 0.6243 with randomized cross-validation), indicating that the model
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Figure 5.14: Weekly sales at the Best Buy Mobile Mall of America store. Of note
are the two spikes in sales, one on the week of “black Friday” and the second
preceding the Christmas holiday.

Model Type Randomized XV AUC Layout-based XV AUC (% change)

Binomial 0.6243 0.6164 -6.4%
Multinomial 0.6070 0.5902 -15.7%

GMM 0.6158 0.5888 -23.3%

Table 5.7: Model sensitivity to store layout. Percent change is relative to chance.

captures layout-independent customer behavior. In contrast, both best-
performing multinomial and GMM-based models su↵ered a more significant
degradation in performance due to the change in layout (See table 5.7).

Models which do not su↵er much performance degradation when the store
layout is changed can be used as tools to introspect the sales-performance of
a store (or several) as the layout is changed. The next chapter describes a
tool which couples a simulator of customer behavior with the Mimic model
to create a tool that store designers and managers can use to optimize the
physical layout of a store. This tool depends on a model whose performance
is independent of the layout.
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5.9.4 Limiting Total Activity

Perhaps the Mimic model can perform better when limited to datasets where
there are fewer people in the store. With fewer customers in the store, the
floc activity data more closely resembles that of an individual, rather than the
collective; it stands to reason that performance could thus be improved. To
test this possibility, I cross-validated the best performing Mimic parameter
settings on subsets of the dataset—the total activity serves as a proxy for
the number of customers present in the store. An episode was included in
the subset if its total activity (the sum of all floc features at all times) was
less than a threshold. Data subsets were balanced as described in Section 5.4.
I also tested subsets of the data where the criteria for inclusion was that the
total activity was above threshold. Figure 5.15 shows the performance of the
trained models as this threshold is varied.

With these parameter settings, the performance of the model trained the
subset less than threshold did not significantly exceed baseline. With a low
threshold, performance was significantly less, increasing to the asymptote of
the baseline at a threshold of approximately seven-hundred total seconds. I
believe that this trend can be explained by the high variance of the paths
people choose as they walk around the store. When there are more people
in the store, their aggregate activity pattern is closer to the true activity
distribution (See Section 5.4). The model trained on the subset of data above
threshold increased in performance as the threshold was increased (beyond
eight-hundred total seconds, there were not enough examples to cross-validate
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the model). This result supports the hypothesis that the variance of activity
patterns strongly a↵ects model performance.

5.9.5 Employee Proximity

In a store selling expensive and complicated goods such as the cell phones
and mobile computers of the Best Buy case-study, employees have enormous
impact. How much so? Can we improve the performance of Mimic by incor-
porating information about customer-employee interactions? I augmented
the standard floc activity features with an additional “virtual” floc �interaction
representing interactions between customers and employees. For every track
labeled “customer” during a slice of time, I added the amount of time the
track was within 1.5 meters of a track labeled “employee” to the virtual floc.
As in section 3.2, for the time period [t1, t2] and customer tracks {⌧1, . . . , ⌧m}:

�interaction =
mX

j=1

{duration ⌧j was within 1.5 meters of an employee} .

Surprisingly, the inclusion of the employee proximity feature did not
improve classification performance. On balanced data, the inclusion of the
employee feature reduced the AUC of the best classifier from 0.6243 to 0.6187;
on unbalanced data, the change was from 0.7400 to 0.7401. Comparing
identical parameter settings on data with and without the additional feature,
performance is almost always slightly less for data with the proximity feature.
The same is true when run on SKU category subsets, as in Section 5.9.1: no
classifier trained for a specific product category performs better than the
same classifier trained without employee proximity information.

I propose two hypotheses for the lack of performance improvement.
First, a lack of signal; employees converse with customers for a duration
independent of an eventual purchase and with no significant di↵erence in
spatial distributions where these conversations happen between purchase
and non-purchase conditions. An employee approaches entering customers
for a greeting and o↵er of assistance irrespective of the customer’s intent;
an employee discussing the features of a phone or provider’s service plans
does so, again, whether a purchase is eventually made or not. Alternatively,
the addition of this feature increases the model complexity such that more
training data would be required to achieve commensurate performance. This
second hypothesis is the so-called “curse of dimensionality.” A preliminary
attempt to incorporate employee-proximity features by splitting each floc
feature in two, one for activity of customers alone, the second for activity

( 96 )



Rony Daniel Kubat Performance of the Mimic model

with customers near employees, also showed a decrease in classification
performance.

5.9.6 Higher-level features: N-Grams

One possibly useful high-level feature extractable from trajectories alone
are the common subsequences of flocs through which a person moves. The
idea is to first identify the most frequent sequences of functional locations
that customers pass through. The activity vector can then be augmented
with additional features representing these subsequences; when a trajectory
which contains a common subsequence passes into a floc, the corresponding
dimension is increased as for a single floc alone. This is analogous to the
n-gram language model from computational linguistics, where a sequence
of n words is assigned a probability. Here, a person’s activity within a floc
stands in for a word.

To establish the common subsequences, I transformed each track in
the corpus into the sequence of flocs through which it passed (duplicated
“words” in a floc sequence were removed), then tallied the count of all floc
subsequences present. Unfortunately, less than 0.3% of all trajectories passed
through the most frequent floc bigram, and less than 0.03% through the most
common trigram. This dearth of significant common subsequences was likely
due to two factors. First, the tracks in the corpus, though merged between
multiple cameras, were often short. Second, the movement of customers
within the store is hugely varied; the space of common subsequences is
very sparse. For these reasons, floc n-grams are not very useful with this
dataset. It would be worthwhile to reassess this conclusion when the quality
of tracking and cross-camera merging is improved.

5.9.7 Finding Predictive Moments

What moment preceding a transaction is most helpful to making a classifica-
tion? I used Mimic with a modified training set to find an answer. Rather
than collect positive training examples from the  seconds preceding a known
transaction as in the standard model, I fixed the episode duration to five
minutes, and varied how long before the transaction to collect the positive
example episode. If there was a transaction at time t, then a positive episode
was selected from the data between t� ( + �) and t� � (where  was fixed
at 300 seconds). Negative episodes were selected as for the standard model:
activity data not used as positive data is divided into contiguous  -duration
episodes and used as negative examples.
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Figure 5.16: Predictive moments before a transaction. This graph was generated by
evaluating MIMIC on five-minute-long positive episodes which preceded transactions
by a variable amount. This graph shows that the moments immediately before
transaction are most important for the MIMIC model.

The results shown in Figure 5.16 show that in general, the moments
closest to a transaction are most informative. One potential explanation of
this finding is that a large fraction of store sales consist entirely of cellphone
accessories; a class of transactions which take far less time to complete
than those that involve cell phone purchases and activations. To test this
hypothesis, I ran two additional tests of predictive moments (also shown
in Figure 5.16) using a positive datasets consisting only from transactions
including mobile phone accessories, and only from transactions including
mobile phone hardware from the three contract providers. Predictive mo-
ments for accessories-only match closely those for all transactions; in contrast,
those for phones-only are more evenly distributed, with a slight performance
increase centered approximately fifteen-minutes preceding transaction. This
contrast supports the hypothesis.

5.10 Summary

The Mimic model successfully extracts a weak signal from data filled with
noise and confounds. Although the Hidden Markov Model of dynamic activity
in the store gives great representational power, the performance of the learned
models shows that simple models with few states most e↵ectively capture
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customer purchasing behavior. Even with a relatively weak signal, the Mimic

model can be used to explore factors relevant to purchasing behavior such as
the e↵ect of layout, employees, and time. In the next chapter I elaborate on
several other experiments and interactive tools which can use Mimic.
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Chapter 6
Conclusions

This thesis has reviewed consumer behavior models, introduced a new model,
and demonstrated several results.

First, it introduced the retail world and the rich domain of pedestrian
behavior analysis. With retail sales such a strong driver of the economy, even
small changes to the e�ciency of operations can have enormous impact on
both on retailer (in terms of profits earned) and customers (in terms of dollars
saved). The rapidly decreasing costs of data capture and storage, as well as
the easy integration of contemporary computer vision and machine learning,
enable new tools to better understand the behavior of customers—this thesis
introduces one such tool.

Next, functional locations were introduced as a technique for capturing
patterns of activity within a store in a compact format. The Mimic model,
a discriminative classifier that can be used to predict customer transactions
was presented. Finally, we saw an evaluation of Mimic on real data from a
retail store.

Before delving into Mimic-enabled tools and recommendations for future
work, let us revisit the central hypothesis of this thesis:

The occurrence of a transaction can be predicted from the tempo-
ral patterns of activity distributions in the entire store. That is
to say, there are measurable di↵erences between the distribution
of customers in a store preceding a sale and the distribution of
customers when no sale occurs.

The previous chapter on the performance of the Mimic model validates this
hypothesis. That Mimic is able to successfully extract signal from a stream
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of data encoding patterns of activity demonstrates a measurable di↵erence
between purchase and non-purchase activity. The choice to examine whole-
store patterns of movement rather than individual paths was motivated by
the challenges of collecting accurate, continuous, pedestrian trajectories from
overhead cameras. With raw video in uncontrolled settings, the current state
of the art in tracking is accurate only for aggregate analysis such as that of
Mimic.

In this chapter, I discuss three tools enabled by the Mimic model, and
give a speculative proposal for future work that will best aid the e�cacy of
the model. Lastly, I summarize the contributions of this thesis.

6.1 Tools Enabled by MIMIC

The performance of Mimic is far from perfect, but can still be used as part of
a suite of tools that are immediately useful. Central to each of these tools is
a philosophy of human-computer collaborative tools. In the context-sensitive,
culturally-sensitive and hugely varied domain of human behavior—especially
those domains dealing with video, as we have here—computational tools will
likely long lag the near-instant insights available to even the untrained eye of
the average adult. Computers though do not su↵er from human limitations
when coping with a deluge of data and herein lies the possibility for the
human-machine collaboration: machines that aid humans by identifying
(perhaps imperfectly) important snippets of data, by summarizing immense
datasets, by using these libraries of past data to speculate about futures
in a closed loop with a human partner. The three tools discussed below
are examples of this style of collaboration, each for a di↵erent collaborative
partner. The first, a smart engine for video retrieval, targets ethnographers
and retailers who wish to hone in on consequential customer and employee
behaviors that a↵ect the bottom-line. The second tool helps managers
compare and contrast the operations of multiple stores, providing a finer
level of granularity than strictly transactional-based measures. Finally, the
third tool targets store designers, helping optimize the physical layout of a
store. Importantly, these tools are robust to imperfect results from Mimic.

6.1.1 Smart Engines for Video Retrieval

Retailers now collect hundreds of thousands of hours of video footage from
their store every year, but ethnographers seeking to draw conclusions from
this data are faced with the daunting task of sifting through this mountain
of data to find interesting and relevant examples of behavior from which they
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Figure 6.1: Transaction near-miss rate versus time of day. These graphs were
generated using the best-performing MIMIC model for balanced and unbalanced
data, respectively. The value at each hour represents the classifier false-positive
rate for episodes during that hour for a given likelihood-ratio threshold �.

can draw actionable conclusions. Mimic can help winnow the overwhelming
quantity of video to a more manageable size.

One way Mimic can find interesting episodes is by identifying the near-
misses: moments where the classifier had strong conviction that a transaction
should have occurred, but for which no transactional record exists. These
episodes correspond to false-positives toward the bottom-left corner of the
classifier ROC curve. To give a sense of how such a tool could be used, I
measured the false-positive rate for various likelihood-ratio thresholds (� in
the model) as a function of time. I repeated this experiment using the best
performing Mimic model on both balanced and unbalanced datasets. The
trend revealed in Figure 6.1 is that mid-afternoon and near closing are two
times of day where Best Buy misses the most opportunities to make a sale.
Perhaps these are times of day where the store could benefit from additional
sta�ng.

What can be revealed by looking deeper than this aggregate? I examined
raw video of the ten false positives episodes with the greatest log-likelihood
ratio—those where Mimic was most confident a transaction should have
taken place. The first, second, and tenth episodes covered a contiguous thirty-
minute block in early December. At that time, a special event was taking
place—a promotional ra✏e for Virgin Mobile (a prepaid phone provider)—
where over fifty people packed the front of the store. It comes as little
surprise that no purchases were made during that time; the attention of both
patrons and sta↵ were on the proceedings of the event.

Several of the other highly-ranked false positives had a full sta↵ of
eight or nine employees and the store was relatively full. Often in those
episodes, several employees would be occupied at the rear of the store assisting
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customers, leaving fewer available to assist customers entering, browsing, or
seeking specific products.1 A specific suggestion for the retailer resulting
from reviewing these videos is to streamline the process of phone activation
or servicing, the execution of which currently takes in excess of twenty or
thirty minutes. These long-duration interactions occur often during peak
times. Recovering time by optimizing these procedures will free employees
when sta↵ is most in demand.

6.1.2 Realtime Tools for Managers

Managers responsible for several stores currently use basic metrics such as
conversion-rate to evaluate the performance of their stores. Mimic may
provide a more nuanced view, a systematic distillation of customer buying
patterns beyond transactional evidence. For example, consider the near-
misses identified by Mimic in the video-retrieval engine described above.
A manager may use a store’s near-miss rate to help identify problems in
sta�ng schedules, training or inventory. Are there hours of the day with
consistently higher near-miss rates? Are near-misses concentrated in certain
product categories? Are those categories su�ciently in stock? Are there
more near-misses when a certain subset of employees are sta↵ed?

Mimic-based tools may be used to track the e↵ectiveness of external
or internal marketing campaigns: by how much did a Super-bowl ad drive
tra�c to a particular product display, and was there bleed in interest to
other parts of the store? Did a new electronic display change the time spent
interacting with a product or employee?

These types of tools can also help managers with a systemic understanding
of stores under their purview. For example, sta�ng is one of the most
significant costs in retail operations and is often handled by the local manager
based on their intimate understanding of the store, its customers and their
patterns. But are there systemic problems present across many stores for
which a higher-level manager can give guidance? Are there common times of
day where the employee to customer ratio falls below a desired threshold?
Which store managers are able to best anticipate the sta�ng needs; identified,
what best practices can be learned from them? Which store managers are
worst performers and could benefit from additional training?

1 Without audio capturing conversations with customers, it is di�cult to judge specific
customer intent or the reasons behind an interaction between employee and customer.
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6.1.3 Store Layout Optimization

A store designer’s role is to strike a balance among the many factors that
shape a store’s layout. There are aesthetic considerations, contractual ones
(e.g. leased spaces in the store like aisle end-caps), functional and narrative.
This last consideration being the stories of a customer’s journey in the store.2

But the ultimate measure for a retail space is the bottom line. The complex
contribution of all these factors to the bottom line may forever be out of
the reach of computational models, though Mimic-based tools can augment
the intuition and experience of designers with a data-driven gauges of gross
performance.

The idea is to couple Mimic with a simulation of customer behavior. For
example, consider an agent-based simulation of customer behavior like that
shown in Figure 6.2 where a simulated human navigates a store to a preset
goal chosen based on the transactional record.3 The activity patterns of
hundreds of these virtual customers can be evaluated by Mimic to provide a
“score” for the store layout used in simulation. Alternatively, a discretized
stochastic simulation such as the model used in (Farley and Ring, 1966) can
generate analogous activity-patterns for Mimic to score.

Agent-based simulations are currently used to evaluate building perfor-
mance along narrow dimensions such as tra�c flow (Smith et al., 1995) and
safety (Helbing et al., 2000) or for communicative purposes (Burkhard et al.,
2008; Narahara, 2007), but only very recently to capture higher-level and
more complex behavior such as shopping. Terano et al. developed such an
agent-based model for a supermarket; in their model, purchase decisions
were baked into the agent design rather than being driven by a coupled
activity-transaction model like Mimic (Terano et al., 2009).

One could imagine closing the loop entirely by integrating an automatic
layout engine whose output is iteratively improved by using Mimic as a
fitness function. Layout algorithms go back at least as far as Eastman’s
GSP (Eastman, 1971) and the shape grammars of Stiny and Mitchell (1978),
and have involved classic artificial intelligence techniques such as expert
systems (Gullichsen and Chang, 1985) and genetic algorithms (Jo and Gero,
1998).

2 Narrative also refers to the experiential. The showroom floor of an IKEA furniture store
is a good example—the zig-zagging path a customer travels through the showroom is a
very explicit expedition from one imagined lifestyle to next.

3 The name “Mimic” is the legacy of an agent-based model I developed earlier in this
research trajectory. Some good introductions to agent-based modeling and their use
in microscopic pedestrian analysis and simulation can be found in Bonabeau (2002)
and Kerridge et al. (2001).
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0 1 ' 2 ' 4 ' 8 '

Figure 6.2: Agent-based simulation may be coupled with the MIMIC model to
optimize the sales performance of the store. In this image, a simulated customer
(the small blue rectangle) has entered the store and is navigating to several pre-
programmed destinations. This agent uses a variant of the social-force model
of (Helbing and Molnár, 1995); the red rays emanating from the agent represent its
field of vision.

Even in a more automated layout optimization scheme, a human designer
must always be in the loop to critique from the uniquely human perspective.
Such a simulation/evaluation framework is an example of the human-machine
collaborative e↵ort.

6.2 Future Directions

The problem-space engaged in this thesis is enormously rich, and rife with
possibilities for future directions. The experience exploring the parameters
of the Mimic model, and examining in some detail the failure modes of the
classifier, may give insight into which directions may prove the most fruitful
for future researchers.

6.2.1 Three Suggestions for High-value Improvements

Based on the experience working with the Best Buy case study dataset, I
believe the following three suggestions for improvement of modules in the
Mimic pipeline would have the greatest impact on the system’s capabilities.
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The first focuses on low-level features input to the system, the second on
data filtering, and the third on high-level temporal modeling.

Tracking Improvements: The choice to examine the overall activity pat-
terns in the store rather than individual customers was motivated by the
challenges of tracking people in video and accurately stitching their tracklets
into complete paths within the store. Accurate, complete trajectories would
have a transformative e↵ect on Mimic’s predictive power. For example,
positive training episodes examples could be accurately extracted using
the actual duration of a purchasing-customer’s store visit, rather that the
coarse-grained fixed value used thus far.

More importantly, rather than model the pattern of aggregate activity,
we could model the paths of individual trajectories. This would give much
more focused insight into what factors a↵ect the purchase decision; we would
be able to bring a scalpel rather than Mimic’s hammer. We would be able
to answer questions such as:

• Does precedence a↵ect a purchase decision? I.e. when comparing two
competitor products, does it matter which is examined first? Last?

• What kinds of profiles of engagement between customer and employee
are best? Many stores employ a greeter, who welcomes customers into
the store with a simple “hello.” Does the presence of a greeter have
any e↵ect, positive or negative on a customer’s propensity for buying?

• What are the di↵erences in purchasing behavior of customers arriving
in groups as opposed to those arriving alone?

Some studies, such as Larson et al. (2005) and Hui et al. (2009a), per-
formed in supermarkets with RFID tracking technology which provides
continuous and complete trajectories, have begun to answer these sorts of
questions, but video is an immensely more rich medium and more applicable
in some retail situations. This leads to the second suggestion.

Pedestrian Detection & Classification: Currently, Mimic considers pedes-
trians in the store as either customer or employee, with no finer-grained divi-
sion. From video, we can now computationally determine gender (Mäkinen
and Raisamo, 2008), race (Shakhnarovich et al., 2002), age (Fu et al., 2010;
Kwon and Lobo, 1999), a↵ect (Fasel and Luettin, 2003) and even gross body
language. These tools can be added as filters to the model underlying Mimic,
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and with the massive video corpora being captured in retail today, one could
expect su�cient data to draw actionable conclusions.

Subcategorizing customers in the store—inferring age, gender, ethnicity,
etc.—would impact both explanatory and predictive power; explanatory in
that researchers inspecting the a model’s workings could gain quantitative
understanding of behavior across demographics, and predictive in that these
unmasked di↵erences could lead to improved Mimic classifications.

The overhead, omnidirectional, low-resolution views provided by the
cameras of the case study store make demographic classifications challenging,
though additional cameras at eye-level could be incorporated without much
di�culty (classifications made using these cameras could be propagated to
tracks traveling outside the camera’s range).

Alternative Temporal Models: The particular formulation of Mimic as
an HMM is but one of many possibilities. Other modeling choices may be
more performative. For example, rather that a pair of HMMs, one for positive
and negative examples, a single HMM could be trained on the combined
data, where one of the states represents transaction. During training, the
ultimate HMM state would be forced to this transaction-state for the positive
examples. An episode could then be classified by finding the most likely
sequence of HMM states, then choosing a label based on the final state.

One of the drawbacks of Hidden Markov Models is their di�culty captur-
ing long-distance dependencies between observations—dependencies which
very likely exist in a store dataset. A trivial example from the Best Buy
dataset: a customer shopping for a new phone who visits two di↵erent
service-provider’s kiosks is likely to visit the third provider’s as well; this
dependency exists at a distance of several minutes.

A mixture of HMMs may disentangle the behaviors of individuals from
the summation of many stands of individual activity that make up the
activity-pattern data-stream. In such a model, training data of individual
customers movements are used to train a collection of HMMs which become
the mixture components.

Finally, the classification task can be framed as a discriminative rather
than generative problem. Other temporal modeling techniques such as
conditional random fields may better capture the behavior patterns in a
store (La↵erty et al., 2001).
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6.2.2 Experiments Using MIMIC

Chapter 5 included several examples of explorations using the Mimic model.
These investigations are only the tip of a much larger suite of experiments.
The following experiments may be of interest to both retailers and ethnogra-
phers.

• A important stream of revenue for retailers is the renting of specific
locations within the store to the companies whose products are being
sold. An example are the end-caps at the end of aisles—due to the
greater visibility they provide, these locations see greater sales and
demand a higher rental price. Mimic can quantitatively answer the
question: What is the value of these spaces within the store, not only
for the specific product located there, but to sales throughout the store.
This experiment is similar to the one in Section 5.9.2 which examined
the sensitivity of the model to individual flocs, but more narrowly
focused to a subset of products.

• Similarly, Mimic can show the influence of unrelated flocs on sales.
An example that would be relevant to the Best Buy Mobile store: say
a particular brand of Bluetooth earpiece is compatible with a wide
variety of cellphones. This product is physically located in one place in
the store—an area encompassed by one functional location. A Mimic

model can be trained with positive examples derived only from those
transactions which include the product, but using activity pattern
feature vectors that exclude the product’s floc. An examination of the
learned model will reveal which other parts of the store may influence
purchase of the earpiece. This guidance helps both customer and retailer
in that complementary products can be suggested to the customer.
Product a�nities may be more visible than in the transactional record.

• In Section 5.9.1, Mimic was trained with data of transactions containing
specific product categories, revealing potentially valuable insights about
customer behavior and its relation to the physical environment. This
analysis can be automated to discover other outlier behavior patterns
and be used in situ, giving feedback to store managers and designers.
Specifically, a marked di↵erence in performance between a baseline
(all-transaction) and category-based model can be flagged for review.
Likewise, significant di↵erences between static distributions coded by
the baseline and category-based HMM states may also be worthy of
further analysis.
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6.2.3 Other Stores: Several Conjectures

The case-study Best Buy Mobile stand-alone store represents just one corner
of the landscape of retail stores. The store is physically small, with a large
assortment of products that are expensive and infrequently purchased. In
that sense, the Best Buy Mobile store resembles a jewelry store. How might
we expect the Mimic model to perform in other retail environments, for
example, in a big-box retailer such as Walmart, or the supermarket Shaws?

A larger store will have many more functional locations, and the increase
in dimensionality of the activity vector will likely obfuscate discernible
patterns. From the perspective of a customer in a large store, this makes
sense: activity local to, say, the men’s shoes section is invisible to (and has
no real influence on) someone a hundred meters away in the power-tools
section. Another challenge posed by larger stores is the much longer and
more variable time between when a customer handles a product and when
the purchase is made and recorded in the electronic record.

Both of these challenges point to the need for a model which uses full-
length trajectories of individuals, rather than the aggregated activity of the
store as a whole.

6.3 Contributions

The three major contributions of this thesis are:

• The introduction of functional locations, and the measurement of
activity taking place within them, as a low-dimensional feature which
e↵ectively captures meaningful patterns of activity within a store.

• Mimic is an example end-to-end prediction system, tested on real-world
data, that is able to foresee the occurrence of transactions from video
and transactional information captured in a store. Individual modules
within the system can be replaced with higher-performing components
with the expectation that the overall performance of the classifier will
improve.

• The end-to-end transaction prediction model presented in here validates
the hypothesis: patterns of activity of an entire store are indicative of
customer intent-to-purchase.
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6.4 Final Words

Mimic is an immediately applicable tool. Retailers already have an extensive
infrastructure of video cameras in their stores; integrating a system like
Mimic into their existing infrastructure is an incremental addition. Doing so
would arm retailers to increase their sales, reduce costs, and make a better
experience for their customers. Tools such as Mimic can have significant
financial impact. For a large retailer such as Best Buy, a two percent change
in store conversion rate translates into a billion dollar shift in revenue.4

The techniques discussed here—the use of functional locations, patterns
of activity and their integration with timestamped electronic records—also
have the potential to influence the design and operation of places outside
retail. Imagine a museum delivering to your cellphone tour recommendations
customized to your interests based on your dwell patterns. . . Imagine an
airport made easier to navigate via the simulation of thousands of travelers
like you. . . Imagine a hospital which helps prepare itself for emergency triage
after recognizing the behaviors of doctors and nurses after a major accident
is called in. . .

4 Neil McPhail, Sr. VP and general manager at Best Buy, personal communication.
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Appendix A
Data capture

Joint work with George Shaw and Philip DeCamp.

The following are some technical details about the data capture pipeline
not included in earlier chapters.

A.1 The Data Pipeline

A more detailed diagram of the data flow is shown in Figure A.1. A brief
description of each components follows:

Camera Lumenera IP web-cameras captured video at 960 by 960 pixels.
Images were compressed by the camera using JPEG.

Recording Servers Each recording server serviced two cameras, pulling
frames from the cameras and packaging them into minute-long files
stored locally.

Transport Periodically, data-filled hard drives were shipped from the Best
Buy store to MIT.

Video Repository Video files were stored on a shared file server at the
MIT Media Lab.

Video Proxy Converter Generation of low-resolution proxies (used in
tracking) was primarily the responsibility of the recording servers.
Proxies were sometimes removed to free space on the local recorder
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Figure A.1: Detailed data-flow pipeline
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drives and needed to be regenerated at MIT. This automated process
recreated low-resolution video proxy files as necessary.

Tracking Truther This annotation tool allows person trajectories to be
manually created. Trajectories so generated were used as a ground-
truth to tune the parameters of the 2c tracker.

2c Tracker The tracking module which generated person-tracks for each
of the eight cameras. Tracking was completed on a heterogeneous
cluster of server and desktop machines. The entire corpus could thus
be re-tracked in a matter of hours.

Merge Truther An annotation tool to collect a ground-truth training
set for camera tracks that target the same person and so should be
merged. The tool works by first generating an expansive set of candidate
trajectory pairs which are presented to the user, who accepts or rejects
each pair in turn.

Camera Calibrator A tool to associate points in an image with coordinates
in the global Euclidean frame. A screenshot of this tool can be seen in
Figure 4.6 on page 59. The camera calibrator optimizes parameters of
the camera location, orientation and lens characteristics.

Person-Class Truther An annotation tool to collect training data for the
customer/employee classifier. Tracks are shown one by one superim-
posed on video. The user selects whether the track targets a customer
or employee.

Consolidate & Filter This module comprises several steps of post-process-
ing of the tracks generated by 2c. Tracks were first filtered to mitigate
commonly-seen tracking errors. Very short tracks were removed as were
track points intersecting manually-drawn masks. These masks cover
televisions and computer displays in the store, locations physically
impossible to access and transient error sources such as helium balloons
in the field of view. Tracks were next smoothed with a Kalman filter
and merged using the scheme described in the following appendix.

Furniture Placement An annotation tool used to place movable furniture
and fixtures in the store. Every moveable fixture onto which a floc was
attached was manually placed for each day in the recorded corpus.

Person Classification The automatic classifier which separated customers
and employee tracks.
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Floc Placement This module automatically aligned functional locations
with the annotations of furniture locations.

Floc Activation Here, customer trajectories were processed into a stream
of floc activation features (Section 3.2).

Transactions & SKU Importer An importer of transaction data and the
taxonomy of products from Best Buy. Data from Best Buy came as
spreadsheets; this importer converted these into a SQLite relational
database file.

Training Data Segmentation The output of the Floc Activation module
is a sequence of activity feature vectors for an entire day. This module
divided the feature vectors into positive and negative example episodes
of fixed length given the transactional data. The distribution of total
activity was balanced between positive and negative training episodes
in this module.

Classification Cross-validation This final module evaluated the HMM-
based Mimic model using the training episodes provided from upstream.
Here, test-set episodes were excluded if they temporally overlap with
training data.

A.2 Hardware Setup

Video was captured in the Best Buy Mobile store using Lumenera Le165C
cameras and custom recording software written by Philip DeCamp. Each
camera compressed the 960 by 960 image onboard using JPEG and appended
a timestamp. Images were fetched from the eight cameras via HTTP by one
of four Apple Mac Mini servers. These servers then packaged the JPEGs into
files, one for each minute and for each camera. The servers also generated low-
resolution proxy images at 120 by 120 pixel resolution. Video was recorded
to external hard drives which were shipped to MIT when filled. A fifth Apple
mini served as a central controller and NTP server for the four recording
machines.

A.3 Camera Synchronizations

Each camera in the BestBuy Mobile store was synchronized to an NTP
server running on the local control server. Unfortunately, during the course
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of recording, this server failed, and the cameras slowly drifted out of sync
before the problem was noticed and corrected. Synchronization of the cameras
to each other is critical to downstream components of the Mimic pipeline,
especially the handing o↵ of customer trajectories from one camera to the
next.

I built an annotation tool to manually to resynchronize the cameras. The
tool allows an annotator to find pairs of frames where two cameras recorded
the same moment in time—this was made possible because each camera’s
field of view overlaps those of adjacent cameras. The annotator can quickly
mark a simultaneous footfall or other synchronous event. The output of the
annotation tool is a collection of tuples each of which consists of the IDs of
two cameras and a di↵erence in their time-bases; essentially, a graph with
nodes representing cameras, and directed edges denoting annotations, with
edge weights being the time-base di↵erence. To re-synchronize the data from
all eight cameras to the same clock, I devised a simple weighted-averaging
algorithm to determine a single o↵set for each camera.

The nodes of the annotation graph G, representing the n cameras are
{c1, . . . , cn}. An edge eij is an annotation, whose’s weight wij is the time
o↵set between cameras i and j. The algorithm proceeds as follows:

Algorithm 2 Procedure for calculation camera timestamp o↵sets.

Ensure that for every directed edge eij with weight wij in the graph, there
exists an edge eji with weight �wij .
Choose one camera, c0 to be the anchor—to have zero time o↵set.
for all each other camera node ci do

Si  0, Ti  0
for all distinct non-repeating paths pi through the graph G from c0 to
ci. do
�t the sum of weights of the pi’s edges.
!  |pi| {The number of edges in the path.}
Ti  Ti +

1
! �t

Si  Si +
1
!

end for
The time o↵set for ci  Ti

Si

end for

Camera time o↵sets were then applied to tracks during post-processing (see
below).
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A.4 Tracking

The tracking module, dubbed 2c, used in this thesis was developed by George
Shaw as part of his master’s thesis and is fully described in (Shaw, 2011,
pages 34–53). Tracking proceeds through the following simplified pipeline
for each frame of video:

Input: Rather than use the full resolution (960 by 960 pixel) images, track-
ing was performed on a lower resolution proxy (120 by 120 pixels). This
significantly lowered the the memory requirements and increased tracking
speed. Low resolution proxies were generated at recording-time.

Background/Foreground classification: I replaced the original mixture
of Gaussians background model with an implementation of the foreground-
adaptive probabilistic background detection described in (McHugh et al.,
2009). A cyclic bu↵er of past frames forms the basis of the background
model. The bu↵er holds forty frames, and is updated every 400 frames. An
initial probability of background is calculated for each pixel by comparing it
to the corresponding pixel in the bu↵ered frames. The foreground model is
initialized by thresholding this initial probability, and then further refined
by iteratively examining a small neighborhood around the candidate (5 by 5
pixels), increasing the foreground probability if there are nearby foreground-
labeled pixels. A final pass of a Markov random field smooths the resulting
foreground/background classification.

Particle Generation: Pixels labeled foreground are clustered into particles.
For every small square patch of pixels, a particle is created if the ratio of
foreground pixels exceeds a threshold. The particles are then clustered using
connected components.

Particle Association: Particles from the current frame are associated
with tracklets which were incrementally built from previous frames. This
association step incorporates location, color, shape and motion features.

Export: Tracks and color histograms are exported to SQLite database files.
This component ends the 2c tracking pipeline.
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A.5 Track Post-processing

Tracks generated by 2c were processed by the following filters.

Point Masking: Track points intersecting manually annotated image masks
were removed. Masked areas included inaccessible parts of the image (e.g. ceil-
ing), video monitors and other false-positive noise sources.

Minimum Duration: Tracks were required to have a minimum duration of
one second.

Minimum Point Count: Tracks of less then ten points were discarded.

Motionless Filter: Any track points that remained motionless for longer
than seven seconds were removed (to reduce false positives due to patrons
becoming incorporated into the background model).

Maximum Gap: After the motionless filter is applied, there may exist
tracks with significant temporal gaps between points. This filter cuts these
tracks whenever a gap exceeds ten seconds, discarding all points after the
gap.

Coordinate Transform: Tracks are translated between image coordinates
and a global Euclidean frame. Image coordinates are preserved for any
downstream processes.

Kalman Filter: A filter that spatially smooths the trajectories in the global
coordinate frame. I made the simplifying assumption that tracked motion
exists in the plane parallel to the floor. The Kalman filter’s measurement
noise represents a cone of confusion of constant angle extending from the
camera in the direction of the target. The intersection of this cone with
a plane at the height of the target (fixed to one meter) determines the
covariance of the measurement noise.

Time synchronization: Temporal o↵sets were applied to tracks to synchro-
nize them to a common clock. These o↵sets are calculated using annotated
data from the Time-Truther module (Section A.3).
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Customer/Employee Classification: A track’s accumulated color his-
tograms were used to classify the track target as either customer or employee.
The results are stored in a table in the output SQLite file.

Post processed tracks, like the raw output of 2c, are stored in SQLite
files.

A.6 Projection to a Global Coordinate Frame

A spherical camera model was used to calibrate the surveillance cameras used
during recording. This model better fits the distortion of the fisheye lenses
used in recording than a traditional pinhole homography model. Details on
the camera model, and the calibration procedure can be found in DeCamp
et al. (2010).

To calibrate the eight cameras installed in the Best Buy, I built a 3D
CAD model of the store from 2D plans provided by Best Buy (Figure 4.6
on page 59), and detailed measurements taken on site. Cameras were then
calibrated by finding intrinsic (lens) and extrinsic (location and orientation)
camera parameters that minimized the reprojection error of a collection of
annotated correspondence points between camera {x, y} image coordinates
and Euclidean {x, y, z} points (read from the 3D model). These parameters
were found using the Levenberg-Marquardt solver provided in the MINPACK
library (Moré et al., 1980).

Tracks from a single camera only give two dimensions (image-x and
image-y) which can be used to define a ray extending from the camera.
To locate the target of the trajectory in three dimensions, a multi-scopic
estimate was made for those trajectories comprised of a merging of several
tracklets from di↵erent cameras (see Section 4.3). An estimate of the location
was made for those trajectories that were not merged across cameras by
intersecting the ray from the camera in the direction of the target with a
plane at a height of one meter.
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Tracklet Merging

Joint work with Matthew Miller.

As a person walks in the store, she is captured on video simultaneously
by several cameras. The 2c tracker outputs tracks for her from each of
the cameras. All these tracks need to be consolidated into a single unified
trajectory in a global coordinate system. When there is more than a single
person present, this presents the problem: which tracks should be merged
together, and which represent di↵erent people? This is the track-merging
problem.

We use the nomenclature of tracklets and tracks to make the distinction
between trajectories captured from a single camera, and those agglomerated
trajectories from multiple cameras, respectively.

We framed the cross-camera merging problem as a classification task:
Given two tracklets, determine whether or not they should be merged together.
In the following descriptions, the tracks are denoted ⌧1(t) and ⌧2(t), where
⌧(t) is the location vector {x, y, z} at time t. Two tracklets are candidates
to be merged if:

• They were generated from di↵erent cameras.

• They overlap temporally.

• The {x, y} bounding box enclosing each tracklet overlap.

• They pass a small set of manual criteria. For example, the average
distance between the two tracklets must not exceed a large threshold.
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These criteria bound the number of tracklet-pair candidates to be ap-
proximately linear with the total number of tracks.

A feature vector encoding the pairwise relationship between two tracklets
at a given moment of time is ft(⌧1(t), ⌧1(t)). For every tracklet pair, we
calculate f(·) at fixed time intervals between t0 and t1, the times where the
tracklet pair overlaps temporally. The vector f has the following dimensions:

Distance The Euclidean distance between the two tracklets: |⌧1(t)� ⌧2(t)|

Distance-squared The square of the distance dimension. In the Gaussian
mixture model, this dimension penalizes those track pairs with large
delta-distance.

Log-Distance The log of the distance dimension. In the Gaussian mixture
model, this dimension penalizes those track pairs with small delta-
distance.

Square-root Max delta distance Equal to the square root of the mean
of the top 5% distance features between the two tracks. The idea here
to capture those cases where a pair of people walk together for a time,
then diverge; the top delta-distance captures the portion of the tracks
which diverge. The root better clusters high delta-distance values.

Optimistic delta-distance Similar to the distance metric, but instead
uses the shortest distance between the two lines defined by the location
of the camera and the image patch being tracked.

Delta-velocity The magnitude of di↵erence between velocities.

D.V.(t) = |⌧̇1(t)� ⌧̇2(t)|

Velocity dot product V.D.P.(t) = ⌧̇1(t) · ⌧̇2(t)

Delta Shape Calculated similarly to the optimistic delta-distance, where
first the two tracks are aligned by subtracting the mean delta-distance.

Delta angular velocity The magnitude of the di↵erence of angular veloci-
ties of the two tracks.

Overlap time t1 � t0. This value is constant for all times between t0 and
t1.

Angular velocity product The product of angular velocities of the two
tracks.
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A

C

B

D

Figure B.1: A hypothetical tracklet-merging example which illustrates the chal-
lenges of finding a global solution from local decisions. Here, track pairs A–B,
C–D, and A–C would be classified to be merged when using a myopic merger.

Delta Histogram The KL divergence between the aggregate color his-
tograms of the two tracks. This value is constant for each time between
t0 and t1.

We used a Gaussian Mixture Model (GMM), trained via expectation-
maximization, to model the likelihood that a tracklet pair belongs to either
the merge or no-merge classes. To train the model, I manually annotated
a set of 1928 tracklet pairs that should be merged. All tracklet pairs that
passed the inclusion criteria described above and were not in the “to-merge”
annotated set were considered negative examples for the training set. The
GMM was parameterized with one hundred mixtures.

The Gaussian mixture model classifier is the first component of the
merging algorithm. Next, we need a mechanism that can combine these
local decisions into a global solution. Figure B.1 shows an example of
four hypothetical tracklets. These tracklets may have been generated by
two people who walk into the space together, then separate. An optimal
solution would merge tracklets A and B, as well as C and D. But, from this
illustration, tracklets A & C are attractive candidates for merging. The next
component in the merging algorithm solves this problem.

More generally, if we have two track clusters T1 and T2, each consisting
of a bundle of tracklets, and we have one tracklet pair A–B, where A 2 T1

and B 2 T2, how can we use a myopic tracklet-merging classifier to make a
macroscopic track -merging classifier?

We calculate the likelihood of merge and non-merge for the two clusters
T1 and T2 as the product of likelihoods of the local decisions. Suppose the
parameterization of a class’ GMM is ✓, and the tracklet members of the
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clusters are {⌧11, . . . , ⌧1m} and {⌧21, . . . , ⌧2n} respectively. The likelihood of
the class is then

P (T1,T2|✓) =
mY

i=1

nY

j=1

P (⌧1i, ⌧2j |✓)

This calculation is repeated for the merge and no-merge models.
Our solution to solving the global merge problem is an iterative greedy

merger. The greedy merging algorithm proceeds as follows:

Algorithm 3

Initialize track clusters: 8⌧i,Ti = {⌧i}
Find all tracklet pairs that pass the initial merge criteria.
repeat
for all remaining merge-pair {⌧i, ⌧j} do
Ti  the track cluster containing ⌧i
Tj  the track cluster containing ⌧j
Calculate the likelihood of classes merge and no-merge:
pmerge  P (Ti,Tj |✓merge)
pno-merge  P (Ti,Tj |✓no-merge)

end for
{⌧i, ⌧j} the pair which maximizes pmerge � pno-merge

if pmerge � pno-merge > 0 then
Merge clusters Ti and Tj which contain ⌧i and ⌧j .

end if
until No pair is classified as class merge: pmerge � pno-merge  0.

On a test set, the greedy merge classifier performed with 86.2% accuracy
(see Table B.1), precision 71.0%, and recall 38.3%.

The high level of accuracy achieved by the merger is somewhat deceptive.
As a person walks through the store, he may generate tens of tracks, being
visible from many cameras. The probability of an error in the merging
process is quite high,1 making nearly impossible to have accurate continuous
trajectories of people in the store. The features used in this merging algorithm
are very coarse-grained and based almost entirely on the characteristics of
the trajectories themselves. More sophisticated features, such as those that
could be derived from facial features, gender, age, or ethnic classifiers, could

1 To make this error-rate concrete, imagine a customer who enters the store, walks along
the perimeter of the store, then exits. There will be at least eight hand-o↵s between
cameras. With the accuracy garnered by our tracklet merging algorithm, the probability
of error is (1� accuracy)8, or 69.5%.
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True Positive True Negative

Predict Positive 1605 654
Predict Negative 2588 18660

Table B.1: Performance of the merge classifier. The MCC of this classifier is 0.453.

significantly improve the performance of tracklet merging, and could make
possible a much finer-grained transaction classifier focused on the behavior
of an individual rather than the aggregated behavior of customers in a store.
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