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Abstract

On our Trisk robotic manipulation platform, we have
implemented a conceptual representation based around
object schemas, which organize all perceptions, motor
actions, planning structures, and natural language use
according to the objects that they are “about.” This rep-
resentation provides a clear point of interaction between
the discrete domains of task-level planning and language
use, and the continuous dynamic domain of sensorimo-
tor interaction. In this paper we briefly summarize our
model and our results, implemented on a robotic manip-
ulation platform in a simple tabletop domain. We con-
clude by proposing to use situational context to enable
scalability to more complex domains.

Introduction

In (Hsiao et al. 2008), we explore object schemas, a
model of representation based on earlier theories devel-
oped in (Roy 2005). The model provides a single level
of representation that unifies responsive motor action,
visual and tactile perception, task-level planning, and
language use in a robotic platform. We accomplish this
by assuming that perceptual, action, and planning pro-
cesses are “about” objects in the real world, and orga-
nizing the processes into object schema structures ac-
cordingly.

In this paper, we summarize our object schema
model, and advocate our approach as a plausible means
of achieving end-to-end integration in a robotic sys-
tem, from continuous sensorimotor activity to task-level
planning. Finally, we propose an extension to improve
the scalability of our approach.

Basics of Object Schemas

Here we describe the primary elements of our sys-
tem, resulting benefits for task- and motion-level inte-
gration, and examples of implemented behaviors. Im-
plementation has been performed on our robotic ma-
nipulator, Trisk, in a simple tabletop domain with
easily identifiable and manipulable objects. Videos
of the provided examples are available online at
http://www.media.mit.edu/ eepness/trisk.html.
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Interaction processes Each interaction process is a
computational routine that, when executed, either coor-
dinates motor outputs, accumulates sensory input (e.g.
tracking a visual blob), or manipulates internal data.
Interaction processes run concurrently, and respond in
real-time to changes in the perceived world.

Benefit. The use of concurrent responsive processes
is a key part of behavior-based robotics, among whose
earliest proponents was Brooks (1986). Responsiveness
is critical for successful completion of motor actions in
an incompletely-sensed dynamic environment.

Object schemas The interaction processes are
grouped into object schemas, each representing an ob-
ject that each process is ostensibly “about.” A coor-
dination process monitors other processes in its object
schema, ensuring consistency among the sensory inputs
and forcing reorganization as required.

Example. Trisk is told to move the yellow ball, but
accidentally grasps the green block. Visually, the green
block moves, but Trisk believes it is touching the yel-
low ball. Sensing the discrepancy, a coordination pro-
cess decouples the touch-related process from the yel-
low ball’s object schema, to restore coherence.

Benefit. Persistence of objects is vital for success-
fully connecting continuous sensorimotor interactions
with task-level planning. Task-level planning assumes
the existence of discrete objects, but this can only hold
if the continuous processes that maintain the object rep-
resentations are coherent.

Interaction histories Each executing interaction
process is stored with its interaction history, describing
its history of successes and failures and associated sen-
sory inputs, while each pre-execution interaction pro-
cess is stored with a predicted interaction history, which
predicts successes, failures, and sensory inputs based on
past experiences with similar processes.

Example. Trisk attempts to grasp a red block, but it
misses and its arm collides with the block instead. The
collision is sensed and triggers a reassessment of the
block’s physical location, i.e., the grasp action is now
predicted to succeed only if adjusted to the collision lo-
cation. The grasp is retried and completed.

Benefit. By organizing sensory inputs in terms of ob-
jects wherever possible, perceived changes in the world
are immediately propagated to the task planning level,



to alter expectations and trigger replanning.

Affordances Because each interaction process is 1)
associated with an object schema and 2) stored along-
side its expectations, each process represents an affor-
dance (as defined by Gibson (1979)) of the object repre-
sented by the schema. For instance, if a grasping action
is expected to complete successfully, then an affordance
of the associated object is that it can be grasped.

Example. The vision system perceives that a ball is
visually within the confines of a cup, but in order to
verify that the functional relation “in” holds between
the ball and the cup, the robot lifts the cup, moves it,
and tilts it to see how the ball behaves. If the ball stays
visually within the cup’s boundaries, then the ball’s ex-
pectations can be revised to denote that it affords being
moved via the cup. This sequence is also a satisfying
example of Garrod et al.’s assertion (1999) that locative
prepositions such as “in” and “on” have both geomet-
ric (visual) and functional (manipulable) extent; in this
example the robot is making use of both.

Benefit. Storing affordances with their objects main-
tains a connection between task-level planning, which
manipulates discrete affordances, and the continuous
nature of the motor actions needed to implement those
affordances. It also provides a direct connection for
human-language terms like “liftable” and “graspable,”
and this example shows task-level constraints (“in”) be-
ing derived from sensorimotor primitives (seeing the
ball remain in the cup during manipulation).

Task-level planning The affordances of an object
are used in turn by the planning system to decide how
best to achieve a user-provided goal. The planning sys-
tem consists of two main components, top-level moti-
vations and a plan hierarchy. The top-level motivations
— safety (avoiding collisions), social (serving the user),
and curiosity (attempting to move objects to explore af-
fordances) — are each assigned a priority score based
on recent sensory inputs, and compete with each other
(as in the action selection problem (Tyrrell 1993)) to
control the robot accordingly. The plan hierarchy is a
tree of conditions and actions constructed by a STRIPS-
like planner (Nilsson 1984) augmented with affordance
predictions. Planning starts from the winning top-level
motivation, and selected action processes begin execu-
tion, coordinating the robot’s motor actions according
to built-in program loops. Replanning occurs when new
information invalidates the predicted affordances.

Example. Trisk is told “Group the green block and
the red apple.” For the one-armed Trisk, this could be
accomplished by moving either object towards the other
one. Trisk reaches for the red apple, but is suddenly told
“The red apple is heavy.” Heavy objects afford difficult
grasping, forcing the planner to replan. Trisk stops and
reaches for the green block instead. This is illustrated
in Figure 1.

Benefit. This example illustrates task-level replan-
ning triggered by a change in expectation of a motor
action. This multi-level integration is a unique benefit
of our system.

Figure 1: Trisk responds to spoken inputs that require
replanning due to prior sensorimotor experience.

Affordance learning When the curiosity motivation
is engaged, the robot grasps and moves objects in order
to explore their affordances. Object attributes (color,
shape, size, weight) are recorded alongside a history of
action successes and failures. These records allow sub-
sequent affordance predictions, which in turn influence
the planning system.

Example. Trisk lifts a heavy lantern battery. As its
fingers begin to sense that the object is heavy (based on
force sensors), the battery slips out of its grasp. The pre-
dicted affordances for grasping of heavy objects, square
objects, and gray objects will subsequently be consid-
ered less feasible.

Benefit. The learning in this example shows how
events at the sensorimotor level can propagate to alter
task-level planning.

Language interaction When the user speaks, the
speech recognizer output triggers construction of a tree
structure that influences the planning system and the
predicted expectations. The language system can han-
dle queries (“Describe the block™), directives (“Move
the block to the right”), assertives (“The red apple is
heavy”), and correctives (“... No, the green ball”).

Example. Trisk is told “Move the green block to the
left.” As Trisk lifts the block and begins moving, it is
then told “No... to the right.” The correction replaces
the plan structure at the appropriate level, and Trisk
places the block to the right of its starting position.

Benefit. Natural language interaction is predicated on
consistent, sustained discrete representations of a con-
tinuous world.

Summary. By organizing all motor actions, per-
ceptions, task planning, and language use according to
referent objects, our object schema model provides a
single unified level of interaction for both discrete and
continuous types of processing essential for real-world



robot operation.

Adding Situational Context to Object
Schemas

While the value of our approach has been demonstrated
in a simple tabletop domain with a limited set of phys-
ical objects, the key challenge at this point is to design
for scalability. Specifically, the representations must be
able to handle objects and actions of higher complexity,
and the system must remain computationally tractable
while dealing with higher task complexity.

Increasing the sensorimotor complexity of the sys-
tem is a matter of improved perceptual processing and
motor ability, which falls outside the scope of our core
model. We choose instead to focus on model scalabil-
ity, to prepare for increases in sensorimotor complexity.
The primary limitations of the current implementation
with respect to scalability are:

e Each newly instantiated object schema must include
processes for all actions that could be taken towards
the object, in order to represent the affordances.
However, with no way to limit the number of action
processes thus generated, the planning system rapidly
ends up with too many actions to consider at each
step.

e Each affordance’s feasibility is constantly being re-
evaluated in light of new perceptual inputs. This also
requires extraneous computational power, especially
when too many affordances are being generated.
Our proposed solution is to limit the instantiated af-

fordances to a few actions that have previously been rel-

evant in a similar context, and to gradually explore more
actions if the goals of the system cannot be achieved.

This approach is psychologically inspired by the human

tendency towards functional fixedness — for instance,

human subjects told to connect two ropes that are out-
of-reach of each other (Maier 1931) do not think to use
pliers as a weight to swing one rope towards the other,

because pliers are typically used for grasping, not as a

weight.

For our purposes, functional fixedness provides a
clear way to rein in computational complexity. Humans
tend not to consider actions that are uncommon within
the current context, where the context might include 1)
the current goal, 2) objects (instruments and patients)
under consideration, 3) the agents involved, or 4) the
overall situation or location.

We suggest exploring two tiers of complexity for in-
stantiating and evaluating affordances:

1. Just as our affordance predictions are shaped by
counting prior successes and failures with respect to ob-
ject attributes, we can similarly measure the relevance
of actions to a particular set of contextual attributes. Ac-
tions which are never taken towards the current goal or
towards the current objects can be ignored.

2. The counting method is computationally cheap but
cannot account for dependencies between multiple con-
cepts (e.g., actions to be considered for a particular goal,
but only with a specific object). Instead, we can use
connectionist principles, such as a spreading activation

network, to train these relevance relations and account
for dependencies between contextual elements.

A spreading activation network is more complex to
process than simple counting. Given this tradeoff it is
possible to use both, by instantiating actions based only
on counting, and falling back to the spreading activa-
tion network if the planning system fails, lowering the
threshold for activation until a plan succeeds.

Regardless of implementation, we believe our next
step is to add context sensitivity to our model in order
to limit the affordances under consideration. This will
allow us to add more actions (e.g., ’push’, ’slide’) to our
current system, and handle more complex object con-
cepts (e.g., tool use, or object merging and splitting),
without becoming too computationally intensive.

Conclusion

We have described the basic elements and benefits of
our object schema model, which provides a unifying
representation in which visual and tactile perception,
continuous motor action, discrete task planning, and
natural language use are all viewed in terms of the ob-
jects that they are “about.” The model has been imple-
mented on a robotic manipulation platform, in a table-
top domain with simple objects. Furthermore, we have
proposed an extension to our model to limit its com-
putational complexity, by taking elements of situational
context into account, in the hopes that this will assist in
scaling it to more complex domains.
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