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Abstract

Affective virtual spaces are of interest for many VR ap-
plications in areas of wellbeing, art, education, and enter-
tainment. Creating content for virtual environments is a la-
borious task involving multiple skills like 3D modeling, tex-
turing, animation, lighting, and programming. One way to
facilitate content creation is to automate sub-processes like
assignment of textures and materials within virtual environ-
ments. To this end, we introduce the DeepSpace approach
that automatically creates and applies image textures to ob-
jects in procedurally created 3D scenes. The main novelty
of our DeepSpace approach is that it uses music to automat-
ically create kaleidoscopic textures for virtual environments
designed to elicit emotional responses in users. Specifi-
cally, DeepSpace exploits the modeling power of deep neu-
ral networks, which have shown great performance in im-
age generation tasks, to achieve mood-based image gener-
ation. Our study results indicate the virtual environments
created by DeepSpace elicit positive emotions and achieve
high presence scores.

1. Introduction

Generating virtual environments (VEs) is of great inter-

est for many 3D applications, such as games, rehabilitation,

and entertainment [39]. Image creation for texture map-

ping is an integral part of VE design. Images contain a lot

of rich abstract semantic information about objects, scenes,

activities, and moods. Among many nuanced pieces of in-

formation in an image, there has been an increased interest

in the image’s tone or mood. While humans can perceive

and understand images at the affective and cognitive levels

[15], affective image analysis usually targets low level vi-

sual features such as color, texture, shape, and line. Recent

work [5, 50] has explored the importance of understanding

the relationship between artistic principles and emotions in

an image. However, this is not trivial as it involves bridging

the gap between affective content and the user’s perception.

The first step in creating a VE for a virtual reality (VR)

experience is building 3D models of objects that will be part

of the VE. This is usually done using 3D modeling software

(e.g., Maya, Cinema 4D). The objects are then imported into

a game engine like Unity 3D 1. This is followed by speci-

fying material properties and textures for all the objects in

the scene including the sky and and ground terrain. The

textured models along with the terrain and skybox define

the shape and look of the VE while the lights and color de-

fine its mood. One also needs to consider the aesthetic and

affective appearance of the scene as a whole. Despite the

availability of a variety of consumer virtual reality (VR) de-

vices with different setups, developing VR applications re-

mains a difficult and time-consuming task requiring mastery

of various tools and high-expert skills. One way to facilitate

VE creation is to do it automatically from 3D scans of real

world environments [42].

A critical step in creating VEs is the image generation

process. There has been tremendous progress in modeling

and learning image representations [14, 26]. Modeling the

image distribution is a challenging task due to statistical de-

pendencies over several pixels in the image. With recent

advances in deep neural networks, it is now possible to gen-

erate images, conditioned on descriptive labels or tags, that

preserve the structure of image data and underlying context.

However, it is still challenging to encode high-level affec-

tive states like moods in an image generation task. There-

fore, learning generative models conditioned on mood and

descriptive labels can allow us to create richer representa-

tions aimed at building more immersive VEs and, conse-

quently, more dynamic affective experiences.

To address challenges mentioned above, in this work we

focus on two main (related) tasks: (i) design of the sys-

tem pipeline for automatic generation of VEs, and (ii) im-

age generation approach that is mood-informed. These two

elements are an integral part of DeepSpace, our novel ap-

proach to automatically generate surreal textures and artis-

tic VR experiences using music data. The 3D scene design

1https://unity3d.com/
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is based on the mood and content extracted from song au-

dio and lyrics data, along with findings from our online user

study. Lighting is added manually after the environment is

procedurally generated. To generate textures for objects in

the 3D scene, we created a Mood-Conditional PixelCNN

(MC-PixelCNN), which is build upon the PixelCNN model

[45] for image generation tasks. A PixelCNN is a Convo-

lutional Neural Network (CNN) architecture that preserves

the spatial resolution of its input through multiple network

layers, and outputs a conditional distribution at each pixel

location . The DeepSpace pipeline (see Fig. 1) consists of

the following steps.

1. The mood of the song is identified by feeding Mel-

frequency Cepstral Coefficients (MFCC) features [29]

of the audio through a gated recurrent neural network

(RNN) [8], noun phrases are extracted from the lyrics

of the song using the Stanford part-of-speech tagger

[25].

2. A image dataset is created from the results of a Google

Image Search using mood-phrase pairs from step 1) as

search terms, and the MC-PixelCNN model is trained

using the image dataset, mood and phrase triples.

3. Textures are created by feeding the images generated

by the MC-PixelCNN into a DeepDream2 like deep

CNN codenamed Inception [44].

4. A genetic algorithm is used to procedurally create a

VE where the objects are automatically textured with

the output from step 3.

To demonstrate the DeepSpace performance, we generated

two VEs corresponding to the two broad mood categories:

happy (positive mood) and sad (negative mood), as they are

the most frequently felt emotions from music [19, 49, 41].

Additionally, generated images for those two moods were

rated higher than, e.g., calm and angry (see Fig. 4).

2. Related Work
2.1. Image Generation

There has been on discriminative models in the past.

Discriminative DNNs have shown great performance in var-

ious tasks, including image and speech recognition [22, 13],

and machine translation [2]. More recently, generative

models are starting to gain interest. Some of the earlier lit-

erature on generative models has mainly explored variants

of Boltzmann machines [1, 38] and deep belief networks

[17]. These models are generally powerful, however, they

require approximation of the partition functions which can

be intractable. Furthermore, they also do not scale well

for large datasets. On the other hand, Variational Auto-

Encoders (VAE) [21, 34] have received significant attention

as generative models.

2https://en.wikipedia.org/wiki/DeepDream

VAEs can be seen as a neural network with continuous

latent variables, where the posterior distribution is approxi-

mated using an encoder and the reconstruction of data from

the encoded latent representations is stochastically done us-

ing decoders. This adds flexibility to generation of new im-

ages, modulated with extra information, as we attempt in

DeepSpace. In another example, [14] introduced Deep Re-

current Attention Writer (DRAW) neural network for im-

age generation. DRAW networks allow iterative construc-

tion of images by combining a novel spatial attention mech-

anism with a sequential variational auto-encoding frame-

work. One-dimensional LSTMs were used to generate im-

ages in a sequential manner. A recent work [26] focuses on

generating images from natural language descriptions. The

proposed model iteratively draws patches on a canvas, while

attending to the relevant words in the description. The au-

thors show that the model improves image generation for

unseen captions in the dataset, compared to other existing

approaches. Other types of generative models based on ad-

versarial processes and their extensions have been proposed

[12, 10]. However, most of these models are unconditional

or conditioned on few categorical labels only, and not on

descriptive labels or captions that can be words or phrases.

Note that none of these works ever attempted image gener-

ation using mood and text information together, as done in

our proposed DeepSpace.

2.2. Mood-Based Image Generation

There is a lot of work using discriminative models that

associates images and emotions [18, 51, 50]. However, not

much has been done on combining image generation with

human emotions or moods using generative models. In

Emonets [20], the authors perform sentiment analysis using

multimodal deep learning techniques to predict emotions in

videos. Progressively trained and domain transferred deep

networks are used in [48] for image sentiment analysis.

There has been relatively less attention give to mood based

image generation. In DeepSpace, we focus on building gen-

erative models using mood and descriptive text labels for

the image generation task. Our model explores conditional

image generation with a new image density model.

2.3. Virtual Reality

Head mounted displays (HMDs) have gained recent pop-

ularity due to improvement in hardware and software and

easy availability for consumers. Nature Abstraction5 is

an immersive experience that explores fractals produced in

software, rendered using a 360-degree camera, and pro-

cessed in DeepDream to transform the fractal landscapes

into morphing patterns. The visuals in Dreamtime6 are also

5http://alt-o.com/Nature-Abstraction
6http://www.wjsims.com/
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Figure 1. DeepSpace pipeline: mood and noun-phrases (e.g., lonely town) are extracted from song audio and lyrics respectively. The mood-

phrase pairs (e.g., sad + lonely town) are used to build a training image dataset for training the MC-PixelCNN model. Images generated

by the MC-PixelCNN are converted into surreal textures using a deep CNN with Inception modules. Texture shown in red box is applied

to a mountain 3D model in the VE by changing its X/Y tiling values to create the striped pattern (see Sec. 3.4.1). The VE is experienced

through an HTC Vive head-mounted display (HMD)4.

achieved by using DeepDream with 360 degree film mak-

ing techniques. Several data-driven techniques have been

proposed for 3D scene content generation such as scene

modeling[6], VE generation [42], and interactive synthe-

sis of virtual worlds [11]. DeepSpace goes a step beyond

the 360-degree experiences by allowing users to walk and

interact in a psychedelic 3D world for a fully immersive

experience. Our work shares the same spirit as the above

content-generation methods but it addresses automatic VR

scene creation with texture generation and assignment.

3. DeepSpace: The Model

Our goal is to model the distribution over natural images

and generate new surreal andartistic images in our attempt

to create experiential VEs that try to capture the essence

of an emotion. Our model, MC-PixelCNN, a generaliza-

tion of the PixelCNN[45]. The basic idea of the architec-

ture of PixelCNNs (also PixelRNNs) is to use autoregres-

sive connections to model images pixel by pixel, decom-

posing the joint image distribution as a product of condi-

tionals. PixelCNNs are faster to train as convolutions are

generally parallelizable. Given the large number of pixels

in image datasets, this provides an important advantage. In

our MC-PixelCNN model, we estimate the likelihood of im-

ages conditioned on latent vector embeddings representing

descriptive labels and mood of the image, as described in

Sec 3.1. The network scans the image in a row-wise fash-

ion taking one pixel into consideration at a particular point

in time. For each pixel it predicts the conditional distribu-

6https://www.vive.com

tion over the possible pixel values given the scanned context

We use the standard convolution layers in order to capture

a bounded receptive field. This helps in computing features

for all pixel positions at once. The MC-PixelCNN model

uses multiple convolution layers that preserve the spatial

resolution. Masking is employed in the convolutions so that

any computation of conditional distribution for the current

pixel does not take into account the future context or the

unscanned context. An important aspect of our generative

model is that it involves conditioning on latent vector rep-

resentations for descriptive labels and mood of the image to

enhance the overall image generation task.

3.1. Descriptive Label & Mood Representation

We learn latent embeddings of the descriptive label and

mood using unsupervised learning of label representations

mined from text (see Sec. 4). These embeddings prevent

costly manual annotation of attributes and can be used to

generate images for words that are unseen during training

based on nearest neighbors in the embedding space. Two

commonly employed approaches are Word2Vec [27] and

GloVe [32]. The former consists of a two-layer neural

network trained to predict a list of target words based

on a given context window of words. The first layer

acts as a look up table to retrieve the embedding for any

word in the vocabulary, while the second layer predicts

the target words using hierarchical softmax or negative

sampling. Embeddings are obtained by back-propagating

the prediction error gradient over a training set of context

windows sampled from the text corpus.
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GloVe incorporates co-occurrence statistics of words that

frequently appear together within the document. Semanti-

cally similar words occur together more frequently than se-

mantically dissimilar words. Based on this, the training ob-

jective is set to learn word vectors such that their dot prod-

uct equals the co-occurrence probability of the words. The

GloVe [32] approach has recently been shown to outperform

Word2Vec on the word analogy prediction task. We use the

GloVe model trained on a common crawl dataset7 for the

representation for words in the descriptive labels and mood.

We use one-hot vector representation for mood by trans-

forming it into a vector space that matches the embedding

size of the descriptive labels. These latent embeddings cap-

ture co-occurence statistics and project them in a semantic

space (i.e., semantically similar words) are are used to con-

dition images in our generative model. The one-hot vector

is a binary vector v ∈ IR|L| where |L| refers to the number

of all mood labels. The vector contains a “1” in the position

of ground-truth mood label and “0” in other label positions.

3.2. Mood Conditioned PixelCNN for Image Gen-
eration

Our MC-PixelCNN model extends the PixelCNN model

[31, 45]. We model the conditional distribution of natural

images given two latent vector representations of descrip-

tive labels and mood as input (see Sec. 4), in addition to

image pixels. We model the conditional distribution p(x|h)
of images x, given the phrase (P ) and mood (M ) informa-

tion represented as the latent vectors hP and hM , respec-

tively, as:

p(x) =
n2∏

i=1

p(xi|x1, ..., xi−1, hP , hM ), (1)

where n is the number of pixels in x. In this model, ev-

ery pixel depends on all the pixels above and to the left

of it. Hence, the joint conditional distribution of pixels

in MC-PixelCNN is modeled as a product of conditional

distributions defined in Eq.(1). The factorization turns the

joint modeling problem into a sequence problem, where one

learns to predict the next pixel given all the previously gen-

erated pixels. The main difference, however, lies in the

fact that in MC-PixelCNN, every conditional distribution is

modeled by a standard CNN with masked convolutional fil-

ters in order to satisfy the dependency condition (Eq.1), and

avoids future context to influence the current computation

of the conditional distribution. A stack of such filters is ap-

plied over an input image I ∈ IRN×N×3, where height and

width of the image is represented by N with 3 color chan-

nels (RGB). It is worth noting that there is no pooling layer

involved in this process to preserve the spatial resolution.

This approach of tractably modeling a joint distribution of

7http://commoncrawl.org/the-data/

pixels in the image as a product of conditional distributions

has previously been adopted in autoregressive models such

as NADE [23] and fully visible neural networks [3, 30].

However, no conditioning on extra variables was used in

our approach.

3.2.1 Gated Activation Units

We use the gated activation units as proposed in PixelCNN

decoders [45], which allow us to account for more com-

plex interactions (e.g., latent interactions between pixels or

groups of pixels, as well as the mood and descriptive la-

bel representations that we learn) via multiplicative units.

Formally, we model the conditional distribution p(x|h) of

images, given the descriptive label (P ) and mood (M ) in-

formation represented as latent vectors hP and hM by com-

puting the following:

z = tanh(Wk,f ∗ x+ UT
k,fhP + V T

k,fhM )

� σ(Wk,g ∗ x+ UT
k,ghP + V T

k,ghM ) (2)

where σ is the sigmoid non-linearity, k is the layer number,

hM is a one-hot encoding that specifies a mood class, and

hP is a descriptive label representation computed by sum-

ming the GloVe word-vector representation [24]. Here, f
and g denote the filter and the gate, respectively, and Wk,f

is the convolution filter. Uk,f and Vk,f are weight parame-

ters associated with vector representation of descriptive la-

bels and mood respectively. Given a high-level image de-

scriptive label represented as a latent vector hP along with

a mood vector hM , we seek to model the conditional dis-

tribution p(x|hP , HM ) of images suiting a specific mood

and descriptive label by adding terms that depend on hP

and hM to the activations before the nonlinearities. This

allows us to seamlessly encode the descriptive label and

mood information. Recently, several works have explored

skip connections to enhance the flow of information dur-

ing forward and backward propagation. Parameterized skip

connections used in Highway Networks (HNs) [43] allow

representations learned from previous layers to flow unhin-

dered to later layers, generally known as “information high-

ways”. Residual networks [16] simplify HNs by shortcut-

ting with identity functions. This simplification greatly im-

proves training efficiency and enables more direct feature

reuse. Skip connections are also needed to address the van-

ishing gradient issue in deep networks. Both residual and

parametrized skip connections are used throughout our net-

work to speed up convergence and enable ’deeper’ training.

3.2.2 Soft-max layer

To model the conditional distributions over the individ-

ual images, we use the softmax layer as recent work [31]

shows that a softmax distribution tends to perform well,
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Figure 2. Two virtual environments generated to demonstrate the DeepSpace pipeline. a) VE generated from the song ‘The Bird and the

Worm by Owl City’ which was classified happy. b) VE generated from the song ‘Blue Prelude by Nina Simone’ which was classified sad.

The objects in each scene are based on the noun-phrases extracted from the song lyrics supplemented by findings from our online user

study (see Sec 5). The textures are generated by a deep CNN and applied to objects during procedural VE generation.

even though the data is inherently continuous. Each pixel is

modeled successively with green channel (G) conditioned

on red channel (R) and blue channel conditioned on both

red and green channels (R, G). We perform a 256-way pre-

diction for the three color channels (R, G, B) by considering

each channel of the feature map individually at every layer.

The output of the MC-PixelCNN is Iout ∈ IRN×N×3×256.

Formally, the probability that a particular pixel position in

the image takes a value v for a particular color channel c
and a context C (where context C represents the previously

scanned image pixels, mood and descriptive label represen-

tations) can be represented as:

pc(Ii,j = v|C) =
ezv

∑K
k=1 e

zk
(3)

where Ii,j represents position (i, j) in the image I , K =
256 as each color channel c can take 256 different values, z
is the representation obtained from the previous layer.

3.3. Deep Texture Generation

Texture generation, using this deep dream technique is

not mandatory but desired for our VEs as it helps add an

artistic and non-realistic touch to the images generated by

our MC-PixelCNN which inherently tries to mimic real

world images. Our goal is to create experiential VEs that

allow users to experience the essence of a song. We believe

the non-realistic output from this deep dream technique pre-

vents a literal representation of a song’s lyrics translated

into textures that get applied to 3D objects in the VE.

We use a deep CNN architecture named Inception [28]

to extract features from the images generated by the MC-

PixelCNN. This architecture relies on increasing the depth

and width of the network and was applied originally to im-

prove the overall performance of the image classification

task. It involves finding out how an optimal local sparse

structure in a convolutional vision network can be approx-

imated by readily available dense components of the net-

work. In our case, it helps us increase the number of units

at every layer without any uncontrollable overload of com-

putational complexity. In our experiments, we use an Incep-

tion model pre-trained on the full ImageNet dataset [35] and

let the network make the decision to select the feature that

will be amplified using the pre-trained model parameters.

Given an image, we run it iteratively and apply a zooming

operation at each iteration to enhance specific features in

that image detected at a specific layer. Since higher-level

layers extract more sophisticated features, complex struc-

tures and objects tend to emerge. Thus, we generate 24 tex-

tures from a single input image using this iterative process.

3.4. Virtual Environment Generation

A simple VE is composed of 3D models of objects, en-

vironment elements like the terrain and skybox, and lights.

Procedural generation techniques are often employed in

video game design8. We designed the following pipeline

for procedurally generating our VEs:

1. We use a Perlin noise [33] based terrain generator that

allows us to create a variety of terrains. We use the

default skybox object available in Unity 3D.

2. Using the noun-phrases extracted from the lyrics, com-

bined with the findings from our online user study (see

Sec. 5) asking participants to provide text descriptors

of things they associate with happy and sad places, we

select objects from a small database of tagged 3D mod-

els to place in the VE. The placement of objects is done

8https://en.wikipedia.org/wiki/Procedural_
generation
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Figure 3. Left: Sample generated images for “happy” mood with descriptive labels: ocean, desert sand, rail track, mountain top, and forest

land. Right: Sample generated images for “sad” mood with descriptive labels: towers, waterfalls, desert sand, road trip, and rail track.

using a genetic algorithm [46].

3. Textures resulting from the output of the deep CNN,

encapsulating the mood and content of a song, are ap-

plied to all objects in the scene.

4. Information about lighting comes from the online user

study that involves evaluation by external observers

(see Sec. 5). Lights are added manually after scene

generation based on user input in the study.

Since our goal was to create artistic VEs, we used low poly

3D models for their desirable blocky appearance. For an

aesthetically pleasing arrangement of scene elements, we

optimize the positions of 3D objects using a set of designed

rules. A genetic algorithm (GA) [46] with elitism is em-

ployed to model the optimization function to allow for more

sophisticated placement of elements than a simple heuris-

tic/random approach. We create a set of 23 rules that define

spatial relationships between sets of environment elements

and object elements as shown in Fig.2. The rules take into

account orientation relative to the center of the VE, where

the user begins the VR experience when they put on the

HMD.

3.4.1 Texture Mapping

The visual appearance of 3D models in Unity is controlled

by materials made of shaders and textures. We create a new

material by randomly selecting one texture from the set of

24 textures that are created by the deep CNN for each in-

put image. While each input image generates 24 textures,

the number of input images to the deep CNN depends on

the selected song as they are generated from the mood and

noun-phrases extracted from the song and fed through the

MC-PixelCNN. During material creation we alter the X and

Y tiling values from the default 1:1 ratio to create a variety

of horizontal and vertical texture patterns. When the tiling

is left at 1:1, the texture is visible as a checkered pattern

on the object. Some textures are animated at runtime to en-

hance the psychedelic nature of the VR experience.

4. Dataset
We created our own database of images using moods ex-

tracted from song audio and noun-phrases extracted from

song lyrics. We use the Million Song Dataset (MSD) [4]

that comes as a collection of meta-data such as song names,

artists and albums, together with MFCC features and a set

of other features like loudness and tempo extracted with

the The Echo Nest API9. The mood categories are inferred

by mapping the LastFM10 tags associated with the songs

in MSD. The mapping is done in a similar fashion as ex-

plained in the work by Corona et al [9]. These mapped

songs are then used for training a mood classification model

from song audio. Using the subset of songs that have been

mapped to mood categories, we use the MSD to perform an

artist and song title search on Flash Lyrics11. Non-english

9http://the.echonest.com
10http://www.last.fm
11https://www.flashlyrics.com/lyrics
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song lyrics are filtered out. After filtering out non-English

lyrics, we get a total of ∼75, 000 songs that are mapped

to a mood category and have full song lyrics. We perform

phrase extraction on these song lyrics to be used as descrip-

tive labels for our image generation task.

Mood Classification. We feed the MFCC features of the

songs into a gated recurrent network (GRU) [8] to predict

the mood category from the song audio. We use this ap-

proach as it is computationally less expensive than Long

Short Term Memory (LSTM) networks and performs better

than a standard RNN [7, 8] in target task. At each time step

t, the GRU unit takes a row of the MFCC feature segment xt

and a hidden state ht as input. The internal transition opera-

tions of the GRU are defined as ht = GRU(xt, ht−1). The

final hidden state (hT ) is fed to a fully connected layer fol-

lowed by a softmax layer that outputs one of the four mood

categories (happy, sad, angry, calm) [36].

Figure 4. Histogram of users’ scores for images associated with

the four mood classes used in our mood classification task. The

four classes are from Russell’s circumplex of affect [36].

Phrase Extraction. Song lyrics are preprocessed by re-

moving stop words, infrequent words, and tokenzing the

sentences. The Stanford POS tagger [29] is employed as-

sign parts of speech tags to each token such as noun, verb,

and adjective. Based on these tags we get a unigram list

of nouns. Given a piece of text and its POS tags, we per-

form Noun-Phrase or NP-Chunking on the tagged results

of the POS. There may exist duplicates between extracted

noun-phrases and the unigram list of nouns. We remove the

duplicates from the unigram list of nouns because labeled

noun phrases are more descriptive that just tagged nouns.

The final list of words after de-duplication forms the candi-

date descriptive labels to train our generative model.

Using the top 5000 words from the final list of noun-

phrases suffixed with mood terms like ‘happy’ or ‘sad’,

we search and download the results from Google Images.

Search terms that do not result in a minimum of 100 im-

ages per mood and noun-phrase pair are removed. A ran-

dom manual curation is performed before using the data for

training the MC-PixelCNN model. The final result is an

image dataset which we further augment during training.

Training MC-PixelNN. We explore class-conditional

modeling of the images in our database using our MC-

PixelCNN. The descriptive labels obtained from the noun-

phrases obtained from the lyrics are converted into fixed

size vectors using GloVe vectors. In order to condition on

mood, in addition to the descriptive labels, we use one-

hot encoding for representing them as a vector. To map

the mood into a vector of similar dimension as the descrip-

tive labels vector, we get GloVe vector representations of

the mood terms. The collected images along with mood

and noun-phrase data are used to train the MC-PixelCNN

model. The data is further augmented to reduce overfit-

ting by enlarging the dataset artificially by performing la-

bel preserving transformations. We perform image transla-

tions and horizontal reflections, executed randomly during

the training. on the original images.

5. Evaluation and Results
The Online User Study. Since it is difficult to quantify

the performance of the proposed generative approach, we

focus on the qualitative analysis. We observe that the gen-

erated images have good visual quality for the correspond-

ing descriptive label and mood. Sample images generated

for happy and sad moods with different noun-phrases are

shown in Fig. 3. The tone of the images shows high contrast

between each mood. The images are quite distinct from one

another and the corresponding objects and backgrounds are

clearly produced. We also note that the images for each

descriptive label are diverse and our model is able to gen-

eralize and produce new renderings. Our observations are

validated by a user study (see Fig. 4) with 55 external ob-

servers who were shown 20 generated images for each of

the four broad mood categories (happy, sad, angry, calm)

in a random order (see Fig. 5). The online user study is

also used to collect text data about peoples’ associations be-

tween moods, place and things. That information is used to

decide which objects to add to the virtual worlds, in addi-

tion to noun-phrases extracted from song lyrics. The in-

formation also helps inform the design of lighting in the

VEs. For example, descriptors like bright and sunny were

entered for happy moods by several observers while dark

and night were entered for sad moods. Thus, the happy

scene has bright sunlight while the sad scene is dimly lit,

both of which were manually added after scene generation.
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Figure 5. Two generated images for happy/sad moods as shown to

participants in the online user study.

Virtual Reality User Study. We conducted a pilot VR

study with 2 scenes corresponding to happy and sad moods.

12 volunteers (ages 22-45, mean 34, 8 female) were re-

cruited through email to participate in a the pilot to test the

VEs generated using the proposed automatic approach (see

Fig.2). A HTC Vive HMD was setup in a 2.5x2.3m tracked

space in our lab. The study setup included a happy song

(S1) used to generate VE1 and a sad song (S2) used to gen-

erate the VE2. 6/12 participants had never tried VR before.

After the initial orientation, participants were asked to lis-

ten to S1 or S2, followed by a question: “Thinking about
the song you just heard, please describe how it made you
feel.” Then they viewed VE1 or VE2. If they listened to

S1 they viewed VE2, and if they listened to S2 they viewed

VE1. This was done to reduce the impact of the emotional

effect of listening to a song on the user’s experience of the

VE as we wanted to learn if we had successfully generated

affective VEs. After the VR experience, users were asked

to answer a similar question as above but related to the VE.

Responses to both these questions capture the user’s mood

perception of the song and of the virtual scene.

The overall rating of presence12 is derived from the aver-

age of ratings for questions from the Presence Question-

naire (PQ) [47] divided into three factors: Spatial Pres-
ence, which is related to the sense of being in the VE, In-
volvement, which describes the VE’s richness, and Realism,

which is the consistency of information in the VE with the

objective world [47]. The reported overall rating of pres-

ence across all participants was 5.11/7, SD=.81), with the

highest being 7. Across the three factors, the average rat-

ings were high for spatial presence (M=5.87/7, SD=.63) and

involvement (M=5.22/7, SD=.51) and medium for realism

(M=4.25/7, SD=.91). This indicates that our approach for

automatically generating and texturing the VEs resulted in

VR experiences where participants were spatially present

[40] and highly engaged.

Emotional Responses. While the qualitative responses

correlate well with our hypothesis, in order to get a quantita-

tive measure of the text responses, we use the NRC Emolex

12Typically used to quantify the VR performance [40].

Figure 6. The distribution of participants across three categories

from the Presence Questionnaire [47]. Below each category are

the chi-square test (χ2
(2,N=12)) results.

dataset [37]. We have each user’s textual responses to the

two questions about how the song and the VE made them

feel. In order to map these responses with emotions, we

use the NRC Emotion Lexicon (EmoLex) dataset. We tok-

enize each response and use Emolex to associate it with a

distribution over emotions. Since we focus on happy and

sad moods in our user study, we compare the “joy” and

“sadness” emotions and their association with the user’s re-

sponse and classify if the response is associated with happy

or sad moods. We find that 84% of the users felt “joy” lis-

tening to the happy song S1 and viewing the happy scene

VE1. However, though 84% of the users felt “sadness” lis-

tening to the sad song, only 33% of them felt “sad” viewing

the sad scene VE2 (see Fig. 2). We attribute this to the fact

that both the VEs were highly artistic in nature and were

described as “imaginative” and “beautiful.”

6. Conclusion

In this work we presented DeepSpace, the first automatic

approach to create immersive virtual reality environments

from song data that can be experienced in an HMD. The

system is able to generate textures that encode mood

extracted from song audio, and noun-phrases extracted

from song lyrics, and apply them to objects in the 3D

scene. The scenes themselves are procedurally generated.

Our preliminary study shows that our VEs evoke positive

emotions in users while eliciting a high sense of presence,

the hallmark of any VR experience. There is much room

for improvement as well as opportunity for further devel-

opment of automated processes for creating affective VEs.
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