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Abstract

This thesis develops a multi-modal dataset consisting of transcribed speech along with the
locations in which that speech took place. Speech with location attached is called situated
language, and is represented here as spatial distributions, or two-dimensional histograms
over locations in a home. These histograms are organized in the form of a taxonomy, where
one can explore, compare, and contrast various slices along several axes of interest.

This dataset is derived from raw data collected as part of the Human Speechome Project,
and consists of semi-automatically transcribed spoken language and time-aligned overhead
video collected over 15 months in a typical home environment. As part of this thesis, the
vocabulary of the child before the age of two is derived from transcription, as well as the
age at which the child first produced each of the 658 words in his vocabulary.

Locations are derived using an efficient tracking algorithm, developed as part of this thesis,
called 2C. This system maintains high accuracy when compared to similar systems, while
dramatically reducing processing time, an essential feature when processing a corpus of this
size. Spatial distributions are produced for many different cuts through the data, including
temporal segments (i.e. morning, day, and night), speaker identities (i.e. mother, father,
child), and linguistic content (i.e. per-word, aggregate by word type).

Several visualization types and statistics are developed, which prove useful for organiz-
ing and exploring the dataset. It will then be shown that spatial distributions contain a
wealth of information, and that this information can be exploited in various ways to derive
meaningful insights and numerical results from the data.

Thesis Supervisor: Deb Roy
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction

Data goes in, answers come out.

It is by now obvious that large datasets will be a hallmark of the coming years. Decreasing

costs of storage and processing as well as improved techniques for analysis are sparking

the generation of more and more datasets that until recently would have been unthinkably

large. Of particular interest are those datasets that bring disparate data types together:

social media linked to television, retail transaction data linked to surveillance video, or

time-aligned speech and video are just a few examples. These multi-modal datasets allow

the researcher to explore not only each modality in isolation, but more importantly to ex-

plore and understand the linkages and alignments between modalities.

These datasets are only useful if we can ask questions of them and expect to receive an

accurate, relevant answer. We’d like to put in some data, possibly a lot of data, and get

back an answer that allows us to make a business decision, pursue science, or achieve some

other goal.

If a picture is worth a thousand words, a video must be worth a million.

An important modality to consider, particularly as collection and storage costs are driven
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lower, is video. There are vast amounts of information contained in video streams; in-

formation that is often difficult to process and analyze, but that is extremely dense and

useful when processed successfully. Video is also a very natural datatype for people to work

with. Watching video corresponds easily to normal visual perception, and analysis outcomes

are often more intuitive and readily understood because the modality itself is so familiar.

While this natural understanding of video and related data is clearly an advantage for a

researcher working on the project, there are ancillary benefits in that outside researchers or

other stakeholders in a project are able to assimilate and utilize the data easily as well.

When video is aligned with other data and viewed in aggregate form, analysis can bring

about insights that would otherwise have been opaque even to a dedicated researcher spend-

ing countless hours manually watching footage - the nature of the patterns in aligned multi-

modal data and the varying scales at which these patterns occur often make insights subtle

and difficult to ascertain without robust computational methods.

Insights Numerical
Results

Video Time-aligned data

Figure 1-1: Basic system design

Aligning video with other data sources is

central to the work in this thesis. Many of

the methods described here were developed

using several different datasets with dissim-

ilar “other” data in addition to video. Con-

sider one such dataset consisting of video

from a typical surveillance system in a retail

environment in addition to transaction data

from that retail location. At the algorith-

mic level, building, managing, exploring,

and deriving insights from such a dataset is

nearly identical to performing those tasks

on a corpus of video taken in a home,

aligned with transcription of the speech in that home, as is the focus here. These simi-

larities provide generality for the approaches described here - it is my goal that this work

be relevant across many domains and disciplines.

18



This thesis describes one implementation of the more general system (the “black box” in

Figure 1-1) that accepts two time-aligned data sources and produces insights and numerical

results.

Generating the types of insights and results that are useful in any particular domain auto-

matically is a hard problem. Computers are not yet capable of true undirected exploration

and analysis, so instead I bring a human operator into the design of the system as a collabo-

rator. This notion of human-machine collaboration was first put forth by J.C.R. Licklider in

[13], where he describes a “very close coupling between the human and the electronic mem-

bers of the partnership” where humans and computers cooperate in “making decisions and

controlling complex situations without inflexible dependence on predetermined programs.”

Over 50 years after Lickliders famous paper, this approach rings true now more than ever

and serves to frame the work described here.

Visualizations

Statistics

Video

Aligned Data

Insights

Numerical
Results

HumanThis Thesis

Figure 1-2: System with human operator

In the system described here, the human operator accepts a wealth of data from the com-

puter in the form of visualizations and statistics, parses this data, and derives results ap-

propriate to the task at hand, possibly providing feedback to the system in order to revise

and iterate. Figure 1-2 shows the revised system design, now with an operator in place.

This thesis focuses on the black box, or the part of the system that processes multiple data

sources and generates user-friendly output data.
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1.1 Goals

1.1.1 Multi-modal Understanding

Integrating information across modalities is the key to true understanding. It has been

argued that multimodal sensing is at the core of general intelligence [17], with some even

going so far as to say consciousness itself is the result of “integrating information” across

modalities [34]. From an information-theoretic perspective, adding information from addi-

tional modalities can only increase understanding (intuitively, notice that you can always

just ignore the new information if it provides no help and by ignoring unhelpful information

your overall understanding has remained the same).

I seek to explore multi-modal analysis from two perspectives: from the standpoint of build-

ing a system that uses information across modalities in order to derive accurate, meaningful

insights; and from the standpoint of a child learning to speak, who uses linguistic informa-

tion in addition to contextual information in order to begin to understand language.

These are clearly different, but complementary problems. Carver Mead famously said that

“If we really understand a system we will be able to build it. Conversely, we can be sure that

we do not fully understand a system until we have synthesized and demonstrated a working

model.” By building a system that attempts to integrate what is seen with what is said, it

is reasonable to hope that we can gain some insights into how a child begins to integrate

what he is seeing with the language he is hearing.

1.1.2 Situated Language: establishing context for everyday language use

Labeling the things in our world is at the core of human intelligence. Our success as a

species is due in large part to our ability to use language effectively, and to connect that

language to the physical world - in other words, to label discrete objects and concepts.

In order to understand the cognitive processes at the heart of our language use, we must

20



understand the context in which language takes place in addition to understanding the lin-

guistic features. This work attempts to shed light on a few of the patterns associated with

language use in a natural environment and some of the properties of those patterns.

There has been significant work in the grounding of language in perception [26], an idea that

provides linguistic scaffolding to enable infants and intelligent machines to begin to connect

symbolic representations of language to the real world. This connection of symbols to real

world perception is crucial to understanding how language use comes about, and provides

a foundation on which we can build richer and more complex notions of communication.

Situated language is language for which a context has been established.

Everyday language exists in a rich context that provides the listener with countless clues

as to the underlying meaning of a linguistic act. This context must be taken into account

when attempting to understand language at any more than a surface level, and includes

all of the various properties of the environment in which the language occurs. Nowhere is

this context more important than in everyday speech, where much meaning is unspoken

and implied, to be gleaned via context by the listener. Contextual cues would often provide

useful clues for understanding the language used in the home. Knowing that there is a bag

of flour nearby, for example, provides essential clues as to the meaning of the phrase “please

hand me the flour,” which would be interpreted differently if there were a bouquet of roses

on the table.

To understand context, we might consider modeling all of the myriad cues present dur-

ing a speech act. These cues would include the entire array of visual stimuli, identities of

participants (speakers and listeners), and temporal features (time of day, day of week, etc.),

as well as details about the activity taking place at the time. To fully model context, we

would also need to include complete histories of all participants (for example, relevant con-

text for a conversation could include a previous conversation with the same participants),

current psychological states, audible cues, and environmental features such as temperature

21



and wind. Clearly, such a model is computationally infeasible, therefore we must focus

on relevant bits of this context, and on computationally tractable proxies for these bits of

context.

One such useful proxy for environmental context is the location of the speech act. The

location of a speech act contains a wealth of information about the context surrounding

that speech act in the form of an abstraction of such information. By knowing that an

utterance has taken place in the kitchen, for example, we are implicitly examining infor-

mation about the visual context of that utterance. The kitchen contains visual cues x, y,

and z, therefore all speech taking place in the kitchen can be tied on some level to x, y,

and z because x,y, and z are part of the context in which language in the kitchen is immersed.

Temporal features also provide important context that can stand in for many other com-

plex cues in our non-linguistic environment. The various activities that we participate in

provide crucial pieces of information about what is said during these activities. These activ-

ities often occur at regular times, so by examining language through the lens of its temporal

context, we obtain a useful proxy for the types of activities that occur at that time. When

taken together with spatial context, temporal context becomes even more powerful. The

kitchen in the morning, for example, stands in for the activity “having breakfast,” a context

that is hugely helpful to the understanding of the language taking place in the kitchen in

the morning.

Participant identity is the final contextual cue utilized here, and the one that stands in

for the most unseen information. The identity of a participant can encompass the entire

personal history of that participant: consider an utterance for which we know that the

speaker is person X. If we have aggregated speech from person X in the past, then we can

determine that this person tends to conduct themselves in certain ways - displaying par-

ticular speech and movement patterns and so on. We don’t need to know why person X

does these things, it is enough that we can establish a proxy for person X’s history based

on their past actions, and that we can now use this history in current analysis of person
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X’s speech.

In this work, context is distilled to a compact representation consisting of the location

in which a speech act occurred, the identity of the participants, and the time at which the

utterance was spoken. In this thesis, I intend to show that even this compact form of context

provides valuable information for understanding language from several perspectives: from

that of an engineer hoping to build systems that use language in more human-like ways, and

from that of a cognitive psychologist hoping to understand language use in human beings.

1.1.3 Practical Applications

Understanding language deeply has long been a goal of researchers in both artificial intel-

ligence and cognitive psychology. There has been extensive research in modeling language

from a purely symbolic point of view, and in understanding language use by statistical

methods. This work is limited, however, as words are understood in terms of other words,

leading to the kind of circular definitions that are common in dictionaries. There has been

interest, however, in grounding language use in real world perception and action [26], a

direction that hopes to model language in a manner that more closely resembles how people

use language. This work essentially says that “context matters” when attempting to un-

derstand the meaning of a word or utterance, and more specifically that visual perception

is an important element of context to consider.

Understanding and modeling the non-linguistic context around language could provide huge

practical benefits for artificial intelligence. Especially as datasets grow larger and corpora

such as the Human Speechome Project’s become more common, access to the data neces-

sary for robust non-linguistic context estimation will become simple for any well engineered

AI system. However, a clearer understanding of how this context should be integrated must

be developed.

As a concrete example, consider automatic speech transcription. Modern systems rely
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on both properties of the audio stream provided to them and immediate linguistic context

in order to perform accurate, grammatically plausible transcription. If we were to give

a system a sense of the non-linguistic context around a language act, we might expect

transcription accuracy to improve dramatically. Consider a human performing language

understanding - listening to a conversation, in other words. If this person were to attempt

to perform transcription based solely on the audio it receives from its sensors, we would

expect accuracy to be low. Adding some knowledge of grammar would help considerably,

but accuracy would still be below the levels that we would expect from a real person per-

forming this task. But by allowing the person to leverage non-linguistic context (as would

be the case when the person understands the language being transcribed and so can bring

to bear all of their experience in order to disambiguate the meaning of the language and

therefore the content of the language itself) we would expect accuracy to be near perfect. It

is clear, then, that providing this context to an AI system would allow for far more accurate

transcription as well.

From the point of view of human cognitive psychology, analysis of the context surrounding

language development will lead to better understanding of the role of this context, which

in turn will lead to deeper understanding of the mechanisms by which children come to

acquire language. There are many potential applications of such insights, one example be-

ing the facilitation of language learning in both normally developing and developmentally

challenged children.

1.1.4 Ancillary goals

There are several aspects of this work that relate to other goals: areas that are not pri-

mary foci of the work, but that I hope to make some small contribution to. As this work

is centered around an extensive dataset, the broader goal of increased understanding of

engineering and effective analysis of large datasets is important. These datasets present

problems that simply do not exist in smaller datasets - problems that have been overcome

in Human Speechome Project analysis.
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This work also holds visualization as a central element, and so hopes to add to the dis-

course around effective visualization, particularly scalable visualization techniques that can

be applied to large, complex datasets.

Finally, machine vision is a key component of the construction of the situated language

dataset described in this thesis. The problems faced in performing vision tasks on this data

are central to most cases where vision is to be applied to a large dataset, and the solutions

presented here are both unique and applicable to a wide range of vision problems.

1.2 Methodology

1.2.1 How to situate language: a system blueprint

Consider a skeletal system that is capable of situating language. This system must posses,

at a minimum, a means of representing language in a way that is manipulable by the system

itself. While there are many forms of language that can be represented and manipulated

by a computer system, here I focus on basic symbolic language - English in particular.

It is possible to imagine many schemes for determining the locations of people. Such

schemes might rely on any of a variety of sensors, or any number of methods for deriv-

ing person locations in even a simple video-style sensor (such as what we have here). We

might attempt to find people in video by matching shape templates, or by looking at pixel

motion patterns, or by performing tracking of all objects over time and determining later

which tracks represent interlocutors in a speech act. Any of these methods share the com-

mon output of deriving conversational participants’ locations at the time of the conversation.

From the representation of language, this system provides the statistical backing around

which to begin linguistic understanding. But from the locations of participants, this system

derives context for the language. And then, assuming such a system is capable of repre-
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senting time and that it records temporal information for the language it represents, the

system can also provide temporal context.

Our basic system requirements are therefore:

1. A symbolic representation for language

Represented here as written English

2. A means of deriving and representing participant locations

Represented here as coordinates in Euclidean space relative to a single home, derived by

performing person tracking in time-aligned recorded video

3. A way to represent and record temporal information for speech acts

Represented here as microsecond timestamps aligned across video and audio data (and there-

fore locational and transcript data)

1.2.2 Taxonomy: Exploring a Large Dataset

The best known taxonomies are those that classify nature, specifically the Linnean Tax-

onomy, which classifies organisms according to kingdoms, classes, orders, families, and so

on. Carl Linnaeus set forth this taxonomical representation of the world in his 1735 work

Systema Naturae, and elements of this taxonomy, particularly much of the classification of

the animal kingdom, are still in use by scientists today.

It has been argued that Darwin’s theory of evolution owes a great deal to his detailed

taxonomical explorations of animals [40]. Darwin is thought to have spent many years

building his taxonomy, noting features, similarities, and differences between various ani-

mals. This objective, unbiased classification of organisms without specific research goals

may have been crucial to Darwin’s understanding of the evolutionary mechanisms he later

set out in Origin of Species.
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This thesis sets out to create a taxonomy of natural language use over the course of 15

months in the home of one family. The taxonomy consists of information about the loca-

tion of the things that were said in the home, segmented across 3 dimensions of interest,

with many data points and organizational metrics related to these segmentations. I attempt

to categorize and structure various properties of situated language in ways that are likely

to provide meaning in understanding that language. Furthermore, I attempt to frame this

exploration through the lens of acquiring language, as language acquisition can be thought

of as the most basic form of (and a useful proxy for) language understanding. The creation

of this taxonomy, like Darwin’s creation, has led and will continue to lead to new insights

and research directions about how language is used in day to day life.

1.2.3 Visualization

The dataset presented here is significantly complex - it represents much of the home life

of a normal family over the course of 15 months, and as such contains much of the com-

plexity and ambiguity of daily life. There is no quick and easy way to gain understanding

of this dataset - exploration and iteration is essential to slowly building up both intuition

and numerical insight into the data. Visualization is a good way to explore a dataset of

this size. Visualization benefits greatly from structure, however, and the taxonomy detailed

here provides that structure.

Visualization of quantitative data has roots that stretch back to the very beginnings of

mathematics and science [35]. Visualizing mathematical concepts has been shown to be

essential to learning and understanding [8], a result that points to the fundamental notion

that quantitative information is represented visually in ways that are more easily assimi-

lated and manipulated by people [9, 22].

Abstraction has been an undeniably powerful concept in the growth of many areas of sci-

ence, especially computing. Without abstraction, programmers would still be mired in the

intricacies of machine code and the powerful software we take for granted would have been
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impossible to create. Human beings have finite resources that can be brought to bear on

a problem. By creating simpler, higher level representations for more complex lower level

concepts, abstraction is an essential tool for conserving these resources. Visualization can

be thought of as a kind of abstraction, hiding complexity from the viewer while distilling

important information into a form that the viewer can make sense of and use.

This work heavily leverages the power of visualization as a foundation of its analysis. Several

fundamental visualization types are central to the work, with other ad-hoc visualizations

having been undertaken during the course of research and development of the systems de-

scribed.

By treating numerical and visual data as qualitatively equal lenses into the same com-

plex data, we can think of the output of our system as truly multi-modal. Furthermore,

such a system leverages the strengths of both modalities - numerical data and mathematical

analysis provides precision and algorithmic power, while visualization provides views into

the data that a person can reason about creatively and fluidly, even when the underlying

data is too complex to be fully understood in its raw form.

1.3 Contributions

Primary contributions of this work are to:

• Demonstrate the construction of a large dataset that spans multiple modalities

• Develop novel visualization methods, with general applicability to any “video +

aligned data” dataset

• Utilize visualization and statistical approaches to construct a taxonomy of the patterns

present in the normal daily life of a typical family

• Understand behavioral patterns segmented along various dimensions including time
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of day, identity, and speech act, and show how these patterns can be explained and

analyzed in a data-driven way

• Using statistical properties of the patterns derived above, show that non-linguistic

context is correlated with the age at which the child learns particular words and

provide a possible explanation for such correlation.
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Chapter 2

Dataset

The dataset described here is comprised of situated language, or language for which tem-

poral information as well as the locations and identities of participants are known. From

this situated language data, we can generate spatial distributions representing aggregate

language use along various dimensions of interest (i.e. temporal slice or the use of some

particular word).

We begin with raw, as-recorded video and audio. Audio is then semi-automatically tran-

scribed and video is processed by machine vision algorithms that track the locations of

people. Tracks are smoothed and merged across cameras, and transcripts are tokenized

along word boundaries and filtered to remove non-linguistic utterances and transcription

errors. Tracks and transcripts are then joined by alignment of the timestamps in each.

Transcripts with corresponding location information (points) are called situated language.

Finally, situated language data is distilled into spatial histograms. See Figure 2-1.
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2.1 The Human Speechome Project

The Human Speechome Project [28], undertaken with the goal of understanding child lan-

guage acquisition, sought to record as much of a single child’s early life as possible, capturing

a detailed record of the child learning to speak in a natural setting.

Tracks

Spatial Distributions

Situated Utterances

Transcripts

Figure 2-1: Overview of Dataset

Video was collected from eleven cameras installed in ceilings throughout a typical home.

Views from four cameras are shown in Figure 2-2. All occupants of the home were recorded,

including the mother, father, nanny, and child. Recording took place only while the child

was awake and at home, and occupants were able to suspend recording at any time. Cameras

were identical and were placed in order to provide maximum coverage of the home’s living

spaces. Each high dynamic range camera was equipped with a fisheye lens and provided on-

board jpeg compression. Cameras were connected via Ethernet to a central control system

that ensured synchronicity across cameras as well as accurate frame-level timestamps. Au-

dio was recorded using 14 boundary-layer microphones, each connected to the same control

system as the video cameras. Microphones were positioned in order to provide maximum

coverage of the audible environment in the home. Care was taken to ensure that the audio

was suitably timestamped and was synchronized with the video streams. Further details

about the recording and storage of data can be found here [4].

Recording resulted in approximately 90,000 hours of multi-channel video and 140,000 hours
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of audio recorded over the course of 3 years. We estimate that the total recorded data rep-

resents approximately 75% of the child’s waking life. Here I focus on the 15 month period

during which the child was 9-24 months of age.

Figure 2-2: Views from 4 of the 11 cameras

Figure 2-3 shows a reconstructed 3D view of the home, visualized using the Housefly [6]

system. In this view, we can see the various rooms clearly. Clockwise from top left, we have

the dining room, kitchen, bathroom (no recording), master bedroom (no recording), guest

bedroom, child’s bedroom, and living room.

Figure 2-3: Reconstructed 3D view of the home [6]
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2.2 2C: Object Tracking and Visual Data

2.2.1 Overview

“There is a significant body of literature surrounding the interpretation of human behavior

in video. A common thread in all of this work is that tracking is the very first stage of

processing.” [12]

Object tracking is an integral part of this work, and the tracking mechanisms described

here are a key contribution of this thesis. In particular, this software tracks objects with

accuracy and precision comparable to the state of the art, while performing these tasks an

order of magnitude faster than other equally powerful systems.

The 2C vision system is a flexible framework for performing various vision tasks in a variety

of environments. 2C provides a powerful foundational API, enabling a developer to extend

the capabilities of the system easily via custom modules that can be chained together in

arbitrary configurations. 2C contains a set of interfaces for input, processing, and output

modules, data structures and protocols for communication between those modules, and in-

frastructure necessary for robust operation. Here I focus on one application of this system:

tracking people in the HSP dataset. Therefore, from here forward 2C will refer not to the

system as a whole, but to the particular configuration focused on efficient person tracking.

2.2.2 The Tracking Problem

At its simplest, a tracking system must implement some attention allocation scheme (“what

to track?”) and some method of individuating targets (“where is the thing I saw in the last

frame?”).

More formally:

We have a set of features ft derived from video input at time t and a (possibly null) set of
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existing objects Ot−1

From these we need to generate the set of objects Ot.

For algorithm a(.) the tracking problem can be described simply as:

Ot = a(ft, Ot−1)

Of course, this leaves out a lot of detail. What is a(.)? How do we describe O? What

are the features f? Do we aggregate t across many frames, solving globally, or derive each

Ot individually?

Tracking problems range from very easy (imagine tracking a moving black object on a

white field - even the simplest algorithm solves this problem well) to very difficult (con-

sider tracking individual bees in a hive [36] - the most sophisticated approaches will still

make errors). There are also cases where tracking requires higher level inference - to de-

cide whether to track a baby in his mother’s arms, for example, requires knowledge beyond

what vision can provide and so even the most sophisticated algorithms will fail in these cases.

There are several key differentiators in this particular tracking task that define the di-

rection of much of 2C’s design. The following considerations were most important in the

design of 2C:

• The nature of the input video. HSP video contains huge lighting variation at

many temporal resolutions (i.e. day vs. night or lamps being turned on and off). A

robust, unsupervised approach is needed that can work in a variety of lighting condi-

tions.

• The size of the corpus. Even moderately sophisticated approaches to object track-

ing can require extensive computational resources that would make processing the

90,000 hours of video in the HSP corpus infeasible.
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• The analysis needs of the project. The expected use of the output of the system

dictates how many design decisions are evaluated. In the case of current HSP analysis,

it was more important to provide accurate moment-to-moment views of occupancy

than long contiguous tracks, a consideration that resulted in several important design

decisions.

Based on the considerations listed above, it was determined that a highly adaptive system

was needed that would perform object tracking in as efficient a manner as possible, while

still maintaining accuracy at the point level.

Many tracking approaches appear in the literature [41], and many of these have been im-

plemented within the 2C architecture. Of particular interest here are efficient approaches

that might be combined as building blocks in the design of a larger system such as 2C.

When considering the design of an efficient object tracking system, it is natural to look

to an existing system that performs this task well: the human visual cortex. In the human

visual cortex, we have a system that performs near perfect tracking in almost all situations,

but whose operation we have only a cursory understanding of. Work such as [23, 30, 32]

has attempted to characterize the fundamental mechanisms for object tracking by studying

humans’ ability to track generic objects. A variety of insights and constraints have come out

of this experimental work. Of particular importance in the context of this system are the

results that explore the types of features people use and don’t use when tracking objects.

People can track robustly even if shape and color features of an object change over time [30] -

this result points to coherent velocity as the primary means by which object tracking is done.

Intuition, however, would seem to indicate that shape and color do play a role in tracking at

least part of the time. It doesn’t seem possible that we track objects without ever regarding

their color or shape. More likely is that color and shape come into play when tracking based

on velocity fails. It also seems likely that shape and color are more closely tied to one’s
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world knowledge and might be used as “hooks” to relate things we know about a scene to

the objects we’re seeing in that scene.

“Object perception does accord with principles governing the motions of material bodies:

Infants divide perceptual arrays into units that move as connected wholes, that move sepa-

rately from one another, that tend to maintain their size and shape over motion, and that

tend to act upon each other only on contact.” [32]

The literature, therefore, points to a hierarchy of features that are utilized when humans

perform tracking:

1. Velocity - at the lowest level, objects are delineated and tracked based on their simulta-

neous movement. Things that tend to move together tend to be single objects.

2. Color - areas of the visual array that exhibit coherent color through temporal and spatial

change tend to be classified as objects.

3. Shape - this is the most complex feature to understand as it involves complex integration

with world knowledge due to the geometric variability of many objects. A person’s shape,

for example, changes dramatically over time, but we are still able to recognize this multitude

of different shapes as a person. Even given the problems and complexities associated with

shape-based tracking, shape appears to be a feature that is utilized in the human tracking

system, and one that has also proven useful in machine vision.

Implementation

2C was developed around 3 primary datasets. In all cases, video was generated by a network

of overhead cameras with fisheye-style lenses. The primary dataset was the Human Spee-

chome Project corpus, with other datasets collected from inside busy retail environments.

Properties such as average number of people, variety of lighting, and motion patterns of

people vary enormously between datasets, making them ideal for development of a general

tracking system. All video is 960 pixels x 960 pixels and is encoded in a proprietary format

based on motion-JPEG.
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2C is written primarily in Java, with certain aspects written in C and accessed from Java

using JNI. The software consists of approximately 20,000 lines of code altogether.

2C implements a pipeline architecture. First, the pipeline is defined in terms of the various

modules that will make it up. An input component accepts digital video (various video

formats are currently supported). This input is then passed sequentially to each module in

the pipeline, along with a data structure that carries the results of any processing a module

undertakes. An output module operates on this data structure, producing whatever output

is desired. Modules can be defined to perform any arbitrary operation on either the input

or the output of modules that come before it in the pipeline. In this way, dependencies

can be created such that modules work together to perform complex functions. Pipelines

can be defined and modified on the fly, making it possible to implement a dynamic system

where various modules are activated and deactivated regularly during processing. To date,

modules exist to handle nearly any video input format, to perform image processing and

analysis tasks including various types of feature extraction (such as color histogram gener-

ation and SIFT feature [15] generation), and to produce output of various kinds, including

numerical and visualization.

2.2.3 Input Component

The input component decodes a proprietary video format based on motion-JPEG known

as “squint” video. Each frame of variable framerate video contains a microsecond-accurate

timestamp. A key design choice implemented in this component is the decision to utilize

partially decoded video frames (known as “wink” video). This results in 120x120 frames,

as opposed to 960x960, speeding processing considerably through the entire pipeline, par-

ticularly in the input and background subtraction phases.
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2.2.4 Low-level Feature Extraction

Tracking begins with motion detection and clustering. These processes form the low-level

portion of the system and can be thought of as an attention allocation mechanism. Many

biologically plausible attention mechanisms have been proposed [21, 24] and likewise many

computational algorithms have been developed [33, 29, 16], all with the aim of segmenting

a scene over time into “background” and “foreground” with foreground meaning areas of a

scene that are salient, as opposed to areas that are physically close to the viewer. Areas that

are considered foreground are then further segmented into discrete objects. These objects

can then be tracked from frame to frame by higher level processes.

Motion detection

The motion detection process operates using a frame-differencing operation, where each

pixel of each new frame of video is compared to a statistical model of the background.

Pixels that do not appear to be background according to this comparison are classified as

foreground. The background model is then updated using the new frame as a parameter.

The output of the motion detection step is a binary image D where each pixel di = 0

indicates that di is a background pixel and di = 1 indicates that di is foreground.

The algorithm implemented is a mixture-of-gaussians model as described in [33], where

each pixel Xi’s observed values are modeled as a mixture of K gaussians in 3 dimensions

(RGB) Qi = q0...qK , each with a weight wk. Weights are normalized such that
∑K

k wk = 1.

A model Qi is initialized for each pixel i, then each new frame is compared to this model

such that each pixel is either matched to an existing gaussian or, when the new pixel fails

to find a match a new gaussian is initialized. Newly initialized gaussians are given a low

weight. Matches are defined as a pixel value within some multiple of standard deviations

from the distribution. In practice, this multiple is set to 3.5, but can be adjusted with little

effect on performance.
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Each pixel is therefore assigned a weight wi corresponding to the weight of its match-

ing (possibly new) distribution. We can then classify each pixel according to a parameter

T denoting the percentage of gaussians to consider as background:

di =

 0 : wi > T

1 : otherwise

Weights are then adjusted according to a learning parameter α corresponding to the speed

at which the model assimilates new pixel values into the background:

wj,t = (1− α)wj,t−1 + α(Mk,t)

where Mk,t = 1 for the matching distribution and is 0 otherwise. Weights are normalized

again so that
∑K

k wk = 1.

Parameters for the matching distribution are adjusted as follows:

µt = (1− ρ)µt−1 + ρXt

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt)

where:

ρ = αη(Xt|µk, σk)

This model has several advantages. First, it is capable of modeling periodic fluctuations

in the background such as might be caused by a flickering light or a moving tree branch.

Second, when a pixel is classified as background, it does not destroy the existing back-

ground model - existing distributions are maintained in the background model even as new

distributions are added. If an object is allowed to become part of the background and then

moves away, the pixel information from before the object’s arrival still exists and is quickly

re-incorporated into the background.

The input to the motion detection process is raw visual field data, and the output con-

sists of pixel-level motion detections, known as a difference image.
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Motion clustering

Foreground pixels are grouped into larger detections by a motion clustering process. This

process looks for dense patches of motion in the set of detections produced by the mo-

tion detection process and from those patches produces larger detections consisting of size,

shape, and location features.

This module iterates over patches in the difference image produced above and computes a

density for each patch where density is the number of white pixels / the total number of

pixels in the patch. Patches with density greater than a threshold are then clustered to

produce larger areas representing adjacent dense areas in the difference image. These larger

dense areas are called particles.

Pseudocode for this algorithm follows:

foreach (n x n) patch in difference image do
if patch(white) / patch(total) > threshold then

add patch to patchList
end

end
foreach patch in patchList do

foreach existing particle pi do
if intersects(patch,pi) then

add(patch,pi)
end
new(pj)

end

end

The input to the clustering process is the pixel-level detections output by the motion detec-

tion process, while the output is larger aggregate motion detections.
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2.2.5 Object tracking

Once low-level features are extracted from the input, the visual system can begin segmenting

objects and tracking them over time.

Motion-based hypothesis

Based on the detections provided by the motion clustering process, the motion tracking

algorithm computes spatio-temporal similarities and hypothesizes the locations of objects

in the visual field. In other words, it makes guesses as to where things are in the scene

based on the motion clustering process’s output. It does so by computing velocities for

each object being tracked, and then comparing the locations of detections to the expected

locations of objects based on these computed velocities. Detections that share coherent

velocities are therefore grouped into objects, and those objects are tracked from frame to

frame (see Figure 2-4).

Classifiers

The motion tracking algorithm makes a binary decision as to whether to associate a particle

pi with an existing object oj . These decisions are made on the basis of either an ad-hoc

heuristic classifier, or a learning-based classifier trained on ground truth track data.

1. Heuristic classifier - this classifier attempts to embody the kinds of features a human

might look for when making decisions. It works by computing an association score, and

then comparing that score to a threshold in order to make its decision. The parameters

of this classifier (including the threshold) can be tuned manually (by simply watching the

operation of the tracker and adjusting parameters accordingly) or automatically using gra-

dient descent on a cost function similar to the MOT metrics described below.

The association score is computed as follows:

42



Θ(pi, oj) = α1(∆v(pi, oj)) + α2(∆d(pi, oj))

∆v is the difference in velocity of pi (assuming pi is part of oj) and oj before connect-

ing pi.

∆d is the Euclidean distance between pi and oj .

α1 and α2 are gaussian functions with tunable parameters.

2. Learning-based classifier - these classifiers use standard machine learning techniques

in order to perform classification. Ground truth tracks are generated using a human an-

notator. These tracks can then be used to train the tracker’s output, with positive and

negative examples of each classification task being generated in the process. Classifiers that

have been tested include Naive Bayes, Gaussian Mixture Models, and Support Vector Ma-

chines. All perform at least moderately well, with certain classifiers exhibiting particular

strengths. In practice, however, the heuristic classifier described above is used exclusively.

Objects

Figure 2-4: Motion-based tracking. Detections are clustered into objects that share coherent
velocities.

The motion tracking algorithm exhibits several useful properties. One such property is the

tracker’s ability to deal with noisy detections. If an object is split across several detections

(as often happens), the tracker is able to associate all of those detections to a single object

because their velocities are coherent with that object. Likewise if several objects share a

single detection, that detection can provide evidence for all objects that exhibit coherent
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motion with that detection.

Motion tracking also encodes the fundamental notion of object permanence. Once an object

has been built up over time through the observation of detections, the tracker maintains

that object in memory for some period of time, looking for further detections that support

its location. This notion of object permanence also helps the tracker deal with errors in

motion detection - a common problem in motion-based tracking is maintaining object loca-

tion when that object stops moving. Here we maintain the object’s location even without

evidence and then resume normal tracking when the object finally moves again and new

evidence is provided.

This module accepts the set of clustered motion detections (particles) produced above as

input and attempts to infer the locations of objects. It does so by making an association

decision for each particle/object pair. If a particle is not associated with any existing object,

a decision is made whether to instantiate a new object using that particle. If a new object

is not instantiated, the particle is ignored (treated as noise).

Color-based hypothesis

In each frame, color-based tracking is performed in addition to motion-based tracking. For

a given object, we perform Meanshift [3] tracking in order to formulate a hypothesis as

to that object’s position in the new frame. This algorithm essentially searches the area

immediately around the object’s previous known position for a set of pixels whose colors

correspond to the object’s color distribution.

Meanshift works by searching for a local mode in the probability density distribution rep-

resenting the per-pixel likelihood that that pixel came from the object’s color distribution.

Color distributions are aggregated over the lifespan of each object, and are updated pe-

riodically with color information from the current video frame. Color distributions are

represented as 3-dimensional (red, green, blue) histograms.
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Mean shift follows these steps:

1. Choose an initial window size and location

2. Compute the mean location in the search window

3. Center the search window at the location computed in Step 2

4. Repeat Steps 2 and 3 until the mean location moves less than a preset threshold

The search window size and position W are chosen as a function of the object’s loca-

tion at time t− 1: Wt = θ(Ot−1). Call the object’s current aggregate color distribution Qt.

We first compute a probability image I as: I(x, y) = Pr((x, y);Qt) or the probability that

pixel (x, y) comes from distribution Qt for all values of (x, y) in the current frame of video.

We then compute a the mean location M = (x̃, ỹ) as:

x̃ =

∑
x

∑
y xI(x, y)∑

x

∑
y I(x, y)

ỹ =

∑
x

∑
y yI(x, y)∑

x

∑
y I(x, y)

This process continues until M moves less than some threshold in an iteration. In practice,

M generally converges in under 5 iterations.

Figure 2-5: Tracking pipeline: raw video, motion detection and aggregation, tracking
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Hypothesis integration

For each object at time t, we have a motion hypothesis Ôt and a color hypothesis Õt. These

hypotheses are combined using a mixing parameter α such that the overall hypothesis

Ot = αÔt + (1− α)Õt.

Hypothesis revision

This step searches for objects that should be merged into a single object, or those detections

that were incorrectly tracked as two or more objects when they should have been part of a

single object. In order to make this determination, pairwise merge scores Si,j are generated

for all objects:

Si,j =
∑N

n=0 ψnΘ(Oi,t−n, Oj,t−n)

where:

Θ(Oi,t−n, Oj,t−n) is the association score from above and:

ψn is a weighting parameter denoting how much more weight to place on more recent ob-

servations.

This score therefore denotes the average likelihood that objects i and j are associated

(are the same object) over N steps back from the current time t. When Si,j > T where T

is a merge threshold, we merge objects i and j.

Object de-instantiaion

When motion tracking fails to provide evidence for an object, we look to the color distri-

bution to determine whether to de-instantiate the object. This says, in effect, that if we

have no motion evidence (the object has come to rest), but the colors at the object’s last

known location match closely to the object’s aggregate color distribution, then we main-

tain our hypothesis about that object’s location. However, if the colors do not match, we

de-instantiate that object. We are thus making a binary decision whenever we lose motion
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evidence for an object, where 0 = remove the object and 1 = maintain the object hypothesis.

In practice, we allow a window without motion evidence proportional to an object’s lifes-

pan with motion evidence before we force the system to make its color-based binary decision.

We compute this binary decision as follows:

First compute the Bhattacharyya Distance DB(Pt, Qt) where Pt is the pixel color distri-

bution at the object’s current location and Qt is the object’s aggregate color distribution

taken at time t: DB(P,Q) = −ln(BC(P,Q))

where:

BC(P,Q) =
∑

x∈X
√
p(x)q(x)

is the Bhattacharyya Coefficient and X is the set of pixels.

The decision K(Oi, t) ∈ {0, 1} whether to de-instantiate object Oi at time t with threshold

T is then:

K(Oi, t) =

 0 : DB(Pt, Qt) > T

1 : otherwise

Algorithm summary

Given the set of particles Pt = {p0, ...pn} at time t and the current set of objects Ot =

{o0, ...ok}, the algorithm is summarized as follows:
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foreach pi do

foreach oj do

associate(pi, oj)

end

end

foreach pi with no associated oj do
instantiate new o

end

foreach oj do

perform meanshift tracking

end

integrate motion and color hypotheses

foreach oj with no associated pi do

de-instantiate oj?

end

foreach oj do

merge oj with other objects?

end

Algorithm 1: Tracking algorithm

2.2.6 Performance

2C is evaluated along two dimensions. First, we look at standard accuracy and precision

measures to evaluate the quality of the output of the system. Second, the speed at which

2C is able to generate those results is taken into consideration.

MOT Metrics

In order to be able to evaluate the tracking system’s performance, we need a robust set of

metrics that is able to represent the kinds of errors that we care about optimizing. One such

set of metrics are the Clear MOT metrics, MOTA and MOTP (Multiple Object Tracking

Accuracy and Multiple Object Tracking Precision) [1]. In this work, I use a modified MOTA
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and MOTP score that reflect the need to find accurate points while ignoring the contiguity

of tracks in favor of increased efficiency.

To compute MOT metrics, we first produce a set of ground truth tracks via manual anno-

tation. Several such annotation tools have been developed, the most basic of which simply

displays a video sequence and allows the user to follow objects with the mouse. More so-

phisticated versions incorporate tools for scrubbing forward and backward through video,

tools for stabilizing tracks, tools for automatically drawing portions of tracks, etc. Ground

truth for this work was produced primarily via two tools: Trackmarks [5] and a lightweight,

custom Java application that produces ground truth track data by following the mouse’s

movement around the screen as the user follows a target in a video sequence.

MOTA and MOTP are computed as follows:

Given the set of ground truth tracks and a set of hypothesis tracks that we wish to evaluate,

we iterate over timesteps, enumerating all ground truth and hypothesis objects and their

locations at each time.

At time 0 initialize an error count E = 0 and a match count M = 0

We then create the best mapping from hypothesis objects to ground truth objects using

Munkres’ algorithm [38], and then score this mapping as follows:

For each correct match, store the distance dit, increment M = M + 1 and continue.

For each candidate for which no ground truth object exists (false positive), increment

E = E + 1

For each ground truth object for which no hypothesis exists (miss), increment E = E + 1

MOTP is then:∑
i,t d

i
t

M or the distance error averaged over all correct matches.

MOTA is:

E
E+M or the ratio of errors to all objects.

Table 2.1 shows MOTA and MOTP scores as well as average track duration for 2C, as well
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2C SwisTrack

MOTA 0.74 0.48
MOTP 1,856.14 2043.47

totalTimesteps 3,479 3,479
totalObjects 11,896 11,896
totalHypotheses 9,795 7,426
totalMatches 9,294 6,606
totalFalsePositives 501 820
totalMisses 2,602 5,293
totalMistakes 3,103 6,113

Mean track duration (sec) 56.8 13.9

Table 2.1: Accuracy and precision comparison

as for SwisTrack [14], an open source vision architecture that has previously been applied

to HSP data and that serves as a useful baseline for tracking performance.

The interpretation of these scores is that 2C is approximately 74% accurate, and is precise to

within 1.8m on average. Further inspection of the statistics reveal that misses (cases where

there is an object that the tracker fails to notice) are more than 5 times more common

than false positives (when the tracker denotes the presence of a non-existent object). In our

application, this is an acceptable ratio, as misses damage the results very little while false

positives have the potential to corrupt findings far more. Although it was not a primary

consideration in its design, notice that 2C produces longer tracks than SwisTrack (56.8 sec

vs. 13.9 sec), which is particularly encouraging in light of 2C’s substantially higher MOTA

and MOTP scores (notice that due to the near complete recording coverage of the home,

we can assume that “correct” tracks will often be long, breaking only when a subject either

leaves the home or enters an area without video coverage).

Speed

Speed of processing was a primary consideration in the design and implementation of 2C.

As such, real world processing speed was analyzed and tuned exhaustively. Evaluations

given here are for a single process running on a single core, however in practice 2C was run

in an environment with many computers, each with up to 16 cores, all running in parallel.
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Mean Std

Input Component < 1 < 1

Background Subtraction 2.1 3.32

Motion Aggregation < 1 .03

Tracker 0.43 6.08

Output Component < 1 2.3

Total frame time 4.10 6.81

Table 2.2: Runtime stats for tracking components

Mean Std

Init 0.03 2.38

Matching 0.1 0.39

Color Tracking 0.24 0.48

Integrate Hypotheses 0.01 0.12

Merge 0.05 2.26

Prepare Output 0.01 0.37

Table 2.3: Runtime stats for tracking module steps

Per-core speeds were slower, but overall throughput was of course much faster.

Runtime for each component is given in Table 2.2 and a breakdown by each step in the

tracking algorithm is provided in Table 2.3 (all times are in milliseconds). Precise runtime

data is unavailable for SwisTrack, but observed speeds across many tracking tasks was near

real time (67ms/frame for 15fps video).

2.2.7 Tuning

An effort was made to control the free parameters in the 2C system in two ways. First,

I attempted simply to minimize the number of free parameters. This was done by simpli-

fying where possible, combining parameters in sensible ways, and allowing the system the

freedom to learn online from data whenever possible. This effort was balanced against the

desire to “bake in” as little knowledge of tracking as possible, requiring the abstraction of

many aspects of the operation of the system out into new free parameters.
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The second part of the effort to control 2C’s free parameters involved the framing of the pur-

pose of these parameters. Rather than allowing them to be simply a set of model parameters

for which no intuitive meaning is possible, the free parameters are all descriptive in terms

that are understood by a human operator of the system. For example, consider the set of

parameters used in performing association of particles to objects. These have names such as

“WEIGHT DISTANCE”, “WEIGHT VELOCITY”, and “MIN ASSOCIATION SCORE”

with intuitive explanations such as “the weight to apply to the Euclidean distance score

between particle and object when computing the overall score” and “the minimum overall

score for which an association is possible.” Contrast this to a more abstract tracking ap-

proach such as a particle filter based tracker, where there is a set of parameters for which

no human-friendly description is possible.

Even with the parameter list minimized, the search space for parameter settings is large.

For this reason, two methodologies have been explored and utilized for establishing optimal

values for the free parameters in the 2C system. First, a GUI was created that allows the

user to manually change the various parameter settings while watching an online visualiza-

tion of the tracker’s operation. This method heavily leverages the human operator’s insights

about how to improve tracker performance. For example, a human operator might realize

that the operation of the motion tracking algorithm is highly sensitive to the output of

the background subtraction algorithm, and might choose to tune background subtraction

while “keeping in mind” properties of motion tracking. This allows the human operator to

traverse locally poor settings in pursuit of globally optimal ones.

The second approach to tuning free parameters is an automatic one and uses a gradi-

ent descent algorithm. A set of target parameters to tune is defined, as well as an order

in which to examine each parameter and default values for the parameters. Then, with all

other parameters held constant at their default values, the tracker is run iteratively with

all possible values of the initial target parameter. The best value of these is chosen, and

that value is then held constant for the remainder of the optimization run. Values for the
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next parameter are then enumerated and tested, and so on until all parameters have been

set to optimal values. We then begin another iteration, resetting all parameter values. This

process continues until parameters are changed less than some threshold in a given iteration.

This method tends to find good values for parameters, but suffers from local maxima and

is highly sensitive to both the initial values of parameters and the definition of the tuning

set and order.

A variation of the second approach utilizes a genetic algorithm in an attempt to more

fully explore the parameter space. Initial values are set at random for all parameters. Gra-

dient descent then proceeds as above until all values have been reset from their random

starting points. This final set of parameters is saved, and a new set of initial values is set at

random. The process proceeds for n0 steps, when the overall best set of parameters is chosen

from among the best at each step. This overall winner is then perturbed with random noise

to generate n1 new sets of starting values. Each of these starting value sets is optimized

using gradient descent as before, again with the overall best optimized set being chosen.

This process proceeds for k iterations. This method more fully explores the search space,

but is extremely computationally expensive. For example, if we are tuning r parameters

and enumerate m possible values for each, then we must track (n0 + ...nk) ∗ (m ∗ r) video

sequences. This number grows large quickly, particularly if we are tracking full-resolution

video in real time. Tuning 10 parameters with 10 values each with 5 initial random sets at

each iteration for 5 iterations with a 5 minute video sequence results in a total runtime of

12,500 minutes (208 hours).

While all three approaches described above were tested, the best results came from a com-

bination of manual and automatic tuning. Initial values were set manually via the GUI.

These values were used as starting points for several iterations of gradient descent. The

final values from gradient descent were then further optimized manually, again using the

GUI.
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2.3 Transcription and Speaker ID

Audio data is transcribed via a semi-automatic system called BlitzScribe [27]. BlitzScribe

works by first segmenting the audio stream into discrete utterances. Segmentation is done

by searching for silence, and then by optimizing utterance length based on the cuts pro-

posed by the silence. Utterances are then aligned with human annotation of the location

of the child such that only utterances representing “child-available” speech are marked for

transcription. Audio is then given to transcribers one utterance at a time to be transcribed.

Transcribed segments are stored as text in an encrypted SQL database, each with start and

stop times (in microseconds), the audio channel from which the utterance originated, and

the annotation of the child’s location. To date, approximately 60% of the corpus has been

transcribed.

Speaker identity is determined automatically using a generative model-based classification

system called WhoDat [18]. In addition to identity, WhoDat produces a confidence score

denoting its certainty about the label it has attached to an audio segment. Identity is added

to each utterance in the database along with transcripts.

Transcription accuracy is checked regularly using a system of inter-transcriber agreement,

whereby individual transcripts may be marked as inaccurate, or a transcriber’s overall

performance can be assessed. Speaker ID was evaluated using standard cross validation

techniques. Performance varies considerably by speaker, with a high accuracy of 0.9 for the

child and a low of 0.72 for the mother, using all utterances. If we assess only utterances

with high confidence labels, accuracy improves significantly, at the expense of the exclusion

of substantial amounts of data. In practice, a confidence threshold of 0.4 is used when

speaker identity is needed (such as when determining which utterances were made by the

child), resulting in over 90% accuracy across all speakers and yielding approximately 2/3

of the data.
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2.4 Processed Data

Tracks generated by 2C and transcripts (with speaker ID) from BlitzScribe are then further

processed to derive the datatypes described below.

2.4.1 Processed Tracks

Tracks are projected from the pixel space of the video data where it was recorded into world

space, represented by Euclidean coordinates relative to a floorplan of the home. The fisheye

lenses of our cameras are modeled as spheres, and model parameters θ are derived using

a manual annotation tool. θ fully specifies the camera’s position and orientation in world

space. Each point P in a given track can then be mapped to world space U by a mapping

function f(P : θ)→ U .

Once projected into the single coordinate system representing the entire home, tracks can

be aggregated across all cameras. These aggregate tracks are Kalman filtered [10] and point

reduced using the Douglas-Peuker algorithm [39]. Once aggregated and filtered, tracks are

Figure 2-6: Sample Movement Traces
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merged across cameras. This process attempts to join tracks from adjacent cameras that

represent the same tracked subject. Merging proceeds as follows. For two sets of tracks in

adjacent cameras, we generate all pairwise scores between individual tracks. The score is

computed as the mean distance between temporally overlapping portions of the two tracks,

combined with the point-wise standard deviation between the tracks in a weighted average.

This formulation incorporates two assumptions about tracks that should be merged: that

they should be close together for their duration (low mean delta distance), and that regard-

less of their distance, they should maintain a somewhat constant distance from each other

(low standard deviation).

The score Si,j for tracks i, j is computed as:

Si,j = (β1dî,ĵ) + β2σî,ĵ

where:

dî,ĵ = mean distance between tracks î, ĵ

β1 and β2 are tuned parameters

and:

î, ĵ are the portions of track i and track j that overlap in time.

Motion
Detection

Tracklets Tracks

Video Input Motion
Tracking

Color
Tracking

Integrate
Hypotheses

Smooth &
Point reduce Merge

Figure 2-7: Track processing pipeline

Each track is then iteratively merged with all other tracks whose score is below a threshold.

This threshold was tuned empirically by iterating over values and examining both visualiza-

tions of the resulting merged tracks, as well as raw video data corresponding to the objects

being tracked.

The output of the track processing step is a set of tracks corresponding to all movement
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throughout the home during the period of recording. These tracks are stored in SQLite

database files, with one day per file.

2.4.2 Child’s Vocabulary and Word Births

From the transcripts of audio data, we’d like to know which words were present in the

child’s vocabulary by the age of 2, as, by definition, these are the individual words that

signify language acquisition in the child. Then, for each of these words we would further like

to know the time of that word’s first production. Given perfect transcription and speaker

ID, this is a trivial process, easily handled by a single query to the database (i.e. SELECT

* FROM utterances WHERE timestamp == min(timestamp) AND speaker == “child”).

Both transcription and speaker ID are imperfect, however, which necessitates some filtering

in order to find first the child’s vocabulary and then the first production of each word in

the vocabulary.

First I generated the vocabulary for the entire Human Speechome corpus by iterating over

all transcription and storing unique tokens. This resulted in 24,723 unique tokens, with

1,772 having appeared more than 100 times. To mark a word as part of the child’s vocab-

ulary, it must appear a minimum of 10 times throughout the corpus, marked as “[child]”

with high confidence by speaker ID. This list is then filtered to remove non-linguistic tokens,

as well as to manually map various forms of the same word to a single token (for example

“dad,” “daddy,” and “dada”). This process resulted in 658 words being identified as present

in the child’s vocabulary (see Appendix A).

In order to establish the time of the child’s first production of each word or Age of Acqui-

sition (AoA), I create per-word temporal distributions at the week and month timescales.

I then search for the knee in each distribution, or the point at which the child’s use of the

word increases substantially. This step helps to avoid spurious false positives before the

child actually assimilated a word into his vocabulary. The knee at each timescale is aver-

aged. Given this average knee, we then search for the nearest production of the word by the
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child and call this the word birth, with its timestamp being that word’s AoA. These times-

tamps are more accurately denoting the age at which the child first assimilates a word into

his vocabulary; however, this is assumed to be closely related to the time of first production

and so is used as the age of acquisition time.

Figure 2-8: Old vs. New Word Births

As a check on the results of this step, I gathered Age of Acquisition data derived for previous

research. This data was derived when there was substantially less transcription complete,

so we might expect AoA to move forward in time as we see new child-spoken utterances

containing a given word. Figure 2-8 shows that this is in fact the case - the overall pattern of

word acquisition (the “shark’s fin”) remains nearly identical, while the timestamps for each

word move forward in time in almost all cases. As another check on the newly derived age

of acquisition for each word, I plotted the child utterance temporal distributions, along with

the newly derived and previous word birth timestamps (see example in Figure 2-9). These

simple plots convey information about the child’s usage of a word, and proved powerful in

troubleshooting AoA data. As a final check on each AoA, transcripts were examined for

each word birth utterance. In several cases, reading the transcript showed that an utterance

couldn’t have been produced by the child, necessitating manual intervention to find the true
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first production of the word by the child.

Figure 2-9: Word birth verification plot

2.4.3 Situated Utterances

For a given utterance, I attempt to “situate” that utterance by extracting the point or set

of points denoting the location of a person or people at the time of the utterance. To do

this, I search for all tracks whose start and end times intersect the start and end times of

the utterance, and then extract (or interpolate) one point from each intersecting track at

the timestamp of the midpoint of the utterance. These points are then stored in a table,

matched to the target utterance. The result of this step is a table that stores the location

of participants for each utterance in the corpus.
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2.4.4 Spatial Distributions

Situated utterances are distilled into spatial histograms that represent aggregate views

across arbitrary dimensions. A 2-dimensional histogram is initialized where the bins corre-

spond to discrete locations in the home. Histograms are initialized for bin sizes of 100mm

and 1000mm, with bins distributed in a uniform grid throughout the space. For 100mm bin

sizes, distributions contain 162 x 118 = 19,116 bins. The 1000mm distributions contain 16

x 11 = 176 bins.

For each situated utterance of interest, the set of points corresponding to the location

of people at the time of that utterance are added to the appropriate bin(s) of the histogram

using bilinear interpolation. Each bin is given a weight corresponding to the area an arti-

ficial bin centered at the point would overlap with the bin in question. A weighted point

is then added to each bin. Note that by this method, at most 4 bins can be affected by a

single point and a point that falls directly in the center of a bin affects only that bin.

If we have a point P and a bin centered at K with size w ∗ h, the weight ΓP,K is given by:

P 1
x = (Px − w/2) P 2

x = (Px + w/2)

P 1
y = (Py − h/2) P 2

y = (Py + h/2)

K1
x = (Kx − w/2) K2

x = (Kx + w/2)

K1
y = (Ky − h/2) K2

y = (Ky + h/2)

ΓP,K =
[min(K2

x, P
2
x )−max(K1

x, P
1
x )] ∗ [min(K2

y , P
2
y )−max(K1

y , P
1
y )]

w ∗ h

This spatial distribution represents the aggregate locations of participants in the utterances

of interest. Histograms are represented as multinomials with the added property that bins

have spatial adjacencies, where k = the number of bins and n = the number of samples

(in this case utterance points). The probability of an utterance occurring at a location i is

the total count of points in i = Xi divided by the total number of points n: pi = Xi
n and
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∑k
i pi = 1. The mean location is a weighted sum of bin locations, where pi is the weight

of location i and Ki is the coordinate: µ =
∑k

i piKi and the mode is simply the maximum

likelihood location: mode = Ki s.t. i = argmax(pi).

2.5 Summary

Figure 2-10 summarizes the dataset creation pipeline. Tracks are produced by 2C, then are

filtered and merged across cameras. Transcription created by BlitzScribe is used to generate

the child’s vocabulary and word birth dates. Processed tracks and transcription are then

joined to form situated utterances. These are aggregated to form spatial histograms.

VIDEO TRACKING FILTER AND MERGE

TRANSCRIPTION CHILD VOCAB &
WORD BIRTHS

POINTS BY
UTTERANCE SPATIAL DISTRIBUTIONS

AUDIO

Figure 2-10: Summary of Dataset Processing
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Chapter 3

Taxonomy

3.1 Overview

The fundamental building blocks of the taxonomy described here are spatial distributions

representing the locations of people during normal daily life. These distributions carry with

them various metadata, including the speech type (i.e. a particular word) they represent

and various statistical measures that serve to quantify the distribution. Distributions are

visualized in several ways for presentation to the user.

3.2 Schema

The schema for the taxonomy is defined according to a 3-dimensional structure as follows.

Each axis is segmented by a dimension of interest: activity type, participant identity, and

temporal slice. Locations along all axes are discrete.

Along the y-axis, we have activity types. With the exception of the first entry, activity

is speech and is defined according to the content of the speech.
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Figure 3-1: Overview of Dataset and Taxonomy

Entries on the y-axis are:

Activity: This represents all person tracks in the corpus (note that identification is cur-

rently done only on the basis of speech, therefore activity entries are not segmented by

identity)

Speech: This represents data for all speech acts in the corpus

Target Words: These are utterances containing any of the 658 words in the child’s vo-

cabulary at age 2

Learning Period: For each of the target words, these are utterances containing that word

that occurred before the child’s first production of the word.

Target Words and the Learning Period are further segmented by each of the individual

words.

The y-axis therefore contains (1 + 1 + 1 + 1 + 658 + 658) = 1, 320 entries.

Along the x-axis, we have participant identities. These identities are segmented as fol-

lows:

All participants: no filtering is done
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Mother: only utterances made by the Mother are included

Father: only utterances made by the Father are included

Nanny: only utterances made by the Nanny are included

Child: only utterances made by the Child are included

Other: utterances made by participants other than those noted above are included

The x-axis contains 6 entries.

To determine the total number of entries across the x- and y-axes, we first note that iden-

tity is not available for non-speech activity traces because identity is derived from utterance

audio. We also note that, by definition, Learning Period utterances are not made by the

child, so these entries are empty and need not be counted. We can now determine the total

number of entries as: (6 ∗ (1 + 1 + 658)) + (5 ∗ (1 + 658)) + 1 = 7, 256

Along the z-axis, we place temporal slices. While temporality can be viewed continuously,

we instead discretize as follows:

All: all activity

Morning: activity taking place between 4am and 9am

Daytime: activity taking place between 9am and 5pm

Evening: activity taking place between 5pm and 8pm

Night: activity taking place between 8pm and 4am

Weekend: activity taking place on Saturday or Sunday

Weekday: activity taking place Monday - Friday

By month: activity corresponding to a single month in the child’s life from 9 - 24 months.

Combined with the entries above, the complete taxonomy contains 7, 256∗(7+16) = 166, 888

entries altogether.
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Figure 3-2: Taxonomy schema

3.3 Visualizations

For each entry in the taxonomy, the following visualizations were produced (details about

each type follow):

• Heat map (standard) for 100mm and 1000mm bin size distributions

• Heat map (log scale) for 100mm and 1000mm bin size distributions

• Difference map comparing this entry to the other entries in its x, y, and z axes (i.e.

target word utterances made by the father compared to all target word utterances)

for 100mm and 1000mm bin size distributions
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3.3.1 Heat Maps

The core visualization type represented in the taxonomy are heat maps utilizing a “rainbow”

spectrum of color to represent counts in the various bins. These heat maps are normalized

such that the maximum value is depicted in white and the minimum value is black. These

basic heat maps are also extended to heat maps plotted on a log scale, again normalized so

that the maximum is white and the minimum is black. The log scale versions are useful for

displaying more subtlety in cases where there are many points and ranges are large.

3.3.2 Difference Maps

Difference maps are produced that visually represent a distribution’s difference from the

background (or from any other distribution). These maps are derived by subtracting the

likelihood of each bin in the background distribution from each bin in the candidate dis-

tribution. Results might therefore be negative, with positive numbers reflecting bins (or

physical locations) where the candidate distribution is more likely than the background.

A modified color spectrum is used in these difference maps, where zero is still depicted in

black, but positive numbers utilize the warmer end of a rainbow spectrum (red, orange,

yellow, and white) and negative numbers are depicted in cooler colors (blue, green).

3.4 Statistics

For a large taxonomy, it is useful to define some organizing principles in addition to the

structure of the taxonomy itself. These principles can serve as a means of locating points of

interest within the taxonomy - “handles” that one can grasp in order to pull out interesting

features. To this end, various statistical measures were computed for each entry in the

taxonomy.

The notation used is:

P = background, or the spatial distribution for all speech

Q = target word spatial distribution
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n = number of observations

k = number of bins

i = bin index

Entropy

H(Q) = −
∑k

i q(i)log(q(i))

Entropy (or Shannon Entropy) is an information-theoretic measure that quantifies the

amount of uncertainly in a random variable. In this context, entropy measures the de-

gree of uncertainty about the location of an utterance, or how “spread out” a distribution

is. For example, a distribution with all samples concentrated in a single bin would have 0

entropy, while a distribution with equal (non-zero) counts in all bins would have maximum

entropy. Notice that entropy does not contain any information about spatial adjacency - a

distribution with a single large peak (and otherwise uniform) would have similar entropy

to one with many small peaks.

KL-divergence

KL(P,Q) =
∑k

i p(i)log
p(i)
q(i)

KL-divergence, also known as relative entropy, measures how much information one dis-

tribution provides about another. In this context, it can be seen as a measure of the

difference between two distributions. More specifically, KL-divergence is used here to mea-

sure how similar a particular spatial distribution is to the overall speech patterns in the

home, or how unusual a particular distribution is.

68



Ripley’s K

RK(Q̂) = λ−1n−1
∑

i

∑
j∈Si

I(q̂(j))

where:

λ = n
k

Q̂ = q(i)− p(i)∀i

q̂i = q(i)− p(i)

j ∈ Si is the set of bins near bin i

and:

I(q(j)) =

 1 : q(j) > T

0 : otherwise

This is a modification of the typical Ripley’s K statistic [11, 7], originally designed to

measure the degree to which a discrete spatial point process exhibits complete spatial ran-

domness (CSR). Samples that are homogenous or those displaying CSR will have low values

of Ripley’s K, while those with tight clusters will exhibit high values.

Ripley’s K was devised to measure the clusteredness of a set of discrete, unevenly spaced

points by averaging the number of adjacent points in each cluster and normalizing by the

overall density of the points. Here, I classify each bin as a point or not a point based on the

residual probability after subtracting off the background. For each point i, evaluate I(q(j))

for each q(j) in the neighborhood of i. I(q(j)) is an indicator function that is 1 when a

bin has probability greater than T and 0 otherwise. T is a free parameter and is set to 0

in practice, but can be set differently in order to find different types of spatial clustering.

When T is high, Ripley’s K will give high scores only to distributions with clusters of high

peaks. When T = 0 as here, the statistic has high value for distributions with clusters that

are even slightly more likely than background.

Moran’s I

I(Q̂) = n∑n
i

∑n
j wi,j

∑n
i

∑n
j wi,j(q̂(i)−q̄)(q̂(j)−q̄)∑n

i

∑n
j (q̂(i)−q̄)2
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where:

Q̂ = q(i)− p(i)∀i

and:

wi,j is the weight between bins i and j. wi,j is a function of Euclidean distance between

bins where bins that are further apart have lower weights. These weights can be thought

of as the resolution at which the data is measured. In practice, wi,j is computed such that

wi,j = 0 when the distance between bin i and bin j is greater than 2 meters.

Moran’s I [20] is a measure of spatial auto-correlation, or the correlation between prob-

abilities in neighboring locations. The statistic is often used in fields such as epidemiology,

where one would like to measure how much the presence of a point (i.e. a disease case) in

one location affects the likelihood of a point in a nearby location. In this context, Moran’s

I measures the degree of smoothness in a distribution. The settings in the weight matrix

(wi,j) affect the scale at which smoothness is measured, where, for example, a distribution

might be uneven at a fine scale, but display smoothness when more bins are considered

simultaneously.

Moran’s I values range from -1 (perfect dispersion) to 0 (random, no autocorrelation) to 1

(perfect correlation).

Entropy of Difference

H(Q̂) = −
∑r

i q̂(i)logq̂(i)

where:

Q̂ = q(i)− p(i)∀i

This measure is a test of how much entropy varies when compared to the background -

distributions that are similar to the background will therefore display higher entropy in
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their difference than will distributions with large variations from background.

Bhattacharyya Distance

DB(P,Q) = −ln(BC(P,Q))

where:

BC(P,Q) =
∑r

i

√
p(i)q(i)

Bhattacharyya is a true distance metric (similar in some respects to Euclidean distance)

that, similar to KL-divergence, is used here to measure a distribution’s difference from

background. Bhattacharyya distance is somewhat less sensitive to zero-count bins than

KL-divergence, but provides a slightly weaker measure of difference in distributions with

large n.

The effect of count

Many of the spatial distributions of interest contain too few samples to be robustly esti-

mated, leading to poorly formed information theoretic measures. Furthermore, the measures

that we can compute directly are extremely sensitive to the number of observed samples,

making comparisons between distributions with varying number of samples difficult and

often inaccurate.

For example, it can be shown rigorously that entropy decreases as a function of n - in-

tuitively, the more samples you’ve seen, the more uniform a distribution will appear until,

with large enough n it eventually converges to its “true” entropy. Likewise, with a single

sample, the entropy of a distribution is 0, and this entropy increases with each subsequent

sample until the distribution is adequately estimated and the true entropy is observed.

These principles can also be modeled using artificial data; this empirical modeling was un-

dertaken extensively as part of this work in order to understand the relationship between
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Figure 3-3: Sampled and observed KL-divergence

sample count and the various measures of interest. In all cases, measures were sensitive to

n, and converged toward their true value as n increased.

First, the theoretical effect of n on KL(P,Q) was derived [25]. This derivation estab-

lished an upper bound on the expected KL-divergence of a distribution P against Q, which

contains n samples. This expectation is:

E[KL(P,Q)|n] = E[H(P,Q)|n]− E[H(Q)|n]

= H(P,Q) +

B∑
i

pilog(pi −
1− pi
n

)

≤ −
B∑
i

pilog(qi) +
B∑
i

pilog(pi +
1− pi
n

)

Notice that H(P,Q) is the cross-entropy of P and Q, which is unaffected by n. (x) implies

that KL-divergence as a function of n converges toward the “true” KL-divergence with 1
n ;

therefore the KL-divergence of a distribution against itself will converge to 0 linearly in

log-log space, a property that can be verified by modeling. Figure 3-3 shows the observed

KL-divergence of P with a distribution Pn generated by sampling P n times. Each Pn is

generated m times, with all such KL-divergences plotted.
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This relationship is also seen in actual data (see Figure 3-4).

Residuals

In order to overcome the effect of n on KL-divergence, the following method was devised

(as part of related research [19]): the relationship between KL-divergence and n is linear

in log-log space, therefore it is suitable to fit a line to these points plotted together and

examine the residual from this line.

First, find ax+ b that minimizes sum of squared error of log(n) and log(KL(P,Qi))∀i.

Then for a given Qi with sample count n, KLpredicted(P,Qi) = an+ b

And KLresidual(P,Qi) = KL(P,Qi)−KLpredicted(P,Qi)

In simple terms, the residual effectively says “how does the observed KL-divergence for

this word compare to the observed KL-divergence for words with similar counts?”

While KL-divergence and many of the measures discussed above are correlated with count,

the residual measures computed here are uncorrelated with count, making it reasonable to

use them to compare words with different sample counts. Figure 3-4 illustrates (L to R) the

raw correlation of KL and count, the relationship between KL and count in log-log space

with a line fit to the values, and the uncorrelated KL-residuals.

Figure 3-4: The relationship between count and observed KL-divergence

Notice that packed into this methodology are two possibly distinct effects - one is the effect

of count on KL-divergence, which, as has been stated, can be rigorously proven. The second
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is the semantic effect of word use on KL-divergence: it is possible that seldom used words

are, in fact, used in ways that systematically differ more (or less) from the background,

likewise with often used words. The residual measure can be thought of as a high level

abstraction that embodies both of these properties in order to make a fair comparison be-

tween words.

Distribution Browser

Salient patterns can be seen in the visualizations described above even in very low resolution

images, implying that interesting differences could be drawn out by looking at aggregate

views of all distributions where each distribution is rendered at a small size. As a result

of this observation, an approach was devised as follows. All spatial distributions are vi-

sualized as small, iconic heat maps and arranged according to some user defined ordering

(i.e. alphabetical by target word). We then apply a statistical metric (i.e. KL-divergence)

to each distribution, generating a score for each according to this metric. Icons are then

darkened according to this score. The user can choose to visualize the scores in ascending

(low scores are brighter) or descending (high scores are brighter) order. Additionally, the

user can choose to filter the distributions by this score, showing, for example, only the top

50 scoring distributions.

Users can switch seamlessly between various statistical metrics, the ordering direction (as-

cending or descending), and the amount of filtering. The user can also choose to more

closely examine any individual distribution in standard, log, or difference form. Addition-

ally, an ordered list is provided for each metric that shows a total ordering of the target

words based on the currently selected metric.

One can quickly get a sense of the shape of the distribution over the measure being ex-

amined. For measures that provide good separation between spatial distributions, the user
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sees a uniform spread between dark and light icons. For a measure that clusters distribu-

tions toward one end of the scale, however, the user will see an even distribution in the dark

(or light) part of the range, and just a few icons at the other end of the range.

As an example of the above effect, a particular measure gives a numerical score to “car”

of .90. The next word, “diaper” scores .68. There are 15 words scoring between .02 and

.50, and 408 words between 0 and .02. It is clear that most words have low scores, some

have higher scores, and “car” is an outlier at the top of the scale. These properties are

apparent when viewing the browser, as sorting in ascending orders shows nearly all icons as

very bright, with just a few appearing dark, and “car” being black. Sorting in descending

order is equally informative, as “car” appears very bright, several icons are less bright, and

most icons are dark or black.

The browser allows the researcher to make informed decisions about the best statistical

measure to use in order to select desired distributions. In the example of “car,” we were

able to cycle through many measures quickly, noting in each case the position of “car”

along the continuum from dark to light. We were similarly able to look for measures that

highlighted words with similar spatial properties (in this case, words whose difference maps

appeared tightly clustered in a particular location). As a result, we were able to conclude

that the Ripley’s K statistic selects the desired spatial distributions. We could then use

this measure to automatically sort the 658 target words, as well as any of the 26,000 other

words in the corpus’ vocabulary.

Additional benefits are realized when we consider the ordering of the icons as a second

dimension by which to view distributions, with darkening and lightening as the first dimen-

sion. Given the task of finding spatial information that is predictive of age of acquisition,

we seek measures that are correlated with age of acquisition. In order to perform this

search, we first order the distributions by age of acquisition, and then apply some measure.

If correlation is high, we expect to see a smooth transition from dark (or light) at the top

left to light (or dark) at the bottom right. Such a transition implies that measure values
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are varying with age of acquisition. Figure 3-5 shows such an ordering for 120 words, with

KL-divergence applied. We can see that KL-divergence values tend to be lower at the top

left (distributions are darker) and higher at the bottom right. Although correlation is not

perfect (r = 0.58), we can get a quick sense of the appropriateness of the measure. We can

also quickly find outliers, or those distributions that are poorly predicted by looking for

discontinuities in shading. For example, notice that “round” is far brighter than would be

appropriate given its position in the matrix.

Figure 3-5: Difference Browser
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Chapter 4

Exploration and Analysis

The taxonomy built up from spatial distributions is a useful tool for exploration and analysis,

and in this chapter I will highlight some relevant pieces of data, showing that with careful

comparisons, interesting insights as well as numerical results can be drawn out and analyzed.

4.1 Activity Types

Figure 4-1 shows heat maps representing 3 views of the overall activity pattern in the home.

Even at a very rudimentary level, these visualizations provide insights about the daily life

of the family. One can immediately see, for example, that the kitchen is a hub of activity,

in particular the area near the center island. We can also see that a secondary hub exists in

the living room near the couch, and that there are three main areas of the child’s bedroom

where activity takes place, making up the third activity center in the home.

4.1.1 Speech vs. Movement

In Figure 4-2 we see the spatial distribution over all speech visualized in three ways. These

heat maps show clearly several key areas of the home where speech is common (“social
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Figure 4-1: Heat maps: (L to R) all activity, all activity plotted on log scale, all activity
with 1000mm bins

hotspots”): the kitchen, family room, and child’s bedroom. It is important to note that these

hotspots were derived automatically via a very simple threshold-and-cluster algorithm that

looks for high likelihood locations and builds clusters containing those locations, implying

that these sorts of insights could be derived automatically.

Beyond knowing the locations of utterances, we might like to understand the ways in which

speech acts differ in their locational properties from overall activity. In other words, are

there locations in the home where people spend time silently? Are there locations in the

home where people are seldom silent? These questions are answered easily by examining

the difference map in Figure 4-3. We can see two prominent complementary areas in this

map: in the kitchen near the left side of the center island, speech is likely relative to overall

activity; and the hallway below the kitchen, where speech is unlikely. These observations

make sense when we think about the activities that take place in these locations. In the

kitchen as a whole, people may be moving around with little or no speech; however, during

mealtimes (which take place at the left side of the center island) people are rarely silent.

Likewise, in the hallway people are likely to be moving about silently as the hallway is not

a place that one would tend to linger and talk.

4.2 Speech content

By examining speech on a per-word basis, we can begin to understand how particular words

(and classes of words) fit into and are influenced by the patterns of daily life.
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Figure 4-2: Heat maps: (Clockwise from top left) all speech, all speech plotted on log scale,
all speech with 1000mm bins, social hotspots

4.2.1 Target Words vs. All Speech

Given this work’s interest in language acquisition, a natural focus is on the words that even-

tually entered the child’s vocabulary. Furthermore, we’d like to look at those words during

the learning period (the time leading up to the child’s first production of the word) in order

to understand if there are contextual cues that either facilitate or indicate the learning of

the word.

Figure 4-4 summarizes the spatial properties of the 658 target words, as used during the

learning period for each word. The key insight from these visualizations is the existence and

location of two “learning zones,” or areas where the child was taught much of the language

he came to know by the age of two. These are the areas where these words were used most

often, making it reasonable to assume that the learning process took place in these areas
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Figure 4-3: Difference map showing speech vs. all activity

primarily.

4.2.2 Spatial groundedness

A word that became a focus because of related research was “car.” This word reduced the

perplexity of a spatial language model more than any other word, implying that spatial

properties of the word were important. The spatial distribution for car appears to follow

a typical usage pattern, with the word showing up in many areas of the home. This us-

age pattern differs significantly from the overall speech pattern in the home, however; a

difference that shows up immediately in the difference map visualization - the area near a

window in the family room appears bright yellow and orange, with the rest of the house

being blue, black, and green.

This pattern shows that “car” is used normally or less than most words throughout the
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home, but is far more likely than other words in the area near the window in the family

room. This pattern is intuitive for a researcher familiar with the data: the child often stood

at the window with his nanny, pointing to cars as they drove by. There was also a play

mat near the window where the child often played with toy cars. A word whose usage

Figure 4-4: Target word heat maps

pattern is similarly localized is “diaper.” This word, as might be expected, occurs far more

frequently near the child’s changing table than in other parts of the home. This pattern is

again evident upon examination of the difference map for the word.

Several food-related words also follow similar patterns, again, as expected. Words such

as “mango,” “banana,” and “papaya” occur far more frequently near the child’s primary

feeding location in the kitchen. Similarly, but as a slight variation, several words including

“eat” and “done” (part of the phrase “all done”) occur throughout the kitchen, but with

a more varied spatial distribution than words that tend to occur strictly while the child is

eating.

By contrast, there are many words that are spread more uniformly throughout the house.

Words such as “you,” “those,” and “that” exhibit spatial distributions that mirror closely

the distribution of all speech. These words and many like them are not tied to particular

locations, which is an intuitive property when one considers the meaning of the words.

Words that fall into this class are generally words that describe moveable objects, people,

or concepts, none of which are tied to locations. Of equal interest are words such as “come”

and “go,” whose spatial distributions are spread throughout the home with the exception
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that they occur infrequently in the kitchen where the child was often confined to a high

chair and thus was unable to “come” or “go.”

The Ripley’s K statistic is intended to measure the “clumpiness” of a set of points, or

the degree to which a set of points exhibits complete spatial randomness (CSR). Here,

Ripley’s K is applied to difference distributions using a threshold on the probability to de-

termine which bins are considered “points” (see Figure 3.4). Those distributions that are

more likely than background in localized ways therefore have high Ripley’s K values.

Ripley’s K can be an effective handle into the data - by searching for words with sim-

ilar patterns of clustering, we can find those words with similar ties to locations in the

home. To find words whose usage is grounded in a particular location, for example, we need

only find those words with high Ripley’s K values (see Figure 4-5).

Figure 4-5: Top 150 Words by Ripley’s K

This is a powerful concept. By pulling out those words that are tied to locations while being

able to recover those locations, we have the opportunity to begin to derive meaning for a

certain class of words simply by looking at the usage patterns for those words. Because

these distributions are aggregated over long periods of time (ranging from weeks to years),
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we can assume that these spatially tied words relate to either objects or concepts that are

locationally invariant to some extent. Diapers are always present in the area of the child’s

room where “diaper” occurs most frequently, mangos are always cut in the same area of

the kitchen, etc. It is therefore possible in principle to recover via visual information a

description of the items being discussed.

To summarize, we can take all speech in the home and, via spatial distributions alone,

highlight those words that are tied closely to particular locations. We then might search

these locations visually for the object or concept that the word describes, providing true

grounding for the word in an automatic way. Figure 4-6 illustrates this concept using video

frames taken during utterances containing the word “ball.”

A problem with this approach arises when we consider words that are used in specific

locations exclusively, but that relate to objects or concepts that are not visible at that

location. An example from this data is the word “bus” which was used often in the kitchen

and has a high Ripley’s K score, but that was part of a mealtime song about a bus. There

is no visual clue to be found that relates to “bus.”

Figure 4-6: Snapshots taken during utterances containing “ball” in the location associated
with “ball”

4.2.3 Clustering

Clustering is an effective tool for exploring the relationship between Ripley’s K and KL-

divergence, and how these measures might relate to the meaning and natural usage of words.

Words with high Ripley’s K and also high KL-divergence, for example, would be those words

that are focused in locations that are substantially different from overall speech. Similarly,
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words with high Ripley’s K and low KL-divergence would be words whose locational focus

is well represented in the overall speech pattern. An example of the former is the word

“diaper” whose usage is highly focused in a location that is not a center of overall speech.

The word “mango” is an example of the latter - “mango” is used often in a single location,

but that location is well represented in the background (the kitchen near the center island

is the single most active speech location in the home); “mango” therefore has a relatively

low KL-divergence. A final example is “them ” which has a high KL-divergence and a low

Ripley’s K score, implying that this word is used in a way that stands out from background,

but is not tied to any single location.

In order to explore the ability of multiple spatial features to segment words into salient

groupings, K-means was applied to the data in two dimensions where KL-divergence is on

one axis, and Ripley’s K is on the other. K was set to 30. See Figure 4-7 for visualizations

of the clusters generated. Some interesting examples of the various clusters follows.

Figure 4-7: K-means clustering by KL-divergence and Ripley’s K

The cluster with centroid (.64, .88), which represents a relatively high KL-divergence and

the highest Ripley’s K of all clusters contains the following words:

“mango”

“spoon”

“yum”

“old”
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“mcdonald”

This cluster of unusual, spatially tied words appear all to relate to mealtime (the song “Old

McDonald had a farm” was a mealtime favorite). This cluster provides evidence that meals

are the single most unifying factor in language use - no other activity in the home exhibits

such strongly spatially tied words, or as many words that differ so significantly from the

background. The high degree to which these words are spatially tied relative to words in

other locations or related to other activities might be explained by the fact that during

meals, participants are generally seated. In particular, mealtimes are one of the only times

that the child is stationary for extended periods.

As an example of the effect of mealtime, we examine another cluster, this one with centroid

at (.90, .44). This cluster diverges more from background than the previous one, but is less

spatially focused. Words in this cluster include:

“come”

“goodnight”

“change”

“diaper”

“where”

“you”

These words vary in the ways that they are used, both spatially and in the activity con-

texts they are part of. All exhibit moderate spatial clustering, which is clear for “diaper,”

“goodnight,” and “change” but is somewhat less obvious for “come,” “where,” and “you.”

Visual examination of these latter three words’ distributions reveals that the usage of these

words is, in fact, clustered, but not in a single location. “come” has a cluster in the child’s

bedroom and another in the living room, while “you” shows a cluster in the child’s bedroom,

another in the kitchen, and a third in the dining room.

A final example comes from the cluster with centroid (.10, .28). This cluster should contain

words that resemble background and that are not location-specific, and indeed it does:

“about”
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“keep”

“fine”

“sure”

“need”

These are words that are more grammatical in nature, which would be words that would

be expected to be used in a variety of contexts.

These observations provide some insight into both the statistics and the usage of these

words. KL-divergence is capable of measuring various disparate properties of a word’s dis-

tribution - words that are unusual may be unusual in various ways. Ripley’s K, on the

other hand, appears to be measuring the single property that it is intended to measure -

the degree to which a word is tied to a single location. High scores are typically found with

words that are tied to one location, while moderate scores appear tied to several locations,

and low scores are spread more uniformly.

What these statistics reveal about the usage of the words is slightly more difficult to quan-

tify. We can see that words without spatial ties and low KL-divergence tend to be more

general words, and the words with moderate KL and high Ripley’s K tend to be highly

focused, specific words. But the words in the middle group with high KL and moderate

Ripley’s K are more individually different. “come” has a different reason for displaying the

values it displays than does “goodnight” or “diaper.” Each word essentially has its own

story.

4.3 Identity

It has been shown that peoples’ identities can be accurately segmented into classes using

a combination of behavioral traces (data from person tracking) and visual features (color

histograms from video) [31]. In this work I focus on a much coarser representation, spatial

distributions, but propose that they still contain enough individually identifiable informa-

tion to be useful for identification.
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As just one example of a person-specific feature, consider the area around the kitchen

island. Each caregiver has a location that they prefer, a fact that can be verified by watch-

ing video of mealtimes. The mother tends to sit close to the bottom edge of the island,

while the father prefers the left side, and the nanny, who is often alone with the child at

mealtime, sits nearer the corner of the island. When we examine the difference maps in

Figure 4-8, these preferences are apparent - the mother is far more likely to speak in her

preferred location, the father in his, etc.

I currently make no claims as to a quantitative assessment of this concept, however it

appears reasonable that we could derive an aggregate distribution for each person of in-

terest and then generate at least a prior if not a full classification of identity based on

a small sample of observed data. In keeping with the cross-modal intent of this work,

this prior could be used in conjunction with an audio-based speaker ID system to improve

classification. This effectively says “where something was said influences who I think said

it.”

4.4 Temporal slices

An interesting feature to notice in Figure 4-9 are the various activities that can be seen

clearly in this simple comparison. The morning shows the mother feeding the child (the hot

spot is associated with the mother’s usual feeding location, see Section 4.3 above). Daytime

shows the nanny spending time in the chair in the child’s room and near the window, as

well as meals in the nanny’s usual location. Evening shows meal preparation, which differs

from breakfast and lunch in that it is spread throughout the kitchen. Presumably this is

because there are often two adults preparing the meal, moving around the kitchen cooking

and so on, and because preparation of the meal is more involved than with breakfast or

lunch. At night there is nearly no activity in the kitchen, because the family is spending

much more time on the couch in the living room.
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Figure 4-8: Difference maps for (clockwise from top left): child, father, nanny, mother

4.5 Age of Acquisition correlation

A key question that we might ask of this dataset is whether there is information contained in

spatial distributions that indicates the acquisition of language in the child. More concretely,

are statistical measures of spatial distributions for individual words correlated with the age

of acquisition for those words? If this correlation does exist, then we can say at least that

there is some relationship between where words are said and when the child learns them.

This relationship is likely to be complex, as we are dealing with a dynamic system involv-

ing several people who are constantly influencing each other in multiple feedback loops.

A straightforward causal relationship is unlikely in such a “loopy” system, but correlation

would be informative nonetheless.

Previous work has looked at the the effect of the frequency of word use on age of ac-

quisition. Previous work on HSP has verified that this relationship with frequency exists
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Figure 4-9: Difference maps for (clockwise from top left): morning, daytime, evening, night

in this dataset as well, and has added similar correlations with prosodic features and AoA

[37]. This work builds on those concepts, looking for correlation with spatial data.

The basic prediction methodology is as follows:

1. Take the background spatial distribution representing all adult speech. Call this P .

2. Take spatial distributions for each target word’s learning period. Call these Qi.

3. Compute some measure Mj (i.e. KL-divergence) for each Qi : Mj(P,Qi)

4. Using a least-squares linear regression, fit a line to each Mi,j∀i plotted against AoAi

5. Pearson’s r values are reported as rj

Several of the measures applied to spatial distributions are predictive of AoA. The high-

est correlation for all 658 words is KL-divergence (note that this is actually KL-residual,

described previously), with r = −0.41. We can see that with even a small amount of fil-

tering, Ripley’s K dominates the other metrics in terms of prediction accuracy. Ripley’s K
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(initial r = −0.33) reaches an early peak when words with less than 1825 samples are ex-

cluded and r = −0.81. At this level of filtering, we predict only 96 of the original 658 words.

Figure 4-10 shows each rj as a function of a sample count (n) threshold T : words for

which n < T are discarded for 0 < T < 8750.

Figure 4-10: Predictor accuracy as a function of sample count threshold

As this is an early result, it is still unclear why prediction goes up as much as it does when

we filter by count. It is possible that the high count words are simply better estimated

than lower count words, and so are more accurately predicted. Or, it is possible that higher

count words are more sensitive to spatial usage patterns. It is also possible, however, that

filtering is introducing a subtle confound to the regression model. This is an interesting

area for further research. For the remainder of this section, however, I focus on prediction

over the full set of 658 words with no filtering.

If we take an existing known predictor, frequency (r = −0.35) and construct a regres-

sion model with frequency and KL-residual (r = −0.41) the correlation coefficient of this
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multivariate model is r = 0.50 (r2 = 0.25), showing that there is information in the spatial

distributions that is not contained in frequency, and that these two predictors together can

achieve a high correlation with AoA. Figure 4-11 shows the full prediction of this model

(linear fit of prediction vs. actual shown in red, diagonal shown in grey).

It is worth investigating the correlation with spatial features further, so I now again remove

frequency from the model in order to assess KL-residual on its own. The full prediction

for all 658 words is shown in Figure 4-11, as well as the best predicted half of the words

(r = 0.89) and the worst predicted half (r = 0.11).

Figure 4-11: KL-residual correlation with AoA

Words with usage patterns that differ more from the overall language patterns in the home

tend to be learned earlier by the child, and as Figure 4-11 shows, some words are much

more sensitive to this effect than others. Are these usage patterns driving the learning of

the word by the child? Or are they reflective of the process of word learning in the child,

a process that is driven by some other force? Language learning is a complex process, and

this is a difficult question to answer quantitatively, so one can only speculate and attempt

to provide evidence.

I will argue that a mix between the two is true - the learning of any particular word

by the child is driven primarily by practical goals and desires and what we see in the spatial

distributions is reflective of the caregivers’ use of the word in a child-directed way; and to a

lesser extent words that are spatially unusual are more readily learned by the child, perhaps

due to an effect like Bruner’s formats [2].
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The child has a need to communicate in order to get food, toys, and to socialize with

his caretakers, and these are some of the forces that drive his learning. His inherent inter-

ests are what cause him to learn words like “car” and “truck” earlier, while his desire to be

fed causes him to learn “mango” and “cookie.” This again is a system of loopy causality,

where the child’s goals are reflected in the actions of his caregivers, and the goals of the

caregivers are reflected in the actions of the child. We can simplify this system, though, and

say that a reason exists to learn a particular word, and because of the dynamic nature of the

interaction between caregiver and child, this reason is reflected in the way the word is used,

which manifests as a statistical difference in the spatial patterns around the use of the word.

Another way to think about this potential explanation is that a word might be used in

one of two ways - either in an “adult” way, or in a “child-centric” way. It is then reasonable

to think that the degree to which a word is used in a child-centric way would be correlated

with the age at which the child learns the word - words that are often directed at him

would be expected to be integrated into his vocabulary earlier. This argument rests on the

assumption that the use of a word in relation to the child is different (and furthermore is

different in a way that can be quantified using the methodologies described in this docu-

ment) from the way an otherwise similar word would be used between adults. If that were

not the case, then the spatial distribution of a word that the child learned would not differ

from that of a word the child did not learn.

As a crude test of this hypothesis, we can first make the assumption that the best estimate

of adult speech patterns comes from the child’s parents. The nanny spends significantly

more time alone with the child than either parent, and so uses language in a more child-

directed way. Visitors to the home are likely to use language in a way that both differs from

normal speech patterns and that is more likely to be directed at the child (when Grandma

comes over, for example, she is likely to spend significant time addressing the child). And,

of course, the child’s speech is a poor estimate of adult speech.

We can therefore construct a background distribution containing only the parents’ speech as
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a proxy for adult speech. If the correlation with KL-divergence is in fact measuring at least

in part the amount to which a word’s usage patterns are “child-centric,” we would expect

that effect to be amplified when KL-divergence is measured against this somewhat purer

adult speech background. And this is, in fact, what I found. When KL-divergence is com-

puted against the adult background (as opposed to the background representing all speech,

as was previously described), we see a correlation of r = −0.45 as opposed to r = −0.41

with the standard background. This is surely a crude test, but does provide a small amount

of evidence to support the notion that KL-divergence is encoding the “child-centric” use of

a particular word.

We can also probe this effect from the other direction. Take only the nanny’s utterances

for a given word and compare that distribution to the background, again assuming that

the nanny’s language use more closely resembles child-centric speech than any other’s. If

the nanny’s speech is uniformly child-centric, then we would expect this comparison to

contain only the differences due to the latter effect described earlier - that is, the spatial

distributions reflect only the degree to which a word’s usage is unusual as a function of its

meaning, not the degree to which it is child-centric. If my original hypothesis holds, then

this correlation should be lower, and indeed it is with r = −0.22. Because this comparison

presumably does not contain variation due to child-centric use of words (it is all equally

child-centric) we would also expect a lower variance in the KL-divergences, which we also

see (σ = 0.42 vs. σ = 0.58 for the original KL-divergences). As before, this test provides a

small amount of evidence to support child-centricness as the primary piece of information

contained in KL-divergence, with spatial difference also correlated with AoA, but to a lesser

extent.

It is important to attempt to understand the forces guiding the child’s learning of words

beyond what is reflected in the spatial distributions, and a way to do this is to first look at

words that are predicted poorly by the model. First I’ll define the error metric by which I

measure how well the model predicts a word. Because words in the center of the range are

more likely to have lower prediction error (there is simply less room for a mistake), I nor-
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malize error by the maximum possible error, given a word’s true AoA. Error for predicted

age of acquisition AoAp in relation to actual age of acquisition AoAa is therefore:

ε =
abs(AoAp−AoAa)

max(AoAa−min(AoAa),max(AoA)−AoAa)

If we look at the two words that are predicted most poorly by KL-divergence, “pee” and

“diaper,” we can get some idea about these forces. These words are highly localized in their

usage and have high KL values and so are predicted to be learned early by the child. These

words are presumably uninteresting to the child, however, and are unlikely to be encour-

aged by the caregivers and as a result were learned much later than predicted. Similarly,

“maybe” is predicted by this model to be learned late (it is used in a way that resembles

all speech) but it is in fact learned earlier. This is possibly because the word is useful to

the child, garnering his interest. Likewise, “dad” is predicted by the model to be learned

much later than it was actually learned, presumably because this word is quite important

to the child (as with many children, “dad” was the first word learned by this child). These

cases all provide evidence that there is some other force (i.e. interest) guiding the child’s

acquisition of words, and that the spatial distributions reflect the ways in which words are

used around the child, but are wrong in cases where the child’s interest level (either high

or low) is incongruous with how the word is used.

Figure 4-12: Prediction error vs. actual age of acquisition

Figure 4-12 shows that on average, words that were learned earlier are more poorly pre-

dicted by the model. This implies that there is some other motive for learning these words

that is transparent to this model - there is no evidence from the way the word is used that
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it should be learned as early as it is actually learned yet the child’s interest acts as a force

for word learning.

One might further argue that words that are learned later are less subject to the child’s

interest as a force for learning, since the child’s vocabulary is broader and communication is

easier for him as he gets older - he has less of an intense need to learn new words, therefore

other forces drive his learning more. These other forces would include spatial usage pat-

terns (whether due to semantic needs, child-centric usage, or other effects), implying that

spatial statistics would better predict words that were learned later, which is in fact what

we observe.

As a final window into these forces, it might be useful to examine words that the child

did not learn by 24 months. The words “microwave,” “appointment,” and “quarter” are all

words that appear to be uninteresting to a child. They all have relatively high KL values

however (1.02, 1.10, and 1.13, respectively), and would be predicted by the model to be

learned at approximately 16 months in all cases. Because of the lack of appeal to the child,

however, none were learned before 24 months.

We have seen that there is some force that is influencing the child’s learning of various

words beyond what can be seen in spatial or linguistic properties. This force is presumably

practical - regardless of where, how, or how often a word is used, the child’s desire to learn

that word exists on an independent gradated scale. These other factors (frequency, spatial

properties, etc) likely have some influence, but these other forces must be taken into con-

sideration when attempting to understand language acquisition. It also appears likely that

KL-divergence, or the degree to which a distribution differs from overall speech patterns,

contains information about how a word is used in relation to the child. There is possibly

some effect of these spatial properties influencing learning, but it is likely that a large part

of the correlation we see is not causal, but a secondary effect.
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Chapter 5

Conclusions

5.1 Contributions of This Work

This work represents the first ever large scale, comprehensive look at movement patterns

and language use in daily life in a natural setting. In it, I showed how to construct a large

multi-modal dataset from raw video and audio, developing scalable algorithms for various

aspects of processing. Most notably, I developed a system to perform accurate, efficient

person tracking, and data structures for aggregating, visualizing and analyzing tracker out-

put in relation to other modalities.

This work showed that spatial properties of language use conveys information about the

participants, the activities in which language is embedded, and in some cases the meanings

of the words. With a suitable roadmap based on visualization and descriptive statistics, one

can test hypotheses, formulate new questions, and derive meaningful insights and numerical

results from this dataset. It was shown that not only are the spatial properties of language

use relevant in the ways we might expect, but that more subtle information is lurking just

beneath the surface as well.
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5.2 Future Directions

There are many sources of potential error in the methods described here. Most notably,

tracking people in video is a difficult problem and the person tracks produced by 2C are

imperfect. While algorithms exist that can produce more accurate tracks, these algorithms

are too computationally expensive to be applicable to this corpus. As machine vision pro-

gresses and hardware speeds increase, however, we can expect the bar to be raised in terms

of what is possible at scale.

The added precision of more accurate tracking might improve the results described here,

but could also open up new research directions that are currently impossible - following

subjects for long periods, for example, could lead to new insights into sequences of behavior

and longer causal chains in regards to language use.

Another important source of error in this work comes from speaker identification. If speaker

ID were perfect, for example, age of acquisition would not be a source of potential error

- rather than implementing an algorithm to derive age of acquisition, we could just query

the database. A worthwhile goal to pursue would be deriving accurate identification from

video data (perhaps in a multi-modal system that integrates information derived from audio

as well). With accurate person identification based on both audio and video, a researcher

would have the ability to study in detail and at large scale the interaction patterns between

people both in relation to language and not, again with the ability to understand long causal

chains and complex dependencies.

Many of the insights discussed in the Exploration and Analysis chapter would be fertile

ground for further research. For example, the simple clustering scheme I described is only a

very coarse view of the way in which words relate to each other spatially. More sophisticated

methods were explored, but not developed fully and it isn’t difficult to imagine that a more

comprehensive approach might be developed that groups words in even more interesting,

salient ways.
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This thesis leaves many compelling questions unanswered. For example, how does the

child’s language use change over time? Can we see how his comprehension increases after a

word is learned from the spatial properties of his use of that word? How do the movement

patterns of one individual relate to those of any other individual, and do those relationships

provide insights into language use?

A strong consideration in many of the design choices I’ve made was that the dataset and

methodology be general enough to be usable by others in relation to the research directions

described above as well as in pursuit of goals that I’ve not thought of. My time with the

Human Speechome Project has ended, but it is my hope that this work provides a firm

foothold for future researchers working on the project.
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Appendix A

Data for Target Words

This appendix gives quantitative data for each of the 658 words that were in the child’s

vocabulary by the age of two. All data is for the learning period of the word - that is, the

period before the child’s first production of the word. Data given is age of acquisition in

months, the number of utterances containing this word, the number of location points in the

spatial distribution for the word, the KL-divergence (normalized) of the spatial distribution,

and the Ripley’s K value (normalized) of the spatial distribution.
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Table A.1: Data for words in the child’s vocabulary

word AoA Utterances Points KL(P,Q) RK(Q)

a 15.624 13,566 16,295 0.752 0.326

aboard 17.646 69 105 0.367 0.476

about 16.458 1,439 1,929 0.168 0.261

accident 20.410 76 108 0.330 0.499

after 15.456 293 368 0.173 0.326

again 20.313 2,566 3,216 0.316 0.377

air 21.710 192 239 0.323 0.256

airplane 17.548 170 234 0.303 0.239

album 20.814 11 12 0.273 0.307

[name 1] 19.956 6 10 0.368 0.563

[nanny name] 15.456 407 495 0.326 0.363

all 11.642 994 1,183 0.550 0.436

alligator 18.242 36 42 0.333 0.590

alright 19.380 1,841 2,461 0.353 0.426

am 20.342 698 846 0.466 0.384

ambulance 21.523 324 371 0.394 0.457

an 23.755 1,830 2,331 0.150 0.351

and 11.025 2,998 3,369 0.974 0.541

animal 19.543 373 428 0.405 0.474

another 22.710 1,237 1,582 0.122 0.241

ant 22.978 34 36 0.521 0.159

any 16.056 796 1,014 0.302 0.558

anything 16.056 462 606 0.244 0.366

apple 15.313 155 178 0.437 0.583

are 14.986 6,846 7,960 0.667 0.525

around 20.718 1,108 1,522 0.184 0.284

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

as 18.524 1,134 1,511 0.276 0.292

ask 23.876 715 815 0.235 0.159

at 21.708 6,736 8,848 0.162 0.345

ate 25.489 888 1,124 0.276 0.510

away 22.942 2,218 2,819 0.142 0.167

awesome 21.226 61 78 0.236 0.300

baa 11.083 176 190 0.672 0.369

baba 14.977 24 31 0.376 0.537

baby 15.756 1,524 1,742 0.625 0.422

back 14.453 887 1,115 0.306 0.329

bad 17.557 598 819 0.174 0.252

bag 17.695 161 227 0.203 0.154

bagel 21.344 48 92 0.483 0.504

ball 12.925 411 512 0.649 0.612

balloon 17.714 287 341 0.473 0.328

bambi 18.579 51 64 0.632 0.640

banana 20.313 490 712 0.435 0.612

barney 18.944 335 379 0.804 0.987

basket 20.215 165 208 0.542 0.306

basketball 20.890 94 139 0.496 0.554

bath 16.562 375 471 0.502 0.365

bathroom 18.754 124 183 0.349 0.383

be 16.864 3,538 4,868 0.195 0.370

beach 23.512 133 131 0.396 0.155

bear 14.555 430 440 0.850 0.515

beautiful 21.211 567 676 0.303 0.385

because 10.645 88 111 0.443 0.354

bed 18.514 454 569 0.513 0.241

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

bee 17.578 181 191 0.413 0.211

been 11.325 186 230 0.313 0.302

beep 22.388 236 319 0.256 0.447

before 16.449 501 687 0.156 0.343

beginning 20.147 92 118 0.175 0.323

behind 24.945 279 330 0.236 0.287

being 19.923 467 607 0.145 0.292

bell 16.883 80 83 0.447 0.185

better 15.727 391 509 0.098 0.297

bib 19.913 91 128 0.523 0.569

bicycle 18.514 272 315 0.519 0.220

big 17.549 1,936 2,554 0.277 0.342

bird 16.717 779 858 0.549 0.285

bit 21.140 1,373 1,963 0.348 0.388

bite 20.813 574 766 0.559 0.590

black 17.953 1,120 1,365 0.528 0.331

blanket 13.159 16 18 0.400 0.290

blue 16.043 463 497 0.565 0.226

boat 16.847 351 438 0.622 0.571

body 20.980 143 165 0.301 0.303

boo 15.490 182 219 0.354 0.328

booger 17.695 73 100 0.298 0.253

book 14.978 716 807 0.710 0.390

boom 16.153 166 209 0.308 0.327

bottle 19.643 374 524 0.171 0.380

bounce 19.479 70 99 0.337 0.608

bowl 22.957 255 309 0.339 0.384

box 19.449 297 367 0.439 0.293

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

boy 14.818 914 1,121 0.321 0.351

bread 14.986 106 149 0.397 0.407

break 19.445 306 393 0.091 0.192

breakfast 18.977 176 283 0.288 0.346

bridge 19.612 38 50 0.224 0.455

bring 23.187 1,189 1,642 0.391 0.316

broke 20.409 249 334 0.186 0.370

brother 19.693 106 139 0.276 0.218

brown 16.747 256 269 0.427 0.386

brush 16.447 140 163 0.455 0.388

bubble 15.189 48 59 0.317 0.277

buddy 21.224 136 192 0.165 0.208

bug 17.048 145 183 0.268 0.324

bum 17.552 64 78 0.200 0.240

bump 16.755 139 168 0.575 0.334

bun 16.594 60 71 0.571 0.618

bunny 18.580 220 241 0.606 0.271

burp 24.828 247 320 0.188 0.209

bus 14.687 76 89 0.442 0.431

but 14.515 1,785 2,230 0.400 0.334

butter 23.311 184 244 0.446 0.689

butterfly 18.747 256 261 0.460 0.302

button 13.290 97 101 0.340 0.390

by 19.923 1,061 1,398 0.206 0.365

bye 15.024 1,049 1,190 0.460 0.438

cake 20.815 269 336 0.351 0.362

call 21.358 1,031 1,357 0.286 0.339

came 19.579 1,203 1,368 0.436 0.222

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

camel 18.579 62 63 0.662 0.426

camera 16.152 102 134 0.505 0.266

can 20.916 9,810 13,717 0.175 0.435

car 12.918 479 540 0.763 0.394

careful 20.244 687 895 0.262 0.249

carpet 20.858 11 13 0.574 0

carrot 18.747 101 127 0.416 0.732

cat 14.708 667 684 0.755 0.183

catch 18.513 248 347 0.595 0.558

cause 19.945 1,168 1,676 0.266 0.474

cell 21.942 136 194 0.155 0.422

cereal 19.419 328 437 0.380 0.584

chair 14.978 213 277 0.359 0.219

change 18.790 1,204 1,629 0.724 0.503

chase 19.693 65 91 0.309 0.184

check 20.275 382 535 0.257 0.247

cheerios 21.843 24 11 0.104 0.498

cheese 19.481 429 597 0.499 0.570

cherries 21.654 54 72 0.450 0.555

chew 17.727 177 219 0.488 0.696

chick 18.546 98 122 0.416 0.187

chicken 19.454 732 1,006 0.354 0.543

chip 16.858 120 154 0.277 0.341

chocolate 20.484 146 210 0.206 0.575

choo 18.811 404 453 0.544 0.424

chug 25.124 99 106 0.274 0.280

circle 16.745 225 260 0.372 0.517

circus 17.924 36 47 0.378 0.433

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

clam 20.313 44 49 0.733 0.240

clean 18.762 1,066 1,360 0.453 0.339

climb 20.483 122 155 0.342 0.410

clock 17.490 319 370 0.513 0.355

close 18.793 635 782 0.325 0.270

cloth 19.447 85 103 0.377 0.363

clothes 18.793 366 482 0.592 0.417

coffee 17.646 181 294 0.439 0.528

cold 21.310 660 861 0.224 0.309

color 16.649 322 376 0.380 0.205

comb 17.778 68 70 0.580 0.445

come 15.625 5,455 6,812 0.730 0.519

computer 20.712 169 241 0.324 0.381

cook 21.411 159 218 0.305 0.252

cookie 17.588 311 413 0.480 0.539

cool 15.716 466 536 0.336 0.279

couch 21.140 150 226 0.522 0.680

could 17.692 985 1,269 0.437 0.251

cow 16.045 1,014 1,056 0.859 0.408

crab 17.644 27 33 0.436 0.470

cracker 20.156 99 141 0.331 0.523

crayon 22.677 40 38 0.450 0.511

crazy 20.019 1,215 1,580 0.259 0.365

cream 20.180 1,056 1,373 0.507 0.303

crib 18.444 128 158 0.500 0.346

cry 17.148 598 723 0.410 0.421

cup 15.590 238 289 0.419 0.474

cut 17.490 252 354 0.283 0.347

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

cute 18.747 371 493 0.111 0.300

dad 9.486 27 31 0.627 0.593

dame 21.140 206 243 0.605 0.072

dark 18.059 177 203 0.606 0.147

[child name] 10.558 1,166 1,358 0.665 0.406

day 16.494 906 1,203 0.177 0.483

dear 21.081 154 202 0.209 0.225

deer 18.714 23 33 0.395 0.300

diamond 19.844 88 89 0.435 0.310

diaper 17.547 1,044 1,323 0.957 0.564

did 19.946 5,945 8,115 0.169 0.443

ding 20.942 127 153 0.280 0.137

dinner 21.418 754 1,025 0.397 0.351

dinosaur 19.512 82 94 0.498 0.440

dirty 18.715 253 335 0.472 0.297

dish 20.083 316 364 0.510 0.407

do 13.753 4,122 4,919 0.601 0.550

doctor 19.446 168 234 0.146 0.317

does 23.755 3,743 4,481 0.356 0.437

dog 16.058 1,405 1,476 0.701 0.428

doing 20.410 2,965 3,943 0.024 0.233

dolphin 21.411 133 155 0.372 0.405

done 11.642 327 420 0.293 0.348

donkey 19.420 26 31 0.097 0.455

door 16.784 158 191 0.447 0.195

dough 22.258 78 69 0.268 0.509

down 14.986 1,350 1,621 0.375 0.392

downstairs 19.682 316 462 0.348 0.366

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

draw 17.448 154 216 0.417 0.718

drink 19.844 866 1,208 0.269 0.490

driving 23.416 812 949 0.404 0.219

drum 17.548 127 156 0.457 0.243

dry 19.343 162 215 0.255 0.236

duck 11.276 79 81 0.703 0.237

dude 16.082 2,145 2,459 0.701 0.524

dump 17.957 65 93 0.186 0.489

eat 19.448 4,662 6,311 0.641 0.767

elephant 17.744 221 264 0.388 0.277

[sister name] 21.285 8 11 0.343 0.083

elmo 18.746 71 78 0.464 0.340

else 19.477 849 1,137 0.168 0.344

empty 19.356 141 183 0.344 0.361

end 20.441 392 553 0.276 0.341

engine 18.789 66 83 0.200 0.272

enough 21.523 1,056 1,380 0.261 0.209

eye 14.593 305 329 0.567 0.276

face 19.947 629 800 0.116 0.226

fall 16.422 297 373 0.273 0.130

fan 16.645 40 54 0.347 0.230

far 25.141 542 617 0.228 0.151

fast 20.044 421 520 0.342 0.244

feel 17.551 510 698 0.085 0.201

fell 20.422 547 687 0.154 0.272

find 19.347 1,321 1,628 0.191 0.236

fine 20.879 799 1,146 0.056 0.261

finger 18.844 157 196 0.201 0.326

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

finish 20.157 552 748 0.469 0.464

fire 17.953 312 386 0.388 0.417

firetruck 18.243 13 16 0.403 0.435

first 16.111 513 662 0.180 0.266

fish 9.608 66 92 0.727 0.448

five 17.560 1,688 2,056 0.315 0.456

fix 21.743 156 225 0.312 0.417

floor 14.986 113 149 0.322 0.312

flower 16.117 682 685 0.746 0.200

fly 17.980 252 313 0.416 0.479

fold 21.345 64 86 0.399 0.337

food 19.976 788 1,074 0.297 0.525

for 15.389 3,757 4,845 0.333 0.343

found 20.376 505 678 0.193 0.272

four 18.810 1,753 2,165 0.313 0.333

fox 18.481 179 193 0.763 0.353

fresh 21.708 165 241 0.228 0.173

friday 19.681 170 231 0.334 0.411

frog 16.578 663 704 0.609 0.357

from 10.660 141 162 0.346 0.299

full 20.984 1,103 1,349 0.497 0.425

fun 21.423 925 1,116 0.149 0.365

funny 17.978 425 556 0.149 0.213

garage 18.759 61 82 0.401 0.299

garbage 18.745 107 164 0.331 0.222

[name 2] 18.514 32 52 0.284 0.491

get 14.986 2,705 3,422 0.288 0.398

gimme 24.376 184 222 0.189 0.224

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

giraffe 18.359 139 152 0.396 0.361

girl 18.715 189 228 0.426 0.222

give 22.677 3,863 5,089 0.059 0.351

glasses 17.056 87 127 0.371 0.132

glider 22.451 19 35 0.276 0.461

go 14.985 6,104 7,439 0.570 0.486

god 19.421 698 978 0.172 0.335

gone 13.744 181 233 0.337 0.381

gonna 21.410 6,219 8,239 0.213 0.353

good 16.293 4,638 5,798 0.509 0.318

goodbye 17.678 200 234 0.410 0.564

goodness 22.344 676 817 0.294 0.254

goodnight 21.743 280 291 0.863 0.419

got 20.814 3,178 4,495 0.123 0.279

grape 18.457 90 118 0.387 0.585

gray 17.648 41 58 0.082 0.456

great 20.142 357 517 0.038 0.349

green 17.646 743 907 0.576 0.195

guava 18.349 21 31 0.285 0.594

gum 17.655 32 38 0.367 0.491

had 17.782 2,449 3,360 0.412 0.560

hair 17.512 265 304 0.383 0.272

hammer 21.789 32 42 0.390 0.779

hand 17.912 899 1,128 0.224 0.265

happened 21.178 1,175 1,589 0.119 0.334

happy 18.111 582 744 0.410 0.158

hard 20.813 679 928 0.128 0.238

has 24.379 2,291 2,782 0.049 0.284

Continued on next page
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word AoA Utterances Points KL(P,Q) RK(Q)

hat 16.914 239 244 0.718 0.235

have 14.986 3,181 4,046 0.304 0.433

he 22.414 17,604 23,877 0.467 0.309

head 19.453 553 696 0.203 0.298

hear 24.060 1,133 1,295 0.189 0.136

heard 23.429 373 478 0.100 0.381

heart 16.848 208 228 0.478 0.250

helicopter 17.981 66 78 0.297 0.285

hello 16.758 1,177 1,430 0.335 0.310

help 17.723 641 871 0.268 0.205

her 22.415 2,590 3,234 0.360 0.226

here 13.584 3,422 4,106 0.621 0.360

hey 11.710 1,114 1,354 0.471 0.477

hi 12.662 917 1,112 0.565 0.424

hide 20.313 371 487 0.234 0.423

high 17.659 693 786 0.379 0.330

him 16.459 2,842 4,015 0.250 0.304

his 20.507 4,728 6,396 0.284 0.313

hit 20.341 226 315 0.210 0.436

hockey 19.347 9 17 0.172 0.496

hold 18.524 1,165 1,486 0.267 0.368

home 19.909 906 1,241 0.319 0.391

honey 19.678 287 379 0.210 0.360

hop 25.179 130 155 0.236 0.149

horse 18.812 849 946 0.594 0.246

hot 16.795 321 452 0.251 0.368

house 15.712 452 510 0.679 0.361

how 17.794 3,999 5,279 0.250 0.297

Continued on next page

112



word AoA Utterances Points KL(P,Q) RK(Q)

hug 19.914 279 361 0.414 0.345

hungry 16.328 576 722 0.377 0.350

hurt 22.388 611 739 0.149 0.298

i 10.959 2,683 3,307 0.770 0.519

ice 18.122 764 966 0.549 0.531

if 14.986 1,365 1,798 0.307 0.451

in 19.454 14,265 18,929 0.460 0.396

inside 19.976 450 585 0.117 0.204

is 13.185 5,495 6,210 0.881 0.494

it 11.725 3,975 4,963 0.497 0.449

jeans 21.312 40 37 0.403 0.448

jeep 25.212 18 12 0.450 0.503

job 17.446 1,497 1,716 0.501 0.398

joy 17.113 566 853 0.256 0.375

juice 16.688 347 473 0.604 0.782

jump 18.851 243 309 0.432 0.208

just 15.291 3,344 4,417 0.318 0.434

keep 19.353 686 934 0.047 0.292

key 17.718 116 148 0.291 0.177

kick 16.111 58 90 0.438 0.193

kid 20.151 610 842 0.176 0.357

kiss 19.410 815 964 0.434 0.338

kitchen 20.313 204 308 0.238 0.190

kite 20.873 50 62 0.474 0.609

know 15.578 3,891 5,061 0.287 0.428

lamp 20.916 55 59 0.547 0.367

lane 16.250 110 129 0.435 0.213

last 17.695 715 1,018 0.179 0.380
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later 23.326 701 910 0.217 0.179

laundry 18.714 76 106 0.405 0.340

let 19.922 1,715 2,364 0 0.287

letters 22.415 125 135 0.337 0.193

lie 23.478 235 240 0.456 0.244

light 16.694 535 631 0.639 0.268

like 15.713 5,929 7,586 0.519 0.397

lion 18.261 204 255 0.187 0.299

listen 14.520 321 363 0.472 0.455

little 20.816 7,280 9,296 0.410 0.332

living 21.522 147 199 0.286 0.166

long 16.579 531 734 0.118 0.286

look 15.259 4,254 4,920 0.703 0.414

lots 21.016 427 522 0.164 0.223

love 20.410 1,742 2,163 0.290 0.390

mad 21.154 188 249 0.168 0.205

make 20.423 2,872 4,118 0.221 0.435

man 20.875 1,960 2,472 0.295 0.313

mango 16.494 392 491 0.671 0.784

many 23.512 1,956 2,292 0.316 0.088

matter 21.219 220 317 0.062 0.262

maybe 16.494 841 1,176 0.223 0.513

mcdonald 20.775 221 265 0.600 0.860

me 14.523 3,546 4,154 0.550 0.477

mean 19.976 1,325 1,894 0.215 0.373

medicine 19.611 259 362 0.329 0.428

meow 14.443 157 159 0.432 0.285

milk 16.527 966 1,274 0.468 0.565
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mine 17.122 258 360 0.214 0.381

mix 20.979 212 261 0.300 0.500

mobile 23.275 16 18 0.399 0.232

mom 13.124 827 956 0.623 0.368

monday 20.245 151 192 0.293 0.380

money 19.679 125 169 0.239 0.419

monkey 16.580 1,050 1,252 0.401 0.443

moo 13.517 158 167 0.646 1

moon 15.175 428 410 0.813 0.731

moose 24.278 21 11 0.320 0.498

more 13.159 1,231 1,449 0.434 0.484

morning 16.121 497 647 0.337 0.366

mouse 17.678 740 791 0.612 0.360

mouth 18.110 1,514 1,859 0.596 0.531

move 19.976 710 913 0.124 0.343

much 17.657 1,268 1,782 0.198 0.356

music 21.051 468 551 0.447 0.442

my 13.290 1,275 1,513 0.408 0.319

nap 24.084 362 445 0.231 0.242

neat 19.919 94 113 0.235 0.462

need 21.889 2,230 3,017 0.029 0.293

neigh 15.755 121 129 0.285 0.359

nemo 18.579 95 112 0.408 0.626

new 20.441 1,101 1,481 0.254 0.381

next 11.743 120 145 0.296 0.307

nice 19.678 3,009 3,830 0.196 0.413

nicely 21.360 636 723 0.267 0.212

night 10.862 90 94 0.546 0.487
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nine 23.756 875 1,014 0.302 0.229

no 11.326 1,671 1,977 0.597 0.381

nose 18.146 661 747 0.466 0.297

not 14.986 3,467 4,157 0.585 0.224

now 19.920 5,746 7,772 0.112 0.344

number 21.523 947 1,134 0.603 0.491

octopus 19.543 124 135 0.577 0.508

of 19.946 10,327 13,853 0.428 0.438

off 16.577 1,007 1,312 0.291 0.378

oh 9.955 360 458 0.474 0.400

oil 19.447 174 241 0.369 0.378

ok 9.952 439 546 0.508 0.357

old 19.393 1,215 1,481 0.680 0.879

on 10.314 1,130 1,299 0.739 0.375

one 14.710 4,684 5,397 0.620 0.326

only 15.748 486 639 0.193 0.405

open 16.480 904 1,098 0.470 0.246

or 16.655 2,551 3,450 0.279 0.345

orange 16.913 376 500 0.350 0.390

other 19.093 1,490 2,031 0.092 0.415

ouch 16.795 71 84 0.236 0.208

our 21.708 1,490 1,853 0.216 0.271

out 15.056 2,012 2,393 0.401 0.509

outside 19.309 531 727 0.364 0.303

over 21.052 2,367 3,018 0.283 0.469

owl 17.744 108 137 0.356 0.187

pajamas 19.455 63 77 0.385 0.296

pancakes 21.975 69 82 0.358 0.548
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panda 20.313 110 118 0.523 0.225

pants 16.861 335 392 0.607 0.261

papa 16.912 144 144 0.900 0.248

paper 20.716 202 287 0.225 0.373

park 19.943 95 123 0.278 0.307

party 21.654 164 228 0.209 0.232

pasta 20.181 197 268 0.470 0.490

pea 17.892 327 446 0.666 0.618

pear 19.392 218 293 0.471 0.725

pee 17.513 388 437 0.952 0.554

peek 16.179 93 116 0.386 0.224

pen 16.987 323 447 0.534 0.909

people 25.186 1,321 1,594 0.240 0.326

phone 16.625 328 436 0.236 0.425

pick 19.309 626 823 0.143 0.241

picture 18.445 566 692 0.294 0.403

pie 17.877 273 333 0.675 0.395

piece 22.258 523 714 0.484 0.464

pig 18.146 1,202 1,456 0.437 0.578

pillow 20.441 118 141 0.570 0.273

pink 17.493 158 163 0.396 0.364

pizza 20.156 140 239 0.413 0.545

plane 17.460 137 197 0.395 0.266

plate 21.975 108 169 0.365 0.477

play 19.145 2,712 3,685 0.263 0.455

please 16.456 596 733 0.282 0.576

plum 19.456 104 126 0.388 0.265

police 19.643 144 157 0.493 0.340
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poop 17.481 625 803 0.604 0.385

pop 17.556 246 279 0.365 0.294

potato 18.747 207 274 0.464 0.534

press 21.775 1,446 1,597 0.928 0.325

pretty 20.411 1,009 1,316 0.131 0.284

prince 20.814 66 95 0.380 0.343

pull 23.310 594 683 0.280 0.187

puppy 17.714 91 98 0.475 0.255

purple 16.795 238 240 0.412 0.357

push 16.694 521 658 0.412 0.465

put 20.376 6,320 8,705 0.302 0.341

puzzle 15.456 17 25 0.332 0.333

race 20.388 225 284 0.512 0.460

racecar 23.873 13 18 0.152 0.538

rain 19.448 571 619 0.537 0.313

rainbow 23.923 233 229 0.439 0.143

raining 19.448 571 619 0.537 0.313

read 22.142 1,447 1,813 0.413 0.443

ready 18.853 1,768 2,283 0.302 0.366

really 21.178 2,881 3,940 0.173 0.294

red 18.412 1,369 1,627 0.323 0.209

remember 20.877 855 1,178 0.152 0.327

rice 19.924 185 293 0.507 0.498

ride 25.186 244 242 0.271 0.297

right 16.194 4,460 5,641 0.328 0.389

robot 20.153 55 66 0.326 0.464

rock 17.659 112 144 0.389 0.216

room 20.154 509 705 0.293 0.220
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round 20.942 1,599 1,882 0.879 0.623

run 18.714 460 618 0.291 0.158

[mother name] 17.525 654 1,063 0.282 0.351

said 16.645 1,461 1,815 0.475 0.202

salad 23.324 143 224 0.376 0.314

sandals 19.946 6 11 0.371 0.527

sandwich 23.809 100 135 0.269 0.450

sara 23.414 47 56 0.382 0.361

saw 23.761 1,003 1,129 0.285 0.190

say 20.849 7,757 9,666 0.436 0.342

school 19.688 225 279 0.329 0.377

sea 18.812 387 417 0.974 0.357

seat 22.112 165 228 0.307 0.308

see 19.356 7,764 9,950 0.434 0.360

set 21.912 389 528 0.313 0.322

seven 17.691 709 860 0.186 0.417

shake 21.140 140 172 0.358 0.330

shark 18.010 48 69 0.368 0.303

she 20.845 2,847 3,973 0.440 0.358

sheep 15.389 954 1,042 0.624 0.407

shirt 16.882 240 325 0.331 0.355

shoe 16.624 274 354 0.379 0.343

should 14.986 716 897 0.193 0.311

show 19.481 2,128 2,619 0.339 0.280

shower 18.910 210 301 0.438 0.324

side 20.353 423 605 0.222 0.336

silver 20.190 70 77 0.438 0.360

sing 19.679 1,266 1,460 0.574 0.449
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sir 20.721 914 1,074 0.627 0.455

sit 18.812 1,817 2,474 0.280 0.325

six 22.756 1,237 1,580 0.264 0.511

skin 21.078 98 131 0.315 0.207

sky 17.678 691 754 0.702 0.462

sleep 17.597 1,243 1,534 0.712 0.335

small 10.961 53 64 0.437 0.370

snow 18.910 178 237 0.353 0.156

so 16.127 4,772 6,259 0.267 0.330

soap 21.683 41 46 0.382 0.215

soccer 20.044 38 48 0.397 0.452

socks 17.512 334 450 0.552 0.272

some 18.361 4,514 6,242 0.485 0.394

something 15.760 944 1,256 0.077 0.395

song 22.211 572 646 0.342 0.176

sorry 16.421 348 475 0.172 0.372

soup 21.314 260 316 0.430 0.617

spider 22.616 1,067 1,092 0.613 0.430

spoon 16.693 422 524 0.705 0.812

squirrel 19.254 41 45 0.456 0.225

stairs 19.682 31 44 0.091 0.243

stand 20.423 726 890 0.538 0.341

star 13.111 176 187 0.773 0.358

starfish 19.676 46 51 0.518 0.299

stay 20.388 525 707 0.257 0.336

stick 20.879 361 534 0.409 0.369

stop 21.912 1,543 1,885 0.239 0.293

store 20.710 281 389 0.311 0.289
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straw 19.445 59 77 0.323 0.557

strawberry 18.779 59 92 0.444 0.624

stuck 17.560 131 166 0.272 0.213

stuff 17.456 655 947 0.186 0.366

sugar 18.753 239 372 0.536 0.513

sun 14.986 517 560 0.678 0.509

sure 21.778 1,319 1,875 0.155 0.310

sweet 22.976 634 776 0.366 0.341

swimming 19.687 77 86 0.420 0.305

table 18.522 422 556 0.446 0.468

tail 20.352 198 206 0.565 0.161

take 20.108 3,105 4,421 0.173 0.327

talk 20.350 655 844 0.184 0.389

taste 20.719 510 702 0.612 0.700

taxi 18.344 30 35 0.407 0.245

tea 17.714 170 275 0.473 0.564

teddy 20.376 122 142 0.462 0.269

teeth 20.845 530 648 0.257 0.283

telephone 19.923 240 256 0.678 0.238

tell 17.912 790 1,035 0.069 0.259

ten 19.145 742 1,006 0.320 0.577

thank 15.647 449 531 0.253 0.450

that 14.515 7,863 9,650 0.465 0.479

the 10.314 2,883 3,101 1 0.476

them 14.986 1,257 1,433 0.903 0.281

then 14.986 1,665 2,077 0.363 0.368

there 16.113 4,868 5,855 0.469 0.247

these 23.289 2,174 2,732 0.065 0.190
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they 20.146 4,196 5,497 0.468 0.350

thing 22.744 4,526 6,078 0.229 0.267

think 20.441 4,798 6,934 0.340 0.389

this 14.445 6,034 7,208 0.689 0.374

thomas 21.352 54 38 0.483 0.634

those 22.909 1,967 2,585 0.149 0.131

though 22.760 1,037 1,407 0.082 0.316

three 16.191 2,083 2,366 0.515 0.388

through 16.421 516 598 0.412 0.264

throw 16.857 828 1,220 0.379 0.556

thumper 20.153 67 94 0.404 0.652

tickle 18.662 195 227 0.427 0.176

tiger 18.714 63 76 0.346 0.341

time 23.379 4,424 5,696 0.080 0.195

tiny 20.355 230 274 0.499 0.335

tired 20.441 570 727 0.201 0.323

to 13.876 7,304 8,944 0.566 0.460

today 17.648 1,588 2,362 0.151 0.439

toe 16.861 130 161 0.306 0.329

toes 16.861 130 161 0.306 0.329

together 24.075 680 817 0.178 0.315

tomorrow 16.527 305 462 0.281 0.476

tongue 17.547 187 207 0.410 0.208

too 20.376 2,913 4,043 0.107 0.560

toothbrush 18.458 35 47 0.407 0.274

toothpaste 20.720 46 66 0.400 0.690

top 22.677 455 589 0.174 0.292

touch 17.981 369 465 0.217 0.234
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towel 18.945 78 102 0.277 0.250

town 14.986 88 92 0.405 0.273

toy 19.348 713 983 0.334 0.360

track 17.514 86 104 0.300 0.326

tractor 19.387 84 98 0.440 0.480

train 15.546 408 427 0.676 0.323

tree 16.813 467 519 0.623 0.323

triangle 19.177 298 320 0.360 0.359

[name 3] 19.478 85 116 0.363 0.340

trouble 20.019 176 225 0.232 0.187

truck 14.811 732 854 0.722 0.593

true 14.175 49 58 0.300 0.180

trunk 17.687 24 30 0.382 0.054

try 20.815 3,018 4,075 0.339 0.322

tummy 19.909 90 113 0.338 0.651

tunnel 18.910 10 11 0.142 0.451

turn 23.287 2,269 2,550 0.664 0.315

turtle 18.386 302 311 0.742 0.466

tweet 20.341 48 60 0.238 0.594

twinkle 19.946 224 226 0.346 0.310

two 16.480 2,460 2,933 0.393 0.241

under 20.376 379 497 0.314 0.349

up 13.756 2,619 3,123 0.501 0.477

vaseline 20.179 67 91 0.608 0.356

very 20.978 2,005 2,806 0.099 0.352

vroom 15.490 135 155 0.298 0.337

wait 11.726 250 281 0.490 0.245

walk 18.679 968 1,297 0.479 0.374
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walrus 21.523 19 20 0.305 0.340

want 13.060 3,523 4,297 0.582 0.529

was 16.456 4,251 5,827 0.446 0.291

wash 19.354 341 470 0.389 0.350

watch 19.390 747 1,026 0.144 0.351

water 13.049 791 941 0.581 0.424

way 22.141 2,096 2,700 0.133 0.283

we 20.157 12,197 16,672 0.176 0.421

wear 21.912 422 493 0.652 0.420

well 17.658 1,424 2,069 0.202 0.383

were 20.157 12,197 16,672 0.176 0.421

wet 21.176 381 461 0.385 0.448

what 10.650 1,180 1,414 0.651 0.372

wheel 17.688 900 1,021 0.823 0.795

when 24.054 4,919 6,283 0.149 0.236

where 13.556 2,869 3,211 0.823 0.393

which 15.278 612 742 0.369 0.402

whine 17.457 53 60 0.396 0.418

whistle 21.342 109 127 0.449 0.294

white 17.695 375 462 0.404 0.217

who 20.391 2,996 3,823 0.292 0.359

why 16.524 1,821 2,367 0.176 0.256

will 16.160 1,044 1,314 0.558 0.455

windmill 22.249 11 26 0.214 0.523

window 19.446 223 272 0.422 0.367

wipe 21.708 288 381 0.257 0.321

with 20.341 7,689 10,402 0.331 0.381

wonder 20.084 319 389 0.241 0.268
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woof 17.980 296 321 0.472 0.246

wool 20.984 712 819 0.586 0.252

work 20.815 1,325 1,863 0.304 0.436

wormy 21.654 48 47 0.418 0.352

would 17.561 1,196 1,647 0.459 0.371

wow 15.154 1,440 1,712 0.393 0.415

wrong 18.745 692 914 0.078 0.321

yellow 18.061 869 1,013 0.360 0.381

yes 16.123 14,555 19,190 0.417 0.338

yet 15.248 193 243 0.155 0.227

yogurt 17.588 610 872 0.490 0.844

you 12.721 14,524 17,466 0.805 0.466

yuck 16.728 289 360 0.609 0.383

yum 18.661 1,147 1,450 0.750 0.891

zoo 16.791 119 139 0.717 0.339

zoom 21.541 104 154 0.238 0.422
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Appendix B

Visualizations for Target Words

This appendix provides visualizations for each of the 658 words in the child’s vocabulary

before the age of two. Visualizations are all based on the learning period of the word -

that is, the period before the child’s first production of the word. Each entry displays

the number of utterances the word appeared in, the age of acquisition in months, an icon

(in green - darker is lower value) denoting the relative value of Ripley’s K of the spatial

distribution for the word, an icon (in blue - darker is lower value) denoting the relative value

of KL-divergence of the spatial distribution for the word, and four visualizations: (1) heat

map with 100mm bins; (2) difference map with 100mm bins; (3) heat map with 1000mm

bins; (4) difference map with 1000mm bins.
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"a"    Utterances: 13,566    AoA: 15.6 "aboard"    Utterances: 69    AoA: 17.6

"about"    Utterances: 1,439    AoA: 16.5 "accident"    Utterances: 76    AoA: 20.4

"after"    Utterances: 293    AoA: 15.5 "again"    Utterances: 2,566    AoA: 20.3

"air"    Utterances: 192    AoA: 21.7 "airplane"    Utterances: 170    AoA: 17.5

"album"    Utterances: 11    AoA: 20.8 "[name 1]"    Utterances: 6    AoA: 20.0

"[nanny name]"    Utterances: 407    AoA: 15.5 "all"    Utterances: 994    AoA: 11.6

"alligator"    Utterances: 36    AoA: 18.2 "alright"    Utterances: 1,841    AoA: 19.4

"am"    Utterances: 698    AoA: 20.3 "ambulance"    Utterances: 324    AoA: 21.5

"an"    Utterances: 1,830    AoA: 23.8 "and"    Utterances: 2,998    AoA: 11.0

"animal"    Utterances: 373    AoA: 19.5 "another"    Utterances: 1,237    AoA: 22.7



"ant"    Utterances: 34    AoA: 23.0 "any"    Utterances: 796    AoA: 16.1

"anything"    Utterances: 462    AoA: 16.1 "apple"    Utterances: 155    AoA: 15.3

"are"    Utterances: 6,846    AoA: 15.0 "around"    Utterances: 1,108    AoA: 20.7

"as"    Utterances: 1,134    AoA: 18.5 "ask"    Utterances: 715    AoA: 23.9

"at"    Utterances: 6,736    AoA: 21.7 "ate"    Utterances: 888    AoA: 25.5

"away"    Utterances: 2,218    AoA: 22.9 "awesome"    Utterances: 61    AoA: 21.2

"baa"    Utterances: 176    AoA: 11.1 "baba"    Utterances: 24    AoA: 15.0

"baby"    Utterances: 1,524    AoA: 15.8 "back"    Utterances: 887    AoA: 14.5

"bad"    Utterances: 598    AoA: 17.6 "bag"    Utterances: 161    AoA: 17.7

"bagel"    Utterances: 48    AoA: 21.3 "ball"    Utterances: 411    AoA: 12.9



"balloon"    Utterances: 287    AoA: 17.7 "bambi"    Utterances: 51    AoA: 18.6

"banana"    Utterances: 490    AoA: 20.3 "barney"    Utterances: 335    AoA: 18.9

"basket"    Utterances: 165    AoA: 20.2 "basketball"    Utterances: 94    AoA: 20.9

"bath"    Utterances: 375    AoA: 16.6 "bathroom"    Utterances: 124    AoA: 18.8

"be"    Utterances: 3,538    AoA: 16.9 "beach"    Utterances: 133    AoA: 23.5

"bear"    Utterances: 430    AoA: 14.6 "beautiful"    Utterances: 567    AoA: 21.2

"because"    Utterances: 88    AoA: 10.6 "bed"    Utterances: 454    AoA: 18.5

"bee"    Utterances: 181    AoA: 17.6 "been"    Utterances: 186    AoA: 11.3

"beep"    Utterances: 236    AoA: 22.4 "before"    Utterances: 501    AoA: 16.4

"beginning"    Utterances: 92    AoA: 20.1 "behind"    Utterances: 279    AoA: 24.9



"being"    Utterances: 467    AoA: 19.9 "bell"    Utterances: 80    AoA: 16.9

"better"    Utterances: 391    AoA: 15.7 "bib"    Utterances: 91    AoA: 19.9

"bicycle"    Utterances: 272    AoA: 18.5 "big"    Utterances: 1,936    AoA: 17.5

"bird"    Utterances: 779    AoA: 16.7 "bit"    Utterances: 1,373    AoA: 21.1

"bite"    Utterances: 574    AoA: 20.8 "black"    Utterances: 1,120    AoA: 18.0

"blanket"    Utterances: 16    AoA: 13.2 "blue"    Utterances: 463    AoA: 16.0

"boat"    Utterances: 351    AoA: 16.8 "body"    Utterances: 143    AoA: 21.0

"boo"    Utterances: 182    AoA: 15.5 "booger"    Utterances: 73    AoA: 17.7

"book"    Utterances: 716    AoA: 15.0 "boom"    Utterances: 166    AoA: 16.2

"bottle"    Utterances: 374    AoA: 19.6 "bounce"    Utterances: 70    AoA: 19.5



"bowl"    Utterances: 255    AoA: 23.0 "box"    Utterances: 297    AoA: 19.4

"boy"    Utterances: 914    AoA: 14.8 "bread"    Utterances: 106    AoA: 15.0

"break"    Utterances: 306    AoA: 19.4 "breakfast"    Utterances: 176    AoA: 19.0

"bridge"    Utterances: 38    AoA: 19.6 "bring"    Utterances: 1,189    AoA: 23.2

"broke"    Utterances: 249    AoA: 20.4 "brother"    Utterances: 106    AoA: 19.7

"brown"    Utterances: 256    AoA: 16.7 "brush"    Utterances: 140    AoA: 16.4

"bubble"    Utterances: 48    AoA: 15.2 "buddy"    Utterances: 136    AoA: 21.2

"bug"    Utterances: 145    AoA: 17.0 "bum"    Utterances: 64    AoA: 17.6

"bump"    Utterances: 139    AoA: 16.8 "bun"    Utterances: 60    AoA: 16.6

"bunny"    Utterances: 220    AoA: 18.6 "burp"    Utterances: 247    AoA: 24.8



"bus"    Utterances: 76    AoA: 14.7 "but"    Utterances: 1,785    AoA: 14.5

"butter"    Utterances: 184    AoA: 23.3 "butterfly"    Utterances: 256    AoA: 18.7

"button"    Utterances: 97    AoA: 13.3 "by"    Utterances: 1,061    AoA: 19.9

"bye"    Utterances: 1,049    AoA: 15.0 "cake"    Utterances: 269    AoA: 20.8

"call"    Utterances: 1,031    AoA: 21.4 "came"    Utterances: 1,203    AoA: 19.6

"camel"    Utterances: 62    AoA: 18.6 "camera"    Utterances: 102    AoA: 16.2

"can"    Utterances: 9,810    AoA: 20.9 "car"    Utterances: 479    AoA: 12.9

"careful"    Utterances: 687    AoA: 20.2 "carpet"    Utterances: 11    AoA: 20.9

"carrot"    Utterances: 101    AoA: 18.7 "cat"    Utterances: 667    AoA: 14.7

"catch"    Utterances: 248    AoA: 18.5 "cause"    Utterances: 1,168    AoA: 19.9



"cell"    Utterances: 136    AoA: 21.9 "cereal"    Utterances: 328    AoA: 19.4

"chair"    Utterances: 213    AoA: 15.0 "change"    Utterances: 1,204    AoA: 18.8

"chase"    Utterances: 65    AoA: 19.7 "check"    Utterances: 382    AoA: 20.3

"cheerios"    Utterances: 24    AoA: 21.8 "cheese"    Utterances: 429    AoA: 19.5

"cherries"    Utterances: 54    AoA: 21.7 "chew"    Utterances: 177    AoA: 17.7

"chick"    Utterances: 98    AoA: 18.5 "chicken"    Utterances: 732    AoA: 19.5

"chip"    Utterances: 120    AoA: 16.9 "chocolate"    Utterances: 146    AoA: 20.5

"choo"    Utterances: 404    AoA: 18.8 "chug"    Utterances: 99    AoA: 25.1

"circle"    Utterances: 225    AoA: 16.7 "circus"    Utterances: 36    AoA: 17.9

"clam"    Utterances: 44    AoA: 20.3 "clean"    Utterances: 1,066    AoA: 18.8



"climb"    Utterances: 122    AoA: 20.5 "clock"    Utterances: 319    AoA: 17.5

"close"    Utterances: 635    AoA: 18.8 "cloth"    Utterances: 85    AoA: 19.4

"clothes"    Utterances: 366    AoA: 18.8 "coffee"    Utterances: 181    AoA: 17.6

"cold"    Utterances: 660    AoA: 21.3 "color"    Utterances: 322    AoA: 16.6

"comb"    Utterances: 68    AoA: 17.8 "come"    Utterances: 5,455    AoA: 15.6

"computer"    Utterances: 169    AoA: 20.7 "cook"    Utterances: 159    AoA: 21.4

"cookie"    Utterances: 311    AoA: 17.6 "cool"    Utterances: 466    AoA: 15.7

"couch"    Utterances: 150    AoA: 21.1 "could"    Utterances: 985    AoA: 17.7

"cow"    Utterances: 1,014    AoA: 16.0 "crab"    Utterances: 27    AoA: 17.6

"cracker"    Utterances: 99    AoA: 20.2 "crayon"    Utterances: 40    AoA: 22.7



"crazy"    Utterances: 1,215    AoA: 20.0 "cream"    Utterances: 1,056    AoA: 20.2

"crib"    Utterances: 128    AoA: 18.4 "cry"    Utterances: 598    AoA: 17.1

"cup"    Utterances: 238    AoA: 15.6 "cut"    Utterances: 252    AoA: 17.5

"cute"    Utterances: 371    AoA: 18.7 "dad"    Utterances: 27    AoA: 9.5

"dame"    Utterances: 206    AoA: 21.1 "dark"    Utterances: 177    AoA: 18.1

"[child name]"    Utterances: 1,166    AoA: 10.6 "day"    Utterances: 906    AoA: 16.5

"dear"    Utterances: 154    AoA: 21.1 "deer"    Utterances: 23    AoA: 18.7

"diamond"    Utterances: 88    AoA: 19.8 "diaper"    Utterances: 1,044    AoA: 17.5

"did"    Utterances: 5,945    AoA: 19.9 "ding"    Utterances: 127    AoA: 20.9

"dinner"    Utterances: 754    AoA: 21.4 "dinosaur"    Utterances: 82    AoA: 19.5



"dirty"    Utterances: 253    AoA: 18.7 "dish"    Utterances: 316    AoA: 20.1

"do"    Utterances: 4,122    AoA: 13.8 "doctor"    Utterances: 168    AoA: 19.4

"does"    Utterances: 3,743    AoA: 23.8 "dog"    Utterances: 1,405    AoA: 16.1

"doing"    Utterances: 2,965    AoA: 20.4 "dolphin"    Utterances: 133    AoA: 21.4

"done"    Utterances: 327    AoA: 11.6 "donkey"    Utterances: 26    AoA: 19.4

"door"    Utterances: 158    AoA: 16.8 "dough"    Utterances: 78    AoA: 22.3

"down"    Utterances: 1,350    AoA: 15.0 "downstairs"    Utterances: 316    AoA: 19.7

"draw"    Utterances: 154    AoA: 17.4 "drink"    Utterances: 866    AoA: 19.8

"driving"    Utterances: 812    AoA: 23.4 "drum"    Utterances: 127    AoA: 17.5

"dry"    Utterances: 162    AoA: 19.3 "duck"    Utterances: 79    AoA: 11.3



"dude"    Utterances: 2,145    AoA: 16.1 "dump"    Utterances: 65    AoA: 18.0

"eat"    Utterances: 4,662    AoA: 19.4 "elephant"    Utterances: 221    AoA: 17.7

"[sister name]"    Utterances: 8    AoA: 21.3 "elmo"    Utterances: 71    AoA: 18.7

"else"    Utterances: 849    AoA: 19.5 "empty"    Utterances: 141    AoA: 19.4

"end"    Utterances: 392    AoA: 20.4 "engine"    Utterances: 66    AoA: 18.8

"enough"    Utterances: 1,056    AoA: 21.5 "eye"    Utterances: 305    AoA: 14.6

"face"    Utterances: 629    AoA: 19.9 "fall"    Utterances: 297    AoA: 16.4

"fan"    Utterances: 40    AoA: 16.6 "far"    Utterances: 542    AoA: 25.1

"fast"    Utterances: 421    AoA: 20.0 "feel"    Utterances: 510    AoA: 17.6

"fell"    Utterances: 547    AoA: 20.4 "find"    Utterances: 1,321    AoA: 19.3



"fine"    Utterances: 799    AoA: 20.9 "finger"    Utterances: 157    AoA: 18.8

"finish"    Utterances: 552    AoA: 20.2 "fire"    Utterances: 312    AoA: 18.0

"firetruck"    Utterances: 13    AoA: 18.2 "first"    Utterances: 513    AoA: 16.1

"fish"    Utterances: 66    AoA: 9.6 "five"    Utterances: 1,688    AoA: 17.6

"fix"    Utterances: 156    AoA: 21.7 "floor"    Utterances: 113    AoA: 15.0

"flower"    Utterances: 682    AoA: 16.1 "fly"    Utterances: 252    AoA: 18.0

"fold"    Utterances: 64    AoA: 21.3 "food"    Utterances: 788    AoA: 20.0

"for"    Utterances: 3,757    AoA: 15.4 "found"    Utterances: 505    AoA: 20.4

"four"    Utterances: 1,753    AoA: 18.8 "fox"    Utterances: 179    AoA: 18.5

"fresh"    Utterances: 165    AoA: 21.7 "friday"    Utterances: 170    AoA: 19.7



"frog"    Utterances: 663    AoA: 16.6 "from"    Utterances: 141    AoA: 10.7

"full"    Utterances: 1,103    AoA: 21.0 "fun"    Utterances: 925    AoA: 21.4

"funny"    Utterances: 425    AoA: 18.0 "garage"    Utterances: 61    AoA: 18.8

"garbage"    Utterances: 107    AoA: 18.7 "[name 2]"    Utterances: 32    AoA: 18.5

"get"    Utterances: 2,705    AoA: 15.0 "gimme"    Utterances: 184    AoA: 24.4

"giraffe"    Utterances: 139    AoA: 18.4 "girl"    Utterances: 189    AoA: 18.7

"give"    Utterances: 3,863    AoA: 22.7 "glasses"    Utterances: 87    AoA: 17.1

"glider"    Utterances: 19    AoA: 22.5 "go"    Utterances: 6,104    AoA: 15.0

"god"    Utterances: 698    AoA: 19.4 "gone"    Utterances: 181    AoA: 13.7

"gonna"    Utterances: 6,219    AoA: 21.4 "good"    Utterances: 4,638    AoA: 16.3



"goodbye"    Utterances: 200    AoA: 17.7 "goodness"    Utterances: 676    AoA: 22.3

"goodnight"    Utterances: 280    AoA: 21.7 "got"    Utterances: 3,178    AoA: 20.8

"grape"    Utterances: 90    AoA: 18.5 "gray"    Utterances: 41    AoA: 17.6

"great"    Utterances: 357    AoA: 20.1 "green"    Utterances: 743    AoA: 17.6

"guava"    Utterances: 21    AoA: 18.3 "gum"    Utterances: 32    AoA: 17.7

"had"    Utterances: 2,449    AoA: 17.8 "hair"    Utterances: 265    AoA: 17.5

"hammer"    Utterances: 32    AoA: 21.8 "hand"    Utterances: 899    AoA: 17.9

"happened"    Utterances: 1,175    AoA: 21.2 "happy"    Utterances: 582    AoA: 18.1

"hard"    Utterances: 679    AoA: 20.8 "has"    Utterances: 2,291    AoA: 24.4

"hat"    Utterances: 239    AoA: 16.9 "have"    Utterances: 3,181    AoA: 15.0



"he"    Utterances: 17,604    AoA: 22.4 "head"    Utterances: 553    AoA: 19.5

"hear"    Utterances: 1,133    AoA: 24.1 "heard"    Utterances: 373    AoA: 23.4

"heart"    Utterances: 208    AoA: 16.8 "helicopter"    Utterances: 66    AoA: 18.0

"hello"    Utterances: 1,177    AoA: 16.8 "help"    Utterances: 641    AoA: 17.7

"her"    Utterances: 2,590    AoA: 22.4 "here"    Utterances: 3,422    AoA: 13.6

"hey"    Utterances: 1,114    AoA: 11.7 "hi"    Utterances: 917    AoA: 12.7

"hide"    Utterances: 371    AoA: 20.3 "high"    Utterances: 693    AoA: 17.7

"him"    Utterances: 2,842    AoA: 16.5 "his"    Utterances: 4,728    AoA: 20.5

"hit"    Utterances: 226    AoA: 20.3 "hockey"    Utterances: 9    AoA: 19.3

"hold"    Utterances: 1,165    AoA: 18.5 "home"    Utterances: 906    AoA: 19.9



"honey"    Utterances: 287    AoA: 19.7 "hop"    Utterances: 130    AoA: 25.2

"horse"    Utterances: 849    AoA: 18.8 "hot"    Utterances: 321    AoA: 16.8

"house"    Utterances: 452    AoA: 15.7 "how"    Utterances: 3,999    AoA: 17.8

"hug"    Utterances: 279    AoA: 19.9 "hungry"    Utterances: 576    AoA: 16.3

"hurt"    Utterances: 611    AoA: 22.4 "i"    Utterances: 2,683    AoA: 11.0

"ice"    Utterances: 764    AoA: 18.1 "if"    Utterances: 1,365    AoA: 15.0

"in"    Utterances: 14,265    AoA: 19.5 "inside"    Utterances: 450    AoA: 20.0

"is"    Utterances: 5,495    AoA: 13.2 "it"    Utterances: 3,975    AoA: 11.7

"jeans"    Utterances: 40    AoA: 21.3 "jeep"    Utterances: 18    AoA: 25.2

"job"    Utterances: 1,497    AoA: 17.4 "joy"    Utterances: 566    AoA: 17.1



"juice"    Utterances: 347    AoA: 16.7 "jump"    Utterances: 243    AoA: 18.9

"just"    Utterances: 3,344    AoA: 15.3 "keep"    Utterances: 686    AoA: 19.4

"key"    Utterances: 116    AoA: 17.7 "kick"    Utterances: 58    AoA: 16.1

"kid"    Utterances: 610    AoA: 20.2 "kiss"    Utterances: 815    AoA: 19.4

"kitchen"    Utterances: 204    AoA: 20.3 "kite"    Utterances: 50    AoA: 20.9

"know"    Utterances: 3,891    AoA: 15.6 "lamp"    Utterances: 55    AoA: 20.9

"lane"    Utterances: 110    AoA: 16.2 "last"    Utterances: 715    AoA: 17.7

"later"    Utterances: 701    AoA: 23.3 "laundry"    Utterances: 76    AoA: 18.7

"let"    Utterances: 1,715    AoA: 19.9 "letters"    Utterances: 125    AoA: 22.4

"lie"    Utterances: 235    AoA: 23.5 "light"    Utterances: 535    AoA: 16.7



"like"    Utterances: 5,929    AoA: 15.7 "lion"    Utterances: 204    AoA: 18.3

"listen"    Utterances: 321    AoA: 14.5 "little"    Utterances: 7,280    AoA: 20.8

"living"    Utterances: 147    AoA: 21.5 "long"    Utterances: 531    AoA: 16.6

"look"    Utterances: 4,254    AoA: 15.3 "lots"    Utterances: 427    AoA: 21.0

"love"    Utterances: 1,742    AoA: 20.4 "mad"    Utterances: 188    AoA: 21.2

"make"    Utterances: 2,872    AoA: 20.4 "man"    Utterances: 1,960    AoA: 20.9

"mango"    Utterances: 392    AoA: 16.5 "many"    Utterances: 1,956    AoA: 23.5

"matter"    Utterances: 220    AoA: 21.2 "maybe"    Utterances: 841    AoA: 16.5

"mcdonald"    Utterances: 221    AoA: 20.8 "me"    Utterances: 3,546    AoA: 14.5

"mean"    Utterances: 1,325    AoA: 20.0 "medicine"    Utterances: 259    AoA: 19.6



"meow"    Utterances: 157    AoA: 14.4 "milk"    Utterances: 966    AoA: 16.5

"mine"    Utterances: 258    AoA: 17.1 "mix"    Utterances: 212    AoA: 21.0

"mobile"    Utterances: 16    AoA: 23.3 "mom"    Utterances: 827    AoA: 13.1

"monday"    Utterances: 151    AoA: 20.2 "money"    Utterances: 125    AoA: 19.7

"monkey"    Utterances: 1,050    AoA: 16.6 "moo"    Utterances: 158    AoA: 13.5

"moon"    Utterances: 428    AoA: 15.2 "moose"    Utterances: 21    AoA: 24.3

"more"    Utterances: 1,231    AoA: 13.2 "morning"    Utterances: 497    AoA: 16.1

"mouse"    Utterances: 740    AoA: 17.7 "mouth"    Utterances: 1,514    AoA: 18.1

"move"    Utterances: 710    AoA: 20.0 "much"    Utterances: 1,268    AoA: 17.7

"music"    Utterances: 468    AoA: 21.1 "my"    Utterances: 1,275    AoA: 13.3



"nap"    Utterances: 362    AoA: 24.1 "neat"    Utterances: 94    AoA: 19.9

"need"    Utterances: 2,230    AoA: 21.9 "neigh"    Utterances: 121    AoA: 15.8

"nemo"    Utterances: 95    AoA: 18.6 "new"    Utterances: 1,101    AoA: 20.4

"next"    Utterances: 120    AoA: 11.7 "nice"    Utterances: 3,009    AoA: 19.7

"nicely"    Utterances: 636    AoA: 21.4 "night"    Utterances: 90    AoA: 10.9

"nine"    Utterances: 875    AoA: 23.8 "no"    Utterances: 1,671    AoA: 11.3

"nose"    Utterances: 661    AoA: 18.1 "not"    Utterances: 3,467    AoA: 15.0

"now"    Utterances: 5,746    AoA: 19.9 "number"    Utterances: 947    AoA: 21.5

"octopus"    Utterances: 124    AoA: 19.5 "of"    Utterances: 10,327    AoA: 19.9

"off"    Utterances: 1,007    AoA: 16.6 "oh"    Utterances: 360    AoA: 10.0



"oil"    Utterances: 174    AoA: 19.4 "ok"    Utterances: 439    AoA: 10.0

"old"    Utterances: 1,215    AoA: 19.4 "on"    Utterances: 1,130    AoA: 10.3

"one"    Utterances: 4,684    AoA: 14.7 "only"    Utterances: 486    AoA: 15.7

"open"    Utterances: 904    AoA: 16.5 "or"    Utterances: 2,551    AoA: 16.7

"orange"    Utterances: 376    AoA: 16.9 "other"    Utterances: 1,490    AoA: 19.1

"ouch"    Utterances: 71    AoA: 16.8 "our"    Utterances: 1,490    AoA: 21.7

"out"    Utterances: 2,012    AoA: 15.1 "outside"    Utterances: 531    AoA: 19.3

"over"    Utterances: 2,367    AoA: 21.1 "owl"    Utterances: 108    AoA: 17.7

"pajamas"    Utterances: 63    AoA: 19.5 "pancakes"    Utterances: 69    AoA: 22.0

"panda"    Utterances: 110    AoA: 20.3 "pants"    Utterances: 335    AoA: 16.9



"papa"    Utterances: 144    AoA: 16.9 "paper"    Utterances: 202    AoA: 20.7

"park"    Utterances: 95    AoA: 19.9 "party"    Utterances: 164    AoA: 21.7

"pasta"    Utterances: 197    AoA: 20.2 "pea"    Utterances: 327    AoA: 17.9

"pear"    Utterances: 218    AoA: 19.4 "pee"    Utterances: 388    AoA: 17.5

"peek"    Utterances: 93    AoA: 16.2 "pen"    Utterances: 323    AoA: 17.0

"people"    Utterances: 1,321    AoA: 25.2 "phone"    Utterances: 328    AoA: 16.6

"pick"    Utterances: 626    AoA: 19.3 "picture"    Utterances: 566    AoA: 18.4

"pie"    Utterances: 273    AoA: 17.9 "piece"    Utterances: 523    AoA: 22.3

"pig"    Utterances: 1,202    AoA: 18.1 "pillow"    Utterances: 118    AoA: 20.4

"pink"    Utterances: 158    AoA: 17.5 "pizza"    Utterances: 140    AoA: 20.2



"plane"    Utterances: 137    AoA: 17.5 "plate"    Utterances: 108    AoA: 22.0

"play"    Utterances: 2,712    AoA: 19.1 "please"    Utterances: 596    AoA: 16.5

"plum"    Utterances: 104    AoA: 19.5 "police"    Utterances: 144    AoA: 19.6

"poop"    Utterances: 625    AoA: 17.5 "pop"    Utterances: 246    AoA: 17.6

"potato"    Utterances: 207    AoA: 18.7 "press"    Utterances: 1,446    AoA: 21.8

"pretty"    Utterances: 1,009    AoA: 20.4 "prince"    Utterances: 66    AoA: 20.8

"pull"    Utterances: 594    AoA: 23.3 "puppy"    Utterances: 91    AoA: 17.7

"purple"    Utterances: 238    AoA: 16.8 "push"    Utterances: 521    AoA: 16.7

"put"    Utterances: 6,320    AoA: 20.4 "puzzle"    Utterances: 17    AoA: 15.5

"race"    Utterances: 225    AoA: 20.4 "racecar"    Utterances: 13    AoA: 23.9



"rain"    Utterances: 571    AoA: 19.4 "rainbow"    Utterances: 233    AoA: 23.9

"raining"    Utterances: 571    AoA: 19.4 "read"    Utterances: 1,447    AoA: 22.1

"ready"    Utterances: 1,768    AoA: 18.9 "really"    Utterances: 2,881    AoA: 21.2

"red"    Utterances: 1,369    AoA: 18.4 "remember"    Utterances: 855    AoA: 20.9

"rice"    Utterances: 185    AoA: 19.9 "ride"    Utterances: 244    AoA: 25.2

"right"    Utterances: 4,460    AoA: 16.2 "robot"    Utterances: 55    AoA: 20.2

"rock"    Utterances: 112    AoA: 17.7 "room"    Utterances: 509    AoA: 20.2

"round"    Utterances: 1,599    AoA: 20.9 "run"    Utterances: 460    AoA: 18.7

"[mother name]"    Utterances: 654    AoA: 17.5 "said"    Utterances: 1,461    AoA: 16.6

"salad"    Utterances: 143    AoA: 23.3 "sandals"    Utterances: 6    AoA: 19.9



"sandwich"    Utterances: 100    AoA: 23.8 "sara"    Utterances: 47    AoA: 23.4

"saw"    Utterances: 1,003    AoA: 23.8 "say"    Utterances: 7,757    AoA: 20.8

"school"    Utterances: 225    AoA: 19.7 "sea"    Utterances: 387    AoA: 18.8

"seat"    Utterances: 165    AoA: 22.1 "see"    Utterances: 7,764    AoA: 19.4

"set"    Utterances: 389    AoA: 21.9 "seven"    Utterances: 709    AoA: 17.7

"shake"    Utterances: 140    AoA: 21.1 "shark"    Utterances: 48    AoA: 18.0

"she"    Utterances: 2,847    AoA: 20.8 "sheep"    Utterances: 954    AoA: 15.4

"shirt"    Utterances: 240    AoA: 16.9 "shoe"    Utterances: 274    AoA: 16.6

"should"    Utterances: 716    AoA: 15.0 "show"    Utterances: 2,128    AoA: 19.5

"shower"    Utterances: 210    AoA: 18.9 "side"    Utterances: 423    AoA: 20.4



"silver"    Utterances: 70    AoA: 20.2 "sing"    Utterances: 1,266    AoA: 19.7

"sir"    Utterances: 914    AoA: 20.7 "sit"    Utterances: 1,817    AoA: 18.8

"six"    Utterances: 1,237    AoA: 22.8 "skin"    Utterances: 98    AoA: 21.1

"sky"    Utterances: 691    AoA: 17.7 "sleep"    Utterances: 1,243    AoA: 17.6

"small"    Utterances: 53    AoA: 11.0 "snow"    Utterances: 178    AoA: 18.9

"so"    Utterances: 4,772    AoA: 16.1 "soap"    Utterances: 41    AoA: 21.7

"soccer"    Utterances: 38    AoA: 20.0 "socks"    Utterances: 334    AoA: 17.5

"some"    Utterances: 4,514    AoA: 18.4 "something"    Utterances: 944    AoA: 15.8

"song"    Utterances: 572    AoA: 22.2 "sorry"    Utterances: 348    AoA: 16.4

"soup"    Utterances: 260    AoA: 21.3 "spider"    Utterances: 1,067    AoA: 22.6



"spoon"    Utterances: 422    AoA: 16.7 "squirrel"    Utterances: 41    AoA: 19.3

"stairs"    Utterances: 31    AoA: 19.7 "stand"    Utterances: 726    AoA: 20.4

"star"    Utterances: 176    AoA: 13.1 "starfish"    Utterances: 46    AoA: 19.7

"stay"    Utterances: 525    AoA: 20.4 "stick"    Utterances: 361    AoA: 20.9

"stop"    Utterances: 1,543    AoA: 21.9 "store"    Utterances: 281    AoA: 20.7

"straw"    Utterances: 59    AoA: 19.4 "strawberry"    Utterances: 59    AoA: 18.8

"stuck"    Utterances: 131    AoA: 17.6 "stuff"    Utterances: 655    AoA: 17.5

"sugar"    Utterances: 239    AoA: 18.8 "sun"    Utterances: 517    AoA: 15.0

"sure"    Utterances: 1,319    AoA: 21.8 "sweet"    Utterances: 634    AoA: 23.0

"swimming"    Utterances: 77    AoA: 19.7 "table"    Utterances: 422    AoA: 18.5



"tail"    Utterances: 198    AoA: 20.4 "take"    Utterances: 3,105    AoA: 20.1

"talk"    Utterances: 655    AoA: 20.4 "taste"    Utterances: 510    AoA: 20.7

"taxi"    Utterances: 30    AoA: 18.3 "tea"    Utterances: 170    AoA: 17.7

"teddy"    Utterances: 122    AoA: 20.4 "teeth"    Utterances: 530    AoA: 20.8

"telephone"    Utterances: 240    AoA: 19.9 "tell"    Utterances: 790    AoA: 17.9

"ten"    Utterances: 742    AoA: 19.1 "thank"    Utterances: 449    AoA: 15.6

"that"    Utterances: 7,863    AoA: 14.5 "the"    Utterances: 2,883    AoA: 10.3

"them"    Utterances: 1,257    AoA: 15.0 "then"    Utterances: 1,665    AoA: 15.0

"there"    Utterances: 4,868    AoA: 16.1 "these"    Utterances: 2,174    AoA: 23.3

"they"    Utterances: 4,196    AoA: 20.1 "thing"    Utterances: 4,526    AoA: 22.7



"think"    Utterances: 4,798    AoA: 20.4 "this"    Utterances: 6,034    AoA: 14.4

"thomas"    Utterances: 54    AoA: 21.4 "those"    Utterances: 1,967    AoA: 22.9

"though"    Utterances: 1,037    AoA: 22.8 "three"    Utterances: 2,083    AoA: 16.2

"through"    Utterances: 516    AoA: 16.4 "throw"    Utterances: 828    AoA: 16.9

"thumper"    Utterances: 67    AoA: 20.2 "tickle"    Utterances: 195    AoA: 18.7

"tiger"    Utterances: 63    AoA: 18.7 "time"    Utterances: 4,424    AoA: 23.4

"tiny"    Utterances: 230    AoA: 20.4 "tired"    Utterances: 570    AoA: 20.4

"to"    Utterances: 7,304    AoA: 13.9 "today"    Utterances: 1,588    AoA: 17.6

"toe"    Utterances: 130    AoA: 16.9 "toes"    Utterances: 130    AoA: 16.9

"together"    Utterances: 680    AoA: 24.1 "tomorrow"    Utterances: 305    AoA: 16.5



"tongue"    Utterances: 187    AoA: 17.5 "too"    Utterances: 2,913    AoA: 20.4

"toothbrush"    Utterances: 35    AoA: 18.5 "toothpaste"    Utterances: 46    AoA: 20.7

"top"    Utterances: 455    AoA: 22.7 "touch"    Utterances: 369    AoA: 18.0

"towel"    Utterances: 78    AoA: 18.9 "town"    Utterances: 88    AoA: 15.0

"toy"    Utterances: 713    AoA: 19.3 "track"    Utterances: 86    AoA: 17.5

"tractor"    Utterances: 84    AoA: 19.4 "train"    Utterances: 408    AoA: 15.5

"tree"    Utterances: 467    AoA: 16.8 "triangle"    Utterances: 298    AoA: 19.2

"[name 3]"    Utterances: 85    AoA: 19.5 "trouble"    Utterances: 176    AoA: 20.0

"truck"    Utterances: 732    AoA: 14.8 "true"    Utterances: 49    AoA: 14.2

"trunk"    Utterances: 24    AoA: 17.7 "try"    Utterances: 3,018    AoA: 20.8



"tummy"    Utterances: 90    AoA: 19.9 "tunnel"    Utterances: 10    AoA: 18.9

"turn"    Utterances: 2,269    AoA: 23.3 "turtle"    Utterances: 302    AoA: 18.4

"tweet"    Utterances: 48    AoA: 20.3 "twinkle"    Utterances: 224    AoA: 19.9

"two"    Utterances: 2,460    AoA: 16.5 "under"    Utterances: 379    AoA: 20.4

"up"    Utterances: 2,619    AoA: 13.8 "vaseline"    Utterances: 67    AoA: 20.2

"very"    Utterances: 2,005    AoA: 21.0 "vroom"    Utterances: 135    AoA: 15.5

"wait"    Utterances: 250    AoA: 11.7 "walk"    Utterances: 968    AoA: 18.7

"walrus"    Utterances: 19    AoA: 21.5 "want"    Utterances: 3,523    AoA: 13.1

"was"    Utterances: 4,251    AoA: 16.5 "wash"    Utterances: 341    AoA: 19.4

"watch"    Utterances: 747    AoA: 19.4 "water"    Utterances: 791    AoA: 13.0



"way"    Utterances: 2,096    AoA: 22.1 "we"    Utterances: 12,197    AoA: 20.2

"wear"    Utterances: 422    AoA: 21.9 "well"    Utterances: 1,424    AoA: 17.7

"were"    Utterances: 12,197    AoA: 20.2 "wet"    Utterances: 381    AoA: 21.2

"what"    Utterances: 1,180    AoA: 10.6 "wheel"    Utterances: 900    AoA: 17.7

"when"    Utterances: 4,919    AoA: 24.1 "where"    Utterances: 2,869    AoA: 13.6

"which"    Utterances: 612    AoA: 15.3 "whine"    Utterances: 53    AoA: 17.5

"whistle"    Utterances: 109    AoA: 21.3 "white"    Utterances: 375    AoA: 17.7

"who"    Utterances: 2,996    AoA: 20.4 "why"    Utterances: 1,821    AoA: 16.5

"will"    Utterances: 1,044    AoA: 16.2 "windmill"    Utterances: 11    AoA: 22.2

"window"    Utterances: 223    AoA: 19.4 "wipe"    Utterances: 288    AoA: 21.7



"with"    Utterances: 7,689    AoA: 20.3 "wonder"    Utterances: 319    AoA: 20.1

"woof"    Utterances: 296    AoA: 18.0 "wool"    Utterances: 712    AoA: 21.0

"work"    Utterances: 1,325    AoA: 20.8 "wormy"    Utterances: 48    AoA: 21.7

"would"    Utterances: 1,196    AoA: 17.6 "wow"    Utterances: 1,440    AoA: 15.2

"wrong"    Utterances: 692    AoA: 18.7 "yellow"    Utterances: 869    AoA: 18.1

"yes"    Utterances: 14,555    AoA: 16.1 "yet"    Utterances: 193    AoA: 15.2

"yogurt"    Utterances: 610    AoA: 17.6 "you"    Utterances: 14,524    AoA: 12.7

"yuck"    Utterances: 289    AoA: 16.7 "yum"    Utterances: 1,147    AoA: 18.7

"zoo"    Utterances: 119    AoA: 16.8 "zoom"    Utterances: 104    AoA: 21.5
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