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Abstract

Fuse is a spoken language understanding system that integrates visual
context into early stages of speech recognition. Given a visual scene and a
spoken description, the system finds the object in the scene that best fits
the meaning of the description. To solve this task, Fuse performs speech
recognition and visually-grounded language understanding. Rather than
treat these two problems separately, knowledge of the visual semantics
of language and the specific contents of the visual scene are fused into
speech processing. As a result, the system anticipates various ways a per-
son might describe any object in the scene, and uses these predictions to
bias the speech recognizer towards likely sequences of words. A dynamic
model of visual attention is used to focus processing on likely objects
within the scene as spoken utterances are processed. Visual attention and
language prediction reinforce one another and converge on interpreta-
tions of incoming speech signals which are most consistent with visual
context. In evaluations, the introduction of visual context into the speech
recognition process results in significantly improved speech recognition
and understanding accuracy. The underlying principles of this model may
be applied to a wide range of speech understanding problems including
mobile and assistive technologies in which contextual information can be
sensed by the system and semantically interpreted to bias processing.

1. Introduction

Modularity is a central principal in the design of complex engineered systems,
and is often postulated in theories of human cognition [7, 9]. Modules oper-
ate as encapsulated “black boxes” that can only access other modules through
well-defined interfaces. Access to internal data structures and processing across
modules is usually restricted. Studies of human behavior, however, sometimes
reveal surprising breaches of modularity. For example, recent psycholinguistic
experiments have shown that acoustic and syntactic aspects of online spoken
language comprehension are influenced by visual context. During interpretation
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of speech, partially heard utterances have been shown to incrementally steer the
hearer’s visual attention [23], and vice versa, visual context has been shown to
steer speech processing [25, 24]. Motivated by these findings, we have developed
a spoken language understanding system in which visual context primes early
stages of speech processing, resulting in significantly improved speech recognition
and understanding accuracy.

The development of robots provides an exemplary problem that suggests mod-
ular design. In practically all robots, the perceptual, planning, motor control, and
speech systems (if any) operate independently and are integrated through rela-
tively high level interfaces. In this paper, we consider the design of a speech un-
derstanding system that will eventually provide speech processing capabilities for
an interactive conversational robot [10, 22]. A straight forward approach would
be to take an off-the-shelf speech recognition system and connect its output to
other modules of the robot. We argue, however, that by treating the speech rec-
ognizer as a black box that is unaware of the contents of other modules, valuable
contextual information is lost. Since high accuracy speech recognition in natural
conditions remains unattainable, leveraging information from other channels can
be of immense value in improving performance.

We have addressed the problem of understanding spoken utterances that make
reference to objects in a scene. We make the simplification that the system
can assume that all utterances contain references to objects in the immediate
environment. Clearly, this assumption is not always valid (people often talk about
things that are not in the here-and-now). Thus, our current work represents
one component of a larger effort which will eventually incorporate speech act
classification to determine when visual context should be used to constrain the
analysis of utterances.

Based on our assumption of immediate reference, knowledge of the visual envi-
ronment is used by the system to anticipate words and phrases that the speaker
is likely to choose. A challenge in this approach is that there are typically numer-
ous potential referents in environments of even moderate complexity. Since the
system does not know, a priori, which referent the speaker intends to describe,
the system must anticipate descriptions of all potential referents. In most sit-
uations, many choices of words might fit the same referent. Furthermore, since
the contents of the scene are determined by visual analysis, scene information is
bound to be noisy and of variable reliability.

Our approach is to jointly infer the most likely words in the utterance along
with the identity of the intended visual referent in a unified multimodal stochas-
tic decoding framework. This approach has been implemented in an on-line,
real-time multimodal processing system. Visual scene analysis reaches into the
core of the speech recognition search algorithm and steers search paths towards
more likely word sequences. The semantic content of partially decoded spoken
utterances, in complement, feed back to the visual system and drive a dynamic
model of visual attention. As processing proceeds, linguistic and visual infor-
mation mutually reinforce each other, sharpening both linguistic and visual hy-
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potheses as sensory evidence accumulates. We show that in contrast to modular
approaches to integration, early integration leads to substantial improvement in
speech recognition and understanding accuracy. We believe that the strategic
introduction of cross-module bridges may be an important design principal in a
wide range of applications beyond the specific system presented.

After providing some background remarks, we introduce the task we used for
our experiments. Section 3 provides an overview of our approach to integration
of visual context into speech recognition. Subsequent sections provide details on
aspects of this approach, followed by experimental evaluations.

2. Background

Integration of spoken and visual input has been investigated in a wide range of
problem domains. It is useful to distinguish two broad classes of tasks. Let S and
V denote the speech and visual input signals, respectively. The speech signal’s
primary role is to encode sequences of words. Prosodic aspects of speech also
encode affective, syntactic, and stress information. All information in S convey
the speaker’s intent. In contrast, V may carry two distinct kinds of information,
depending on the task. Consider first the problem of audiovisual lipreading.
In this task, visual input typically consists of images of the speaker’s lips as
they speak. In this case, the kind of information carried in V is the same as S.
The visual channel provides complimentary or redundant aspects of the surface
form of words. This complementarity of encodings of word surface forms can
be leveraged to increase speech recognition accuracy. For lipreading, we can say
that V = Vi, where i reminds us that the purpose of the visual channel is to
indicate. The lips are part of the speaker’s way of conveying his/her intention.
A related problem that has received significant attention is the integration of
speech with visually observed gestures made either by hand or using a mouse.
Although gestures are very different in nature from the motion of lips, broadly
speaking, both belong to the same class of Vi since gestures also play the role of
indicating the speaker’s intentions.

In contrast, consider the problem of building a speech understanding system
for a robot in which the visual input comes from a camera mounted on the robot,
looking out into the robot’s environment. The speaker asks the robot to pick up
a red block. The visual channel might capture the speaker, complete with lip
movements and other body gestures. However, the visual signal will also contain
information about the robot’s context, which in this case may include a red
block. We indicate this kind of visual information by saying V = Vi + Vc where
Vc denotes contextual information captured in the visual signal. If the speaker
is not in view, then V = Vc. The contents of Vc are fundamentally different from
Vi since S may be about aspects of Vc but not, in general, Vi

∗.

∗One can imagine rare exceptions to this. A person, while waving their arm in a strange
gesture, might say, “It hurts when I do this”, where, “this” refers to the gesture. For our
current purposes, we set such exceptions aside.
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The focus of this paper is for a task in which V = Vc, i.e, the visual input
contains purely contextual information. In contrast to lipreading and gesture
understanding problems, we will instead investigate the semantic referential con-
tent of the visual signal and how it can be integrated with S in useful ways for
a real-time multimodal understanding system.

Most previous work on integrating visual context (Vc) with speech / language
understanding have all used modular, late integration across modalities. SAM
(speech activated manipulator) [2] is a robotic system with sensory capabilities
that interacts with a human conversation partner through spoken language di-
alog. Speech recognition and visual analysis are integrated at a relatively late
stage through an augmented transition network that operates on a frame-based
knowledge representation. Crangle and Suppes [4] have proposed an approach
to verbal interaction with an instructable robot based on a unification grammar
formalism. They have examined the use of explicit verbal instructions to teach
robots new procedures and have studied ways a robot could learn from corrective
user commands containing qualitative spatial expressions. Although speech may
provide linguistic input to their framework, there is no mechanism for propagat-
ing semantic information to early speech processing due to the modular design
of their model. Wachsmuth and Sagerer (2002) presents a probabilistic decoding
scheme that takes the speech signal and an image or image sequence as input.
The speech signal is decoded independent of the decoding of the image data.
A Bayesian network integrates speech and image representations to generate a
representation of the speaker’s intention. In summary, all of these systems inte-
grate spoken language with visual context, but the conversion of speech to text
occurs in a contextual vacuum.

In our own previous work, we developed a trainable spoken language under-
standing system that selects individual objects on a table top in response to
referring spoken language expressions [20]. The system combines speech recog-
nition output and image representations generated by a visual analysis module
to point to objects that best fit spoken descriptions. Similar to the other work
cited above, speech and visual processing occurred independently. In contrast,
through the development of Fuse we have explored early integration of visual
context into speech processing.

3. Overview

To study the role of visual context in spoken language comprehension, we chose
a constrained scene description task. Participants in a data collection study
were asked to verbally describe objects in scenes consisting of oversized lego
blocks (Figure 1). No restrictions were placed on the vocabulary, style, or length
of description. Typical descriptions ranged from simple phrases such as, “The
green one in front” to more complex utterances such as, “The large green block
beneath the smaller red and yellow ones”. The result of this data collection was
a set of images paired with spoken descriptions of objects in the images.
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Figure 1: A typical visual scene in the current experimental task.

3.1. Language Modeling

Speech recognition is most commonly formulated in a maximum likelihood frame-
work [1]. Given an observed spoken utterance,X, we wish to choose a word string

Ŵ such that

Ŵ =
argmax
W P (X|W )P (W ) (1)

The terms P (X|W ) and P (W ) correspond to an acoustic model and language
model, respectively. In conventional speech recognition systems, the acoustic
model captures the acoustic properties of speech and provides the probability of
a speech observation given hypothesized word sequences. In audio-visual speech
recognition systems, speech observations would include both acoustic and visual
information.

The language model, P (W ), provides probabilities of word strings W based on
context. In practically all speech recognition systems, this context is a function
of the history of words that the speaker has uttered. In contrast, our approach
is to additionally modify P (W ) on the basis of visual context (Vc).

Since our focus will be on dynamic language models, we provide a brief review
of n-gram statistical language models which will serve as a basis for our cross-
modal extension. The n-gram model assigns probabilities to hypothesized word
sequences. The probability of a word sequence W = w1, w2, . . . , wk which we
denote as wk

1 , can be expressed as a product of conditional probabilities:

P (wk
1) = P (w1)P (w2|w1) · · ·P (wk|wk−1

1 ) (2)

Within the term P (wk|wk−1
1 ), wk−1

1 is called the history and wk the prediction.
In the n-gram approach, two histories are treated as identical when they end in
the same n − 1 words. For example, with n = 2, we obtain a bigram language
model:

P (wk
1) = P (w1)P (w2|w1) · · ·P (wk|wk−1) (3)

Many extensions to basic n-gram language models have been proposed such
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as variable length histories [14], long distance dependencies [11] (for a review
of these and other methods, see [19]). Stochastic context-free grammars provide
an alternative to n-grams that does not make Markovian assumptions [12]. Our
goal is to introduce a form of visually-driven semantic priming into the statistical
language model of a real-time speech recognizer. In principal, any of the n-gram
extensions mentioned above can be augmented with visual context in the way
that we propose. For simplicity, we have chosen to work with the bigram language
model which has sufficient modeling power for the present scene description task.

The parameters of a bigram model are usually estimated from a large text
corpus. Given a training corpus of size T words in which word w occurs |w| times,
the maximum likelihood estimate of P (w) is |w|/T . The maximum likelihood
estimates for the conditional terms P (wi|wi−1) are given by |wi−1, wi|/|wi| where
|wi−1, wi| is the number of times the sequence wi−1, wi occurs in the training
corpus. Some form of smoothing is necessary since the vast majority of n-grams
rarely occur (for an overview of smoothing small sample counts, see [13]).

Words may be clustered into equivalence classes leading to n-gram class models
[3]. For example, if the distribution of words in the neighborhood of Monday and
Tuesday are believed to be similar, the words can be clustered, and treated as
equivalent for language modeling. The principal benefit of creating word classes
is that we are able to make better use of limited training data to make predic-
tions for word histories that are not encountered in training. We can partition
a vocabulary into word classes using a function which maps each word wi to its
corresponding class c(wi). For bigram class models,

P (wi|wi−1) = P (wi|c(wi))P (ci|ci−1) (4)

Standard word bigrams are a special case of bigram class models in which each
word is mapped to a unique word class.

3.2. Visual-Context Sensitive Language Models

Figure 2 illustrates our approach to integrating visual context with speech pro-
cessing in a model called Fuse. Input consists of a speech signal paired with an
image. Figure 1 is representative of images in the current task, captured by a
color video camera. The speech signal is recorded from a head-worn microphone.
The spoken utterances used for evaluations consisted of naturally spoken, fluent
speech.

The visual scene analysis module detects objects in the scene and extracts a
set of visual features that represent individual objects, and intra-object spatial
relations. The results of the scene analysis are accessible by two modules: a
language model, and a visual attention model. As the speech signal is processed,
both the language and attention models are dynamically updated.

To understand the main processing loop in Figure 2 and the role of the lan-
guage model and visual attention model, we will work through a simple example.
Let us consider a situation in which a speaker says, “The red block on the left”
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Figure 2: Overview of the Fuse architecture.

in the context of a scene containing four blocks: a red one and a blue one on
the left, and a red one and blue one on the right. As the first portion of the
input utterance is processed, let us assume that the speech recognizer correctly
recovers the first two words of the utterance, “the red”. In actuality, in Fuse,
the output of the speech recognizer would be a lattice that encodes multiple
word hypotheses, but to keep the example simple, we first consider a single word
sequence.

The partially decoded word sequence is fed to the visual attention module
which also receives the output of the visual scene analyzer. Visual attention is
modeled as a probability mass function (pmf) over the set of objects in the
scene. Initially, before speech recognition begins, the pmf is non-informative and
assigns equal probability to all objects in the scene. When the words “the red”
are fed into the visual attention module, the pmf is updated so that most of the
probability mass is shifted to the red objects in the scene. In effect, the visual
attention of the system shifts to the red objects. The attention module uses a
set of visually-grounded semantic models to convert the word sequence into the
pmf (Section 6).

The visual attention pmf, which now favors the two red objects in the scene, is
transmitted to the language model. The language model may be thought of as a
linguistic description generator. For each object in the scene, the model generates
a set of referring expressions that a person might use to describe the object.
For the red block on the left, the model might generate a set of descriptions
including “the red block”, “the large red block”, the “the red block on the left”,
and so forth. Each description is assigned a likelihood that depends on how well
the description matches the visual attributes of the object, and also based on
syntactic and contextual measures of fitness. The likelihoods of the descriptions
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for each object are scaled by the probability assigned to that object by the visual
attention pmf. The resulting mixture of descriptions is converted into a statistical
language model which is used by the speech recognizer. In effect, visual attention
steers the speech recognizer to interpret the input speech signal as a description
of objects that have captured more of the system’s attention.

As acoustic evidence is incrementally processed, the visual attention pmf
evolves. The dynamic pmf in turn biases the language model of the speech rec-
ognizer. As more of the utterance is processed, the visual attention becomes
progressively sharpened towards potential referents in the scene.

Several details have been simplified in this overview. One complication is in-
troduced with utterances containing relative spatial clauses such as, “The red
block to the left of the large blue one”. In this class of utterances, visual atten-
tion must be refocused mid-way through processing from potential target objects
(red blocks) to potential landmark objects (large blue blocks to the right of the
potential targets). Another complication arises from the fact that the output of
the speech recognizer at any moment is not a single word sequence, but rather
a lattice that encodes multiple (potentially thousands) of alternative word hy-
potheses. These and other aspects of Fuse are explained in the following sections
which provide detailed descriptions of each component of the system.

4. Visual Scene Analysis

The visual scene analysis module segments objects in an input scene and com-
putes visual properties of individual objects, and spatial relations between pairs
of objects. The resulting representation of the scene is used by both the language
model and visual attention model.

Objects are segmented based on color. A statistical color model is created for
objects by training Gaussian mixture models on sample images of the objects. We
assume that objects will be single-colored, greatly simplifying the segmentation
process. The Expectation Maximization (EM) algorithm is used to estimate
both the mixture weights and the underlying Gaussian parameters for each color
model. The color models are used as a Bayes classifier to label each 5x5 pixel
region of an input image. Regions of the image that do not match any object
color model are classified as background using a fixed threshold. Objects are
found by extracting connected foreground regions of consistent color.

A set of visual properties are computed for each object found in the segmenta-
tion step, and for spatial relations between each pair of objects. These properties
and relations constitute the complete representation of a visual scene. The fea-
tures attempt to capture aspects of the scene that are likely to be referred to in
natural spoken descriptions. The following visual features are extracted:

• Color is represented by the mean RGB value of the 10x10 pixel region in
the center of the object.

• Shape is represented by five geometric features computed on the bounding
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box of each object: height, width, height-to-width ratio, ratio of the larger
to the smaller dimension (height / width), and bounding box area.

• Position is represented by the horizontal and vertical position of the of
center of the region.

• Spatial relations are encoded by a set of three spatial features suggested
in [17] that are measured between pairs of objects. The first feature is the
angle (relative to the horizon) of the line connecting the centers of area
of an object pair. The second feature is the shortest distance between the
edges of the objects. The third feature measures the angle (relative to the
horizon) of the line which connects the two most proximal points of the
objects.

To summarize, each object is represented by a ten-dimensional feature vector
(3 color features, 5 shape, and 2 position). The spatial relation between each
pair of objects is represented by 3 additional spatial features. In real time oper-
ation, the visual analysis system captures and processes video frames at a rate
of 15Hz. When Fuse detects the onset of a spoken utterances, the visual frame
co-occurring with the start of the utterance is captured, and the resulting visual
features are used to provide context for processing of the entire spoken utterance.
Changes made to the scene once the utterance has begun are ignored.

5. Speech Decoding

The role of the speech decoder is to find word sequences that best explain acoustic
input. Since the main contribution of the Fuse architecture lies in the treatment
of language modeling, this section briefly summarizes the speech decoder. The
decoding strategy and algorithms are all based on previously published work.
The decoder has been tested on standard speech recognition test corpora and
performs competitively with other research platforms, and thus serves as a useful
baseline for the experiments presented here [26].

Speech is represented using a 24-band Mel-scaled cepstral acoustic represen-
tation [16]. Words are modeled by concatenating context sensitive phoneme (tri-
phone) models based on continuous-density three-state, Hidden Markov Models
[15]. Speech decoding is accomplished using a time-synchronous Viterbi beam
search [15].

6. Visual Context Driven Language Model

The language model is designed to “second guess” what the speaker is likely to
say, assuming he/she will speak a description of an object in the current visual
scene. If the language model is able to accurately anticipate the speaker’s words,
the model can bias the speech decoder towards more likely interpretations of the
incoming speech signal. There are several sources of uncertainty in predicting
how a person will describe objects in the scene:
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1. The identity of the target item is unknown, so the language model must
consider descriptions that fit all objects in the scene.

2. People may use different words to refer to the same attributes. For example,
one person might call an object blue, while another speaker will call it
purple.

3. Speakers may use different combinations of words to refer to the same
object; “the blue one”, the “the tall block”, and “the cube to the left of the
red one” may all refer to the same referent.

To address these sources of uncertainty, descriptions are generated, in turn,
for each object in the current scene. For each object, multiple descriptions are
generated to account for variations due to factors (2) and (3). The potentially
large set of resulting descriptions are then weighted and combined to create a
bigram language model that is used by the speech decoder. Although the descrip-
tions stay fixed during the processing of an utterance, the relative weighting of
individual descriptions is dynamically updated using the visual attention model
that is described in Section 7. As a result, the bigram language model is not
only influenced by visual context as recorded at the onset of the utterance, but
further evolves online as the utterance is processed. The method for generat-
ing descriptions is adapted from the trainable object description system called
Describer that was reported in [21]. In this work, we developed learning algo-
rithms that take as input synthetic visual scenes paired with natural language
descriptions of objects. The output of the system consists of a set of visually
grounded word models that are grouped into word classes, and a set of class bi-
grams that model transitions between word classes. Word classes are formed on
the basis of both visual (semantic) and syntactic properties of words. Each word
is associated with an acquired visual model that consists of a multidimensional
Gaussian distribution defined over a subset of the 10 visual features described in
Section 4. The learning algorithm automatically associates visual features with
word classes. Complete details of the learning algorithm are provided in [21].

All parameters of the description model are learned from examples of objects
embedded in scenes that are labeled with descriptive phrases. For our experi-
ments with Fuse, a set of 60 training examples were collected from eight par-
ticipants, resulting in a total of 480 examples in the training dataset. Since the
training methods have been previously described [21], here we describe the data
structures created by the learning algorithm and then show how the structures
are used to generate descriptions.

Figure 3 shows the visual models associated with the members of an acquired
word class. The learning algorithm decided to cluster these four words, and to
ground them in terms of the two visual features (from a choice of 10). Two
geometric features (area, and ratio of dimensions) have been selected as the
salient visual attributes for this cluster of words. The overlapping distributions
show the relation between the words big and large, and the near-antonyms little
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Figure 3: Example of a word class with four members. Each ellipse indicates an equal proba-
bility density contour associated with a visual model (a full-covariance Gaussian distribution),
centered on its mean which is indicated with a small asterisk. An automatic feature selection
algorithm determined the two visual features used for defining this set of four words.

and small. As we shall see, word classes and their associated visual models are
used as Bayes classifiers in order to generate labels for novel objects.

Word order is modeled through bigrams that specify transition probabilities
between words and word classes. Figure 4 shows a subset of phrase level bi-
grams in the form of a transition network (bigram transitions with probability
less than 0.10 have been pruned for readability). Each arc is labeled with the
transition probability between pairs of words / word classes. Word classes with
single members are labeled with that word. The six classes with multiple visually
grounded words are listed in Table 6. Many words that occur in the training cor-
pus such as the and and appear in the grammar but are not visually grounded.
As we explain below, those words play a role in predicting words during speech
recognition, but do not effect semantic analysis. Any path through the network
in Figure 4 constitutes a possible description of an object. For instance, the red
block and the leftmost large one are word sequences that may be generated by
this network. A higher-order phrase network (Figure 5) models relative spatial
phrases. The phrase nodes in this network, marked “TARGET OBJECT” and
“LANDMARK OBJECT”, each embed a copy of the phrase network and are
connected by relative spatial terms. Spatial terms are grounded (defined) by
Gaussian distributions over the three spatial relation features described in Sec-
tion 4. This phrase network can generate sequences such as the large green block
beneath the red one.
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Figure 4: The probabilistic grammar used to generate descriptions of objects. Nodes include
individual ungrounded words and grounded word classes. To allow legibility, the full grammar
used in experiments has been pruned for the figure (18 of 55 nodes are shown).

Word Class Members
C8 large, big, small, little
C10 rectangle, square
C11 front, back, left, right, top, bottom, rear, upper
C12 frontmost, topmost, bottommost, leftmost, rightmost, centermost
C13 red, blue, yellow, green
C25 horizontal, vertical

Table 1: Visually-grounded words that are grouped into word classes in the bigram network
in Figure 4. Each word class is assigned a set of visual features, and the semantics of each
word is grounded in a Gaussian probability distribution over the set of features assigned to its
class.

6.1. Mixtures of Descriptions for Language Modeling

The speech recognizer requires a language model consisting of a set of word
bigram transition probabilities. As Equation 4 shows, the word bigram can be
obtained from the product of word class transition probabilities P (ci|ci−1) and
class conditional word probabilities P (wi|ci). The word class transition probabil-
ities are fully determined from training data (Figure 4) and remain static during
speech processing. Thus, the expected order of word classes, and transition prob-
abilities between classes is not expected to change as a function of visual context
since these capture syntactic regularities of the language. The probabilities of
words within each word class, on the other hand, do depend on context. As a
simple example, if there are no blue objects in the scene, the probability for
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Figure 5: The probabilistic grammar used to generate descriptions with relative spatial
clauses.

the word blue should be reduced relative to other words in its class given our
assumption that the utterance refers to some object in the scene. To capture
this intuition, class conditional word probabilities are dynamically estimated as
a function of the scene and the pmf model of visual attention using a five-step
process:

1. Enumerate all left-to-right paths through the object description grammar

All distinct paths connecting the start and end nodes of the transition
network (Figure 4) are enumerated. Loops are avoided, resulting in only left-
to-right paths. This process leads to a set of N sequences, {C1, C2, . . . , CN}.
Each sequence Ci consist of a ordered set of Ti word classes:

Ci = c1i , c
2
i , . . . , c

Ti
i (5)

These sequences constitute the set of syntactic frames embedded in the
transition network.

2. Map word classes to words

Each word in a class may be grounded in a visual model (Gaussian dis-
tribution). The models associated with the words of each class are used
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as a Bayes classifier [6] to classify objects based on their measured visual
attributes. For example, consider the word class shown in Figure 3. To use
this word class as a Bayes classifier to label an object, the two features of
the object associated with visual models must be measured. Each of the
visual models of this class are then evaluated at the measured values, and
the model with the highest value (probability density) is selected as the
best match to the object. The word associated with that model is thus the
best choice within the word class for describing the object. The mapping
from word class to word is thus object dependent; different words may be-
come most activated within a class depending on the visual properties of
the object. We denote the word sequence generated by using the word class
sequence Ci to describe object Oj as:

W j
i = w1

ij, w
2
ij, . . . , w

Ti
ij (6)

For a scene with M objects, this mapping process results in N ×M word
sequences (N descriptions for each of M objects).

3. Compute the descriptive fitness of each description

Each description can be evaluated on how well it visually matches its target
object by computing the product of the word conditional probabilities of
the observed object properties, which is equivalently expressed as a sum of
log probabilities:

fit(W j
i , Oj) =

ΣTi
t=1 log p(Oj|wt

ij)

G(Ci)
(7)

Where G(Ci) is the number of visually grounded word classes in the se-
quence Ci (i.e., one of the classes listed in Table 6). The denominator term
normalizes effects due to the length of the description. p(Oj|wt

ij)) evaluates
the visual model associated with word wt

ij for the visual features of object
Oj . For ungrounded words, p(Oj|wt

ij)) is set to 1.0.

This fitness function measures how well a descriptive phrase matches the
properties of the target object, but it does not account for contextual effects
due to other objects in the scene. For example, a description that matches
the target well may also describe a non-target equally well. To capture
contextual effects, we define a context-sensitive fitness:

ψ(Ci, Oj) = fit(W j
i , Oj) −maxk 6=jfit(W

j
i , Ok) (8)

4. Compute object-conditional word predictions

For a given object and word class sequence, object-conditional probabilities
are assigned to each visually grounded word:
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P (w|Oi, c(w)) =
p(Oi|w)

∑
all Cj s.t. c(w) ε Cj

ψ(Cj, Oi)∑M
k=1 p(Ok|w)

∑
all Cj s.t. c(w) ε Cj

ψ(Cj, Ok)
(9)

Where c(w) is the word class to which w belongs. The context-sensitive fit-
ness scores ψ(Cj, Oi) scale each visually based probability density p(Oi|w)
depending on how well the syntactic frame Cj is able to generate an unam-
biguous description of Oi. Note that if two words both describe an object
well, Equation 9 will assign relatively large probabilities to both words. On
the other hand, for words that tend to increase ambiguity due to other
objects in the scene that also fit the semantics of the term, Equation 9 will
obtain relatively low probability estimates due to the use of the context-
sensitive evaluation based on ψ().

5. Mix word predictions using visual attention

The final step is to mix the influences of all objects in the scene to obtain
class conditional word probability estimates:

P (w|c(w)) =
M∑
i=1

P (w|Oi, c(w))P (Oi) (10)

The degree to which each object biases word predictions depends on Fuse’s
visual attention state, P (Oi) (Section 7).

Using these five steps, a set of class conditional word probabilities are gen-
erated that represent the system’s anticipation of words the speaker will use,
given the contents of the visual scene, and the system’s current visual attention
state. Referring back to Equation 4, we can see that the dynamic formulation of
class conditional probability estimates P (w|c(w)) in Equation 10 can be directly
inserted into the computation of bigrams that feed into the speech recognizer.
As certain objects in the scene capture more of Fuse’s attention, the words that
better describe those objects become more probable and thus steer the speech
recognizer towards those parts of the vocabulary. The expected order of words as
specified by the bigram class probability transitions remains static throughout
this process.

6.2. Relative Spatial Clauses

The spatial grammar (Figure 5) is used to model the use of relative spatial
clauses. For example, “The red block beneath the small green block” contains
references to two objects, the target (the red block) and a landmark (“the small
green one”). The spatial relation “beneath” describes the relation between target
and landmark.

Spatial connective terms may consist of multiple words (e.g., “to the left of”)
that are automatically tokenized [21] and treated as a single acoustic unit dur-
ing speech decoding. As can be seen in the structure of the spatial grammar, a
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description consists either of a single phrase describing the target, or descriptive
phrases of target and landmarks connected by an appropriate spatial relation.
The probability of using spatial relative phrases is encoded in the probability
transitions from the “TARGET OBJECT” node of the spatial grammar. This
pair of transition probabilities is estimated based on the ratio of training utter-
ances that contained spatial relations versus total training utterances [21].

After describing the visual attention pmf update process in the next section,
we explain how spatial relations are handled during speech processing.

7. Language Driven Visual Attention

As Fuse processes incoming speech and generates partial word sequences, a model
of visual attention is incrementally updated to reflect the system’s current belief
of the intended referent object. Attention consists of a probability mass function
(pmf) distributed over the objects in the current scene. The pmf is used to mix
object-dependent description bigrams into a single weighted bigram (Equation
10). Thus, as speech is processed, the evolving distribution of attention shifts
the weight of bigrams to favor descriptions of objects that capture more atten-
tion. The visual attention model enables the early integration of visual context
to provide dynamic incremental estimation of the priors associated with the
interpolated class conditional probabilities.

As we mentioned earlier, the speech decoder used in Fuse is based on a single
pass Viterbi beam search [15]. In this strategy, multiple word sequences within
a search beam are considered during a forward pass, and in a backward pass the
best word sequence is selected. In the following, we show how the visual attention
model, P (Oi), is computed for a partial word sequence. Separate attentional
pmf’s are maintained for each parallel word sequence hypothesis. The average
pmf over all search paths of the decoder may be interpreted as the system’s
overall attention at any given point of time.

At the start of each utterance, before any words have been processed, visual
attention is shared equally by all M objects in the scene:

P (Oi)[0] =
1

M
(11)

The index in square parentheses indicates that the this is the attention pmf when
0 words have been processed. As each new word wn posited in one of the search
paths of the speech decoder, the path-dependent attention pmf is incrementally
updated using one of three update rules depending on the type of the new word:

1. wn is a visually-grounded word (Table 6). In this case, the update rule is:

P (Oi)[n] =
p(Oi|wn)P (Oi)[n− 1]∑M

j=1 p(Oj|wn)P (Oj)[n− 1]
(12)

That is, the visual models corresponding to modifier terms of an object are
multiplied.
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2. wn is a visually-grounded spatial relation (e.g., “above”, ”beneath”, etc.).
The update rule is:

P (Oi)[n] =

∑M
j=1,j 6=i p(Oi|wn, Oj)P (Oj)[n− 1]∑M

k=1

∑M
j=1,j 6=k p(Ok|wn, Oj)P (Oj)[n− 1]

(13)

where P (Oj|w,Oi) is derived from visual models of spatial relations in which
Oi is the target object, Oj is the landmark object, and w is the relative
spatial term. This update rule causes the attention of the system to shift to
objects that hold the spatial relation indicated by wn relative to whatever
object has been described by the partial word sequence w1 . . . wn−1.

3. wn is a visually ungrounded word (e.g., “the”, ”by”, etc.). In this case, the
update rule is:

P (Oi)[n] = P (Oi)[n− 1] (14)

Since visually grounded words thus have no effect on visual attention.

Using these three update rules, Fuse maintains separate attentional state pmf’s
for each path of the decoder’s search lattice.

8. Visually-Grounded Speech Recognition and Understand-
ing

Processing in Fuse is initiated by the detection of a spoken utterance. A forward
search pass of the Viterbi algorithm maintains multiple word sequence hypothe-
ses in a search lattice. Following standard speech recognition methods, a beam
is used to limit the number of active paths at any point in the forward pass. The
attention model biases the search to word sequences that semantically match the
properties and spatial configurations of objects in the co-occurring visual scene.
Once the entire utterance has been processed (i.e., the forward pass is complete),
backchaining is used to recover the most likely word sequence.

Fuse is able to understand two classes of referring expressions which we refer
to as simple and complex [21]. Simple expressions refer to single objects without
use of spatial relations, and are fully modeled by the transition network shown in
Figure 4. Complex expressions include relative spatial clauses and are modeled
by the network shown in Figure 5.

Once the forward pass of the beam search is complete, the best word sequence
is extracted. We denote this word string asW = w1 . . . wN . In the case of a simple
referring expression, Fuse selects the object with greatest visual attention:

argmax
i P (Oi)[N ] (15)

For complex referring expressions, W is segmented into three sub-sequences,
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W = w1 . . . wm−1, wm, wm+1 . . . wN where wm is a relative spatial term, w1 . . . wm−1

describes the target object, and wm+1 . . . wN describes a landmark object. Fuse
selects Oi based on:

argmax
i P (Oi)[m− 1]

M∑
j=1,j 6=i

p(Oj|wm, Oi)P (Oj)[N ] (16)

where p(Oj|wm, Oi) is derived from the visual model associated with the relative
spatial term wm. By using Equation 16, a distribution of possible landmarks are
combined to determine the single most likely target object.

8.1. A Detailed Example of Visually-Steered Speech Processing

To illustrate the interaction between visual attention and speech processing,
we now work through a detailed example. Table I shows the transcription of a
sample utterance from our test corpus, the output of the speech decoder using
standard bigrams without use of the visual context, and the decoder’s output
using context.

Transcript The large green block on the far right beneath
the yellow block and the red block.

No visual context [The] lower green block in the far right to me
[the] yellow block in the red block

Visual context The large green block in the far right beneath
the yellow block in the red block

Table 2: A example of speech transcription without the use of visual context, and improved
output from Fuse with visual context. Deletion errors are marked in square parentheses and
substitution errors are underlined.

Errors from the decoder are underlined, and omitted words are indicated by
square parentheses. Corrections due to visual context are shown in italics. The
introduction of visual context in this case makes two important differences. First,
the word lower is corrected to large, and the incorrectly decoded words to me are
changed to beneath. Both of these word substitutions have semantic significance
on the interpretation of the utterance. Two occurrences of the are also correctly
recovered as a result of improved language modeling.

The evolution of visual attention is illustrated for this example in Figure 6.
Each graph along the right shows the distribution of attention across the ten ob-
jects after integrating the words shown to the left of each graph. The most likely
word sequence found by the Viterbi search is shown in the figure. Ungrounded
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the

large

green

(block in the far)
right

(the)
yellow
(block in)

red
(block)

beneath

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1
green

   2
red

    3
yellow

10
yellow

4 yellow

5 red 6 red
7 green

8 green

9 red

Figure 6: Evolution of attention during processing of the utterance, “The large green block
in the far right beneath the yellow block and the red block”.

words are shown in parentheses and do not effect the attention pmf. Attention
vectors are normalized within each graph so only relative values in each graph
are significant. As evidence for the target object accumulate from the first part
of the utterance, “The large green block in the far right”, the pmf becomes pro-
gressively sharper with most probability mass focused on Object 8. When the
relative spatial term “beneath” is incorporated, visual attention is captured al-
most equally by Objects 9 and 10 which are the two smaller blocks above Object
8. Thus, the grounded model associated with “beneath” has caused attention to
shift appropriately. The remainder of this utterance refers to two objects. Fuse is
designed on the assumption that the remaining phrase will refer to only a single
object. Due to the soft assignment of visual attention, however, Fuse is able to
robustly deal with the phrase “the yellow block and the red block” by assigning
roughly equal attention to both landmark objects. To understand the utterance,
Equation 16 is applied and correctly selects Object 8.
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8.2. Experimental Evaluation

A corpus of 990 spoken utterances paired with corresponding visual camera
images was collected from eight speakers. To evaluate Fuse, a leave-one-speaker-
out train and test procedure was employed. Each speaker’s data was held out
and the remaining data was used to train models that were then tested on the
held out speaker.

Speech recognition and understanding errors on this corpus are shown in Ta-
bles II and III, respectively. Averaged across all eight speakers, the word recog-
nition error rate is reduced by 31% when visual context is used. This result
demonstrates that early integration of visual context has significant impact on
the recognition of speech that refers to the contents of the scene in our experi-
mental task.

Speaker No Visual Context With Visual Context
1 28.2 21.7
2 24.6 14.3
3 26.9 17.2
4 23.7 16.6
5 19.2 14.5
6 21.3 13.3
7 24.3 17.1
8 26.0 18.8

Ave 24.3 16.7

Table 3: Speech recognition errors (%). Averaged across all eight speakers, the introduction
of visual context reduced the word error rate by 31%.

Speaker No Visual Context With Visual Context
1 27.4 17.6
2 25.5 12.1
3 27.8 14.8
4 23.3 17.0
5 23.0 13.2
6 23.5 13.9
7 23.8 13.1
8 21.2 12.6

Ave 24.4 14.3

Table 4: Speech understanding errors (%). Averaged across all eight speakers, the early inte-
gration of visual context reduced the language understanding error rate by 41%.

The effects of visual context on speech understanding are even greater. Since
each visual scene had 10 objects, random selection would lead to an average error
rate of 90%. The first column of Table III shows that without visual context,
i.e., using a speech recognizer with static bigrams, the system works quite well,
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with an average error rate of 24% (i.e., the system chooses the correct object
76% of the time). This system is similar to that described previously in [20]. The
second column of Table III shows the change in understanding errors once visual
attention is integrated into the speech decoding process. On average, the number
of understanding errors drops by 41%, i.e., Fuse chooses the correct object 86%
of the time. The early influences of vision on speech processing flow through the
system and have substantial effects on overall understanding performance since
recognition errors often involve semantically salient words.

8.3. Analysis of Errors: Suggestions for Future Directions

We have observed five significant causes if speech understanding errors in Fuse,
each of which suggests extensions to the current architecture:

• Speech end point detection errors: The speech segmentation module in our
real time speech recognition system occasionally merges utterances that
should have been processed separately. Later stages of Fuse are designed
on the assumption that only one referring expression is contained in the
utterance. A possible extension is to integrate speech segmentation with
semantic analysis for more accurate boundary detection.

• Descriptions with more than one landmark object: We assume that a com-
plex referring expression consists of a target object description, and option-
ally a landmark object description with connective relative spatial term
or phrase. Thus, Fuse cannot consistently handle cases where the referring
expressions contain descriptions of more than one landmark object in con-
junction or groups of landmark objects (although the example in Section 8.1
demonstrates that sometimes this problem can be overcome in the current
approach). This shortcoming suggests the use of more complex grammars,
and treatment of semantic composition that goes beyond the multiplication
of probability densities. For some steps in this latter direction, see [8].

• Error Propagation: Due to the feed-forward design of the visual attention
update algorithm, errors that enter during initial stages of decoding are
propagated throughout the remainder of the utterance. To remedy this,
and other related problems, the notion of confidence can be introduced
to the visual attention model. For example, the number of active search
paths within the Viterbi beam search, which is often used as a source for
estimating acoustic confidence in speech recognizers [18], might similarly
be used as the basis for estimating confidence of the visual attention pmf.
When confidence is low, the effects of attention could be discounted.

• Visual Segmentation Errors: Some errors in understanding occur due to
imperfect image segmentation performed by the visual analysis system.
Such segmentations may merge more than one objects or divide an object
into two or more parts. These cause mismatches among descriptions and
the corresponding objects. This problem suggests early integration of speech
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into visual processing, the complement of the integration we have explored
in Fuse. Referring back to Figure 2, this suggests that the visual scene
analysis module might be brought into the processing loop. If the speech
decoder confidently reports the phrase “the two blue blocks on the right”,
this might help the visual analyzer decide between interpreting a stack of
blocks as a single block versus two.

• Visual-Semantics Acquisition: Some errors are due to poor visually-grounded
models that did not generalize to test data. A simple solution is to collect
more training data. In the long term, we believe that robust visual models
must be dynamic to account for context-sensitive shifts of word usage, as
well as speaker-dependent shifts of word usage. We are currently investi-
gating several dynamic grounded models to address this issue.

9. Conclusions and Future Directions

We have presented an implemented model that integrates visual context into
the speech recognition and understanding process. In contrast to previous work,
Fuse makes use of context at the earliest stages of speech processing, resulting
in improved performance in an object selection task. The main idea that this
work demonstrates is the payoff of strategically breaking modular boundaries in
language processing. A key to achieving this cross-module integration is a model
of how natural language semantics relates to visual features of a scene.

Looking ahead, we plan to expand this work along two directions. First, Fuse
will be integrated into an interactive manipulator robot[10, 22]. Fuse will have
access to representations in the robot’s visual system and also its planning and
memory systems, leading to an enriched encoding of context to help guide speech
processing. Second, we plan to extend Fuse to work with non-visual context cues
such as geographical position and time of day in order to build context-aware
assistive communication devices [5].
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