
Augmenting User Interfaces with Adaptive Speech
Commands

Peter Gorniak
MIT Media Laboratory

20 Ames Street
Cambridge, MA, 02142, USA

pgorniak@media.mit.edu

Deb Roy
MIT Media Laboratory

20 Ames Street
Cambridge, MA, 02142, USA

dkroy@media.mit.edu

ABSTRACT
We present a system that augments any unmodified Java ap-
plication with an adaptive speech interface. The augmented
system learns to associate spoken words and utterances with
interface actions such as button clicks. Speech learning is
constantly active and searches for correlations between what
the user says and does. Training the interface is seamlessly
integrated with using the interface. As the user performs
normal actions, she may optionally verbally describe what
she is doing. By using a phoneme recognizer, the interface
is able to quickly learn new speech commands. Speech com-
mands are chosen by the user and can be recognized robustly
due to accurate phonetic modelling of the user’s utterances
and the small size of the vocabulary learned for a single ap-
plication. After only a few examples, speech commands can
replace mouse clicks. In effect, selected interface functions
migrate from keyboard and mouse to speech. We demon-
strate the usefulness of this approach by augmenting jfig, a
drawing application, where speech commands save the user
from the distraction of having to use a tool palette.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Language Acqui-
sition; I.2.7 [Artificial Intelligence]: Natural Language—
Speech recognition and synthesis

General Terms
Human Factors, Experimentation

Keywords
phoneme recognition, machine learning, user modelling, ro-
bust speech interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’03, November 5–7, 2003, Vancouver, British Columbia, Canada.
Copyright 2003 ACM 1-58113-621-8/03/0011 ...$5.00.

1. INTRODUCTION
Spoken input has great potential value as an augmenta-

tion to standard graphical user interfaces. In a drawing ap-
plication, for example, the user can speak commands that
would otherwise require him or her to search tool palettes
and menus, pulling attention away from the drawing task
at hand. A straightforward way to add speech input to an
interface is to specify a vocabulary of commands that are
mapped to interface actions. To use such an interface, the
user must learn (memorize) the vocabulary and associated
actions. As an alternative, we have reversed the roles and
put the burden of learning vocabulary and associated ac-
tions on the system. By doing so, the user is able to shape
the system to understand words of his or her choice.

In this paper, we propose an adaptive speech input aug-
mentation to any standard graphical user interface. With
this speech layer added to the interface, the user may con-
tinue to use the system as before, controlled solely with key-
board and mouse. However, he or she can also use speech
to name interface actions such as button clicks. A phoneme
recognizer produces a phonetic representation of the utter-
ance, which is associated with the interface action that oc-
curs closest in time. After a few consistent examples, the
user can speak the name he or she chooses for the action
instead of using the mouse or keyboard.

We show in this paper that training speech commands
in this manner is quick, robust, and can occur while the
user continues to use the application in a normal way. By
monitoring the event queue of Java applications, our system
can be attached to any application written in this language
without the need to have access to the source code of the
application. In this paper, we use jfig, a vector based draw-
ing program written in Java, as an example. Figure 1 shows
a typical jfig screen as well as the feedback panel for our
speech augmentation system.

Our approach is inspired by work in computational mod-
elling of infant language acquisition [8]. This approach re-
lies on correlation of the visual and the speech modality.
We simplify the speech learning problem to only include
full utterances delimited by silence, and replace the visual
input with user interface events. Treating the multimodal
input learning problem as a problem of acquisition of seman-
tics for speech commands distinguishes this research from
other multimodal interface approaches. Other approaches
typically presuppose full vocabulary speech and pen gesture
recognition, as well as a mapping to an existing semantic
encoding. Adaptation in these systems, when attempted at

Figure 1: The jfig drawing application with the added speech learning panel. The panel currently indicates
that it accepted the last speech utterance as an example for the jfig tool simultaneously selected by the user.

all, refers to adapting to the user’s input behaviours (e.g.
speech timing) or the environment (e.g. noise level) [5]. In
contrast, we propose learning the meaning of the user’s ac-
tions through cross-modal analysis.

2. PHONEME RECOGNITION
Spoken utterances are represented as arrays of phoneme1

probabilities. Acoustic input is first converted into a spec-
tral representation using the Relative Spectral-Perceptual
Linear Prediction (RASTA-PLP) algorithm [2]. RASTA-
PLP is designed to attenuate non-speech components of an
acoustic signal. It does so by suppressing spectral compo-
nents of the signal which change either faster or slower than
speech. First, the critical-band power spectrum is computed
and compressed using a logarithmic transform. The time
trajectory of each compressed power band is filtered to sup-
press non-speech components. The resulting filtered signal
is expanded using an exponential transformation and each
power band is scaled to simulate laws of loudness percep-
tion in humans. Finally, a 12-parameter representation2 of
the smoothed spectrum is estimated from a 20ms window
of input. The window is moved in time by 10ms increments
resulting in a set of 12 RASTA-PLP coefficients estimated
at a rate of 100Hz.

A recurrent neural network (RNN) analyses RASTA-PLP
coefficients to estimate phoneme and speech/silence prob-
abilities. The RNN has 12 input units, 176 hidden units,
and 40 output units. The 176 hidden units are connected
through a time delay and concatenated with the RASTA-
PLP input coefficients. Thus, the input layer at time t
consists of 12 incoming RASTA-PLP coefficients concate-
nated with the activation values of the hidden units from

1We use the set of 40 English phonemes defined in [3].
2An all-pole model of the spectrum is estimated using linear
predictive coding [4].

time t-1. The time delay units give the network the ca-
pacity to remember aspects of old input and combine those
representations with fresh data. This capacity for temporal
memory has been shown to effectively model coarticulation
effects in speech [7]. The RNN was trained off-line using
the TIMIT database of phonetically transcribed American
English speech recordings [1].

To locate approximate phoneme boundaries, the RNN
outputs are treated as state emission probabilities in a Hid-
den Markov Model (HMM) framework. The Viterbi dy-
namic programming search 3 [6] is used to obtain the most
likely phoneme sequence for a given phoneme probability
array. After Viterbi decoding of an utterance, the system
obtains (1) a phoneme sequence, the most likely sequence of
phonemes which were concatenated to form the utterance
and (2) the location of each phoneme boundary for the se-
quence. Each phoneme boundary serves as a speech segment
start or end point. Any subsequence within an utterance
terminated at phoneme boundaries is used to form word
hypotheses. Additionally, any word candidate is required
to contain at least one vowel. This constraint prevents the
model from hypothesizing consonant clusters as word can-
didates. Instead, each candidate is guaranteed to consist of
one or more syllables consisting of a vowel and consonant or
consonant cluster on either side of the vowel. We refer to a
segment containing at least one vowel as a legal segment.

A distance metric, dA(), measures the similarity between
two speech segments. It is possible to treat the phoneme
sequence of each speech segment as a string and use string
comparison techniques. This method has been applied to the
problem of finding recurrent speech segments in continuous
speech [10]. A limitation of this method is that it relies on

3The Viterbi algorithm is commonly used in speech recog-
nition applications to efficiently find the most likely HMM
state sequence corresponding to an observed observation se-
quence.

only the single most likely phoneme sequence. A sequence of
RNN output contains additional information which specifies
the probability of all phonemes at each time instance. To
make use of this additional information, we developed the
following distance metric.

Let Q = {q1, q2, . . . , qN} be a sequence of N phonemes
observed in a speech segment. This sequence may be used
to generate a HMM model λ by assigning an HMM state
for each phoneme in Q and connecting each state in a strict
left-to-right configuration. State transition probabilities are
inherited from a context-independent set of phoneme models
trained from the TIMIT training set. Consider two speech
segments, αi and αj with phoneme sequences Qi and Qj .
From these sequences, we can generate HMMs λi and λj .
We wish to test the hypothesis that λi generated αj (and
vice versa).

The Forward algorithm4 [6] can be used to compute P (Qi|λj)
and P (Qj |λi), the likelihood that the HMM derived from
speech segment αi generated speech segment αj and vice
versa. These likelihoods are not an effective measure for
our purposes since they represent the joint probability of a
phoneme sequence and a given speech segment. An improve-
ment is to use a likelihood ratio test to generate a confidence
metric. In this method, each likelihood estimate is scaled by
the likelihood of a default alternate hypothesis, λA:

L(Q, λ, λA) =
P (Q|λ)

P (Q|λA)
(1)

The alternative hypothesis is that the HMM was derived
from the speech sequence itself, i.e., λA

i = λj and λA
j =

λi. The symmetric distance between two speech segments
is defined in terms of logarithms of these scaled likelihoods:

dA(αi, αj) = −1

2

log

»
P (Qi|λj)

P (Qi|λi)

–
+

»
P (Qj |λi)

P (Qj |λj)

–ff
(2)

The speech distance metric defined by Equation 2 mea-
sures the similarity of phonetic structure between two speech
sounds. The measure is the product of two terms: the proba-
bility that the HMM extracted from observation A produced
observation B, and vice versa. Empirically, this metric was
found to return small values for words which humans would
judge as phonetically similar.

3. INTERFACE AUGMENTATION
Java’s reflective capabilities and dynamic loading strategy

make the language an excellent candidate for an application
independent approach [9]. Java’s dynamic loading of classes
rids the developer of needing to link with or even know about
classes that will be present at runtime. Our system runs as
a wrapper to a Java application. Before it starts the ap-
plication, it hooks itself into the application’s event queue
and thus sees all event activity within the Java Abstract
Window Toolkit and components derived from it. It inter-
cepts each such event that it considers an action (such as a
button being pressed or a window closed), submitting it for
processing to the speech learning layer before passing it on
to the application.

4The forward algorithm efficiently computes the probability
that an observation sequence was generated by a specific
HMM.

When the start of an utterance occurs within a short time
window (2 seconds) around an interface event, our system
stores the HMM corresponding to the utterance as a can-
didate speech command for the event. When an utterance
occurs in isolation, the system searches through the interface
events that have stored utterances associated with them. It
computes a score according to Equation 2 for the new ut-
terance and each stored utterance. If the score exceeds a
threshold, the utterance pairing is considered a match. Let
us denote the number of matches for interface event e me.
The system then computes

2max
e

(me) −
X

e

me (3)

in effect weighing the support for the event with the most
matches against the support for other events. If this number
exceeds the minimum number of matches (2, in the exam-
ples given below), the system executes the action with the
greatest support, arg maxe(me).

4. EXPERIMENTS AND RESULTS
To evaluate the ease and robustness with which speech

commands can be trained, we ran two small experiments
in which participants trained the jfig drawing program to
obey a set of speech commands equivalent to the tools in
the jfig tool palette. In the first experiment, we took a lap-
top running the application to 5 participants’ work desks.
Participants wore a head-worn microphone. Each person
was given an explanation of how to train the application
(“Click on a tool and say what you want to call it”), and
was then asked to train five tools of his or her choice five
times each. Participants were also told that only examples in
which the “LEARN” sign turned green counted as training
instances. Participants received feedback after the first two
training instances in the form of corrections to the training
procedure (participants occasionally thought they should
keep the mouse button pressed during their utterance, or
they could call the tool by different names in each exam-
ple). After 25 training examples, participants were asked to
speak the name of each tool they had trained. We recorded
whether our system selected the correct tool in response to
each command. As participants were unfamiliar with the
drawing application, they selected names ranging from “cir-
cle” for the circle tool to “p-symbol” for the polygon tool
and “figure eight” for the closed spline tool. Both in this
and in the next experiment, participants frequently spoke
during the experiment other than when they were training
tools (they spoke to the experimenter, to themselves, and
performed other acoustics acts like clearing their throat or
laughing). All of these other speech and speech-like utter-
ances resulted in an “IGNORE” response by the system.
Table 1 shows the response accuracy across tools in the or-

Tool 1 Tool 2 Tool 3 Tool 4 Tool 5
Accuracy 60% 100% 100% 100% 100%

Table 1: Results for five participants training five
tools each. Tools are presented in the order trained.

der tools were trained. The system never selected the wrong
tool. Rather, its errors resulted in an “IGNORE” response
to a valid speech command. We observed that after the
first few training instances and receiving feedback from the

experimenter subjects quickly became comfortable with the
training procedure. The lower accuracy for the first tool can
thus be attributed to this adjustment period, in which some
inconsistent speech utterances were recorded for the tool.
To show that this adjustment period does not pose a prob-
lem in the long run, we subsequently asked subjects with
lower accuracy for the first tool to provide another 5 train-
ing instances for this tool. After this additional training,
recognition accuracy for the first tool was 100%.

Participant 1 Participant 2
consistent overall consistent overall

Accuracy 56% 84% 70% 84%

Table 2: Results for two participants training 25
tools each.

To test whether the training procedure scales to a more
significant number of commands, we asked another two par-
ticipants to train speech commands for 25 tools. Table 2
shows the response accuracy of the system for each of the
two participants. We divide the performance into consistent
for the commands that are recognized consistently across
several repetitions and overall for commands that are rec-
ognized only sporadically. The lower accuracy scores show
that performance deteriorates when many commands are
trained. This is mainly due to the fact that the phoneme rec-
ognizer does not consistently capture unambiguous phoneme
traces for short utterances with few vowels. For example,
words like “arc”, “gif” and “link” produce low confidence
matches that lead to rejections. Another source of mistakes
are phonetically similar utterances, for example “align” and
“line”. Phonetically distinct utterances (“circle”, “clock-
wise”, “out”) and long utterances (“rounded rectangle”, “open
b-spline”) are easily distinguished and lead to almost no mis-
takes. Performance can be improved by selectively providing
more examples for tools that are not recognized, or training
a different utterance for those tools.

5. SUMMARY AND FUTURE WORK
We have presented a simple, yet easy-to-use speech aug-

mentation system for unmodified applications. By moni-
toring the event queue of Java applications and correlat-
ing events with speech utterances as detected by a recur-
rent neural network phoneme recognizer, the system quickly
learns speech commands for events in the graphical user in-
terface of the monitored application. These speech com-
mands can be used to drive the application via speech in-
stead of mouse and keyboard. Our system has the advan-
tages that training occurs during normal application use,
that speech recognition is robust due to the small and user-
specific vocabulary, and that it does not require the user
to learn unfamiliar commands. The results of two small
studies show that training is indeed easy and performance
is robust for small sets of commands. For larger sets per-
formance deteriorates due insufficient distinguishability of
speech commands. However, users can rectify such problems
by further training and choosing more distinct command ut-
terances. Furthermore, even with only a few trained speech
commands, the system provides useful added convenience,
especially for functions such as “zoom in” or “delete” which
would otherwise distract the user’s attention from the task
at hand.

Training for larger sets of utterances would be made easier
by better feedback to the user. For example, the system
could warn the user if two sets of utterances for different
tools are acoustically confuseable. The system could also
silently prune outlier utterances for a tool if they are not
similar to the bulk of utterances for that tool.

In the future, we plan to expand the system to take into
account the actual content of the drawing or design sur-
face in an application, instead of paying attention only to
standard user interface controls. Doing so will require in-
depth models of how the meanings of words and phrases are
grounded in the visual content of the application program.

6. ACKNOWLEDGMENTS
The authors would like to thank Dr. Norman Hendrich

for generously agreeing to let us use his jfig drawing program
for our research.

7. REFERENCES
[1] J. Garofolo. Getting Started with the DARPA TIMIT

CD-ROM: An Acoustic Phonetic Continuous Speech
Database. National Institute of Standards and
Technology (NIST), Gaithersburgh, MD, 1988.

[2] H. Hermansky and N. Morgan. Rasta processing of
speech. IEEE Transactions on Speech and Audio
Processing, 2(4):578–589, October 1994.

[3] K. Lee. Large-vocabulary speaker-independent
continuous speech recognition: The SPHINX system.
PhD thesis, Computer Science Department, Carnegie
Mellon University, 1988.

[4] A. Oppenheim and R. Schafer. Digital Signal
Processing. Prentice Hall, Englewood Cliffs, New
Jersey, 1989.

[5] S. Oviatt, P. Cohen, L. Wu, J. Vergo, L. Duncan,
B. Suhm, J. Bers, T. Holzman, T. Winograd,
J. Landay, J. Larson, and D. Ferro. Designing the user
interface for multimodal speech and gesture
applications: State-of-the-art systems and research
directions. Human Computer Interaction,
15(4):263–322, August 2000.

[6] L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285, 1989.

[7] T. Robinson. An application of recurrent nets to
phone probability estimation. IEEE Trans. Neural
Networks, 5(3), 1994.

[8] D. Roy and A. Pentland. Learning words from sights
and sounds: A computational model. Cognitive
Science, 26(1):113–146, 2002.

[9] Sun Microsystems. Java Development Kit
(http://java.sun.com), 2003.

[10] J. Wright, M. Carey, and E. Parris. Statistical models
for topic identification using phoneme substrings. In
Proceedings of ICASSP, pages 307–310, 1996.

