
Situated Language Understanding as Filtering
Perceived Affordances

Peter Gorniak and Deb Roy
MIT Media Laboratory

20 Ames St.,Cambridge, MA 02139 USA
{pgorniak,dkroy}@media.mit.edu

1



Abstract

We introduce a computational theory of situated language understanding in

which the meaning of words and utterances depend on the physical environment

and the goals and plans of communication partners. According to the theory, con-

cepts that ground linguistic meaning are neither internal nor external to language

users, but instead span the objective-subjective boundary. To model the possible

interactions between subject and object, the theory relies on the notion of per-

ceived affordances: structured units of interaction that can be used for prediction

at multiple levels of abstraction. Language understanding is treated as a process

of filtering perceived affordances. The theory accounts for many aspects of the

situated nature of human language use and provides a unified solution to a number

of demands on any theory of language understanding including conceptual combi-

nation, prototypicality effects, and the generative nature of lexical items.

To support the theory, we describe an implemented system that understands

verbal commands situated in a virtual gaming environment. The implementation

uses probabilistic hierarchical plan recognition to generate perceived affordances.

The system has been evaluated on its ability to correctly interpret free-form spon-

taneous verbal commands recorded from unrehearsed game play between human

players. The system is able to “step into the shoes” of human players and cor-

rectly respond to a broad range of verbal commands in which linguistic meaning

depends on social and physical context. We quantitatively compare the system’s

predictions in response to direct player commands with the actions taken by hu-

man players and show generalization to unseen data across a range of situations

and verbal constructions.

2



1 Introduction

Language is often used to talk about the world. We easily refer to objects using expres-

sions such as “door” or “the blue thing for making pizza that I gave you yesterday.”

The relationship that holds between language use and the world, variously and differ-

ently described by such terms as reference, intentionality and aboutness, has long been

a central topic of study by linguists, psychologists and philosophers. Most theories

posit an intermediary step between words and the world, usually labelled as a concept.

However, theories differ on even the most fundamental matters such as whether a con-

cept is a mental construct of the language user, or an independent abstract entity. Very

few of these theories have been stated in computational terms amenable to mechanistic

implementation and empirical evaluation.

There are two intertwined aspects of any theory of concepts: a description of the

internal structure (if any) of a concept, and an account of how this structure comes to

be about the world. In many cases, theories focus on the first and neglect the second,

or at best give a vague answer to the second. Why is this? We suggest that at issue

is the role of autonomy, an issue that is rarely considered a central aspect of concep-

tual structure. People interact with their immediate world for their own reasons, and

maintain concepts about this world for their own functional ends. However, humans

neither try to fully internalize a complete representation of the world Clark (1998), nor

do they individually maintain all possible concepts of a community Putnam (1975). A

theory of human concepts needs to support and explain the same type of autonomy: it

must be able to generate functional concepts about a person’s experience, yet rely on

the environment and community to maintain most of the state of the world and shared

meaning in general.

In short, theories of concepts often neglect to specify how the proposed mental

structures attach to the world and gain intentionality. These theories may define words

in terms of other words or word-like symbols and call these definitions concepts. While

3



such theories contribute much to our thinking about the possible mental structures that

are concepts, here we present an approach to concepts that emphasizes the importance

of intentionality and tightly couples the internal structure of concepts with their need

to be about the world. Any theory that draws a clear line between concepts and the

world leads to “detached” concepts that lose their intentionality. We provide a theory

that avoids drawing any such line. Instead, it proposes that each element of a concept

must make a prediction about the world, thus crossing over from the mind to the world.

Every concept thus becomes both a property of the language using system, and of

its relation to the embedding world. These structural elements are called perceived

affordances, yielding a theory of Affordance-Based Concepts.

Based on the Affordance-Based Concept (ABC) theory, we introduce a computa-

tional model that employs plan recognition as a mechanism for finding and ranking

the perceived affordances of a person engaged in co-operative tasks. Situated language

interpretation is modeled as a process of filtering perceived affordances. In effect, the

complete meaning of linguistic expressions is only understood when words are meshed

with the situation in which they are used. To evaluate the model, we describe an imple-

mentation of the model that interprets situated language collected from people playing

a multiplayer computer game. We designed a computer game in which two human

players explore a set of interconnected rooms via avatars in order to cooperatively

solve puzzles. Due to the nature of the puzzles, players must co-ordinate their actions

using language. During game play, all verbal communication and situational context

are recorded, providing a rich record of communication in context. The implemen-

tation of the model uses a probabilistic hierarchical plan recognizer in the form of an

Earley parser to analyse the actions of human players as a basis for understanding com-

mands produced by the players. At any point in time within a game session, the plan

recognizer processes all observed player actions in order to predict the likely actions of

each player based on a priori knowledge of the goals and likely strategies in the game.

4



These hierarchically organized and ranked predictions stem from a combination of the

structure of the environment, the player’s past interaction with this environment, and

the goals of the player. They provide a uniform representational substrate for modeling

objects, geographical spaces and actions in terms of their functional significance rela-

tive to an agent. The crucial contribution of this paper lies in treating these predictions

as the building blocks of concepts underlying (grounding) word meaning. To do so, we

define lexical items as filters on the space of all such structured predictions, which are

computational instantiations of perceived affordances. During linguistic parsing these

filters compose to form more complex concept definitions, and the concept associated

with a whole utterance is the set of perceived affordances selected by its composite

filter. We have evaluated the implemented model for its ability to understand freeform

directives issued by players in the game environment by comparing its predictions to

the actions taken by human players in response to the same commands. Quantitative

results of the evaluation show that the model accurately predicts how human players

respond to spoken commands issued by their human partners, demonstrating the via-

bility of our approach for modeling the interpretation of context-dependent language

on the basis of perceived affordances.

The Affordance-Based Concept addresses the intentional link between language

users and the world by treating predicted interactions as the basic building block for

conceptual representation. By doing so, it also yields a substrate that addresses many

other demands of a theory of concepts that are often only considered individually. For

example, perceived affordances are naturally ranked according to typicality and con-

text, addressing the prototypicality effects often exhibited by human concepts. Simi-

larly, the richly structured predictions made by Affordance-Based Concepts naturally

lend themselves to conceptual composition. In fact, as we will show in the implemen-

tation presented here, conceptual composition can be cast as a filtering process on the

complete set of affordances a situation yields. Finally, hierarchical sets of affordances

5



give an intuitive framework for performing conceptual generalization and abstraction.

The remainder of this paper is organized as follows: Section 2 motivates the need

for a new theory of concepts. Section 3 introduces the Theory of Affordance-Based

Concepts. Section 4 describes our implementation of an instance of ABCs, and Section

5 presents evaluation studies performed with this implementation. Finally, Section 6

provides a brief summary and suggests some useful directions for future work.

2 Background and related work

A growing trend in Cognitive Science has cast language understanding as an embodied

and dynamically contextualized process (Duranti and Goodwin, 1992; Glenberg, 1997;

Barsalou, 1999). Rather than traditional views of concepts, such as those summarized

by Laurence and Margolis (1999) and Prinz (2002), these theories emphasize the im-

portance of the language user’s possible interactions with the world. They argue that

mental representation is based on sensing and acting in the world, and that concep-

tualization and the ability think about acting in the world are inseparable. Evidence

for the cognitively tight coupling of these processes during language comprehension

in humans comes from both neurological and behavioural studies. Pulvermüller et al.

(2001) shows activity in the motor regions corresponding to body parts during verb

understanding, where the active regions correspond to the body part involved in the

action specified by the verb (e.g. the mouth for “talk” and the leg for “walk”). These

studies suggest strong links between language understanding and motor control in the

brain, and may even hint at a thesis like the one presented here: that language is un-

derstood directly in terms of action planning representations. Specific support for our

project here comes from Glenberg and Kaschak (2002), Zwaan (2003) and others who

show that language comprehension involves the generation of embodied mental rep-

resentations and simulations to make predictions and generate hypotheses about novel

contexts.

6



So far, there have been few computational models of interactionist (Bickhard, 2001)

theories, partly due to the difficulty of building a machine that is sufficiently embedded

in a non-trivial world to simulate language understanding. In this paper, we introduce

a specific interactionist theory of language understanding and describe an implemen-

tation that leverages the theory to understand spontaneous human commands in a dy-

namic virtual environment. By doing so we hope to provide a first instance of a situated

system that understands language directly in terms of perception and action represen-

tations. While the type of embodiment in our system differs in that we use computer

games as an easily sensed yet socially complex embedding situation, we believe that the

lessons learned from attempting to perform language understanding on unconstrained

human speech in terms of plan models and predicted actions apply directly to more

fine-grained sensory and motor systems embedded in the real world.

While the theory introduced in the next section is general in nature, it should be seen

as a proposal and outline with partial support from the implementation and studies that

follow in the subsequent sections. Many of the linguistic aspects of the implementation

are simple, and blatantly ignore discourse history to focus on taking into account in-

tentional and physical history. This is a deliberate decision, because discourse history

has been proposed as a way to analyse intentions and recover plans before (Allen and

Perrault, 1980; Litman and Allen, 1984; Stone, 2001), whereas intentional and physical

history has been left unaddressed. This decision means that treatment of anaphora, and

linguistic analysis in general are simplistic in our current work in favour of emphasiz-

ing the connection to the situation captured by physical and intentional (teleological)

analysis. Furthermore, while we evaluate our implementation quantitatively as com-

pared to human performance, this is a general measure of the model’s viability and

does not validate the implementational details as cognitively real in humans. It does,

however, suggest that the theory can be the basis for predictive computational models

of situated human reasoning and language use. Our results emphasize the predictability

7



of the situation through plan recognition, and add language as a further filtering factor

on top of the possible actions dictated by the affordances of the actors. The increase in

predictability through taking into account utterance is significant, but the good perfor-

mance of a hierarchical plan recognizer on the actions of players alone driver home the

point that much of understanding situated language comes from modelling the situation

rather than relying solely on the words.

2.1 Existing computational approaches

Winograd’s SHRDLU was one of the first situated language understanding systems

(Winograd, 1970). In fact, it still stands today as one of the most sophisticated ones,

without much followup work to surpass it. SHRDLU uses a relatively static, symbolic

representation of the situation and keeps the user’s plans distinct from the physical

(logical) situation. Plans in SHRDLU are only implicitly encoded in the form of pro-

cedures applied due to the language used. In the work presented here, the situation

includes a noisy estimate of the language user’s plans in a highly dynamic situation.

The situation thus requires categorization and representation in order to be tied to lan-

guage, which in turn requires interaction and prediction on the part of the language

understanding system. SHRDLU, on the other hand, thus commits to the problematic

assumption of the separation of linguistic concepts from the world they are about that

was discussed in the previous sections.

Chapman’s work describes a semi-autonomous agent in a game that follows simple

linguistic instructions (Chapman, 1991). While touching on elements of interaction

and planning, this work de-emphasizes the linguistic component in favour of focusing

on a model for interactivity. This article expands on those ideas by introducing a strong

language element to cast the elements of interactivity and prediction themselves as the

conceptual basis for a linguistic system.

In our own work, we have introduced both visually situated language understanding

8



systems (Gorniak and Roy, 2004) as well as interactive conversational robotic systems

(Hsiao et al., 2003). While this prior work focused on grounding words in visual per-

ception and developed methods for linguistic parsing compatible with sensor-grounded

language understanding, that work did not address teleological aspects of semantic

grounding. All of the utterances understood by these systems consist of visually refer-

ring expressions, each uttered with the single purpose of communicating its referent,

and in the case of the robotic models, performing simple manipulation actions on those

referents. Here, we propose that determining the purpose behind an utterance is of

prime importance to understanding its meaning. Along similar lines, our robotics work

has led Roy to propose a theory for grounding linguistic concepts in physical interac-

tion (Roy, 2005). That work complements that presented here as a proposal for linguis-

tic meaning based on interactions with the world at a far more detailed and fine grained

level of physical (sensory-motor) experience than considered here. In the future, we

hope to give an account that encompasses both the level of representation discussed

there as well the more abstract and broader interactions under investigation here.

Following the idea that human cognition uses scripts and plans to model the de-

tailed and more abstract affordances of a situation and to reason about language and

action (Schank and Abelson, 1977), the implementation introduced here relies on hier-

archical plan recognition based on observing a sequence of actions given a generative

model to perform planning. While much work and many systems exist that produce hi-

erarchical plans given goals, especially in the popular framework of HTN (Hierarchical

Transition Network) planning (Erol et al., 1994; Nau et al., 2003), there exists consider-

ably less work on applying similarly expressive and structured models to probabilistic

plan recognition. Probabilistic parsers have also been used in other plan recognition

systems (Bobick and Ivanov, 1998; Pynadath and Wellman, 2000), and in addition the

use of Abstract Hidden Markov models has been suggested, which does not produce

the type of modularity required here (Bui et al., 2002). A promising new candidate is

9



Geib and Goldman’s execution model based plan recognition framework, which main-

tains pending action sets that could be used instead of the Earley state sets on which the

work here is based (Geib and Goldman, 2005). The advantage of a plan library based

approach using HTN style methods would be a better parametrization of the plan li-

brary, and thus easier creation of and reasoning about possible plans without a need to

generate all possible actions explicitly.

In addition to work explicitly related to planning and plan recognition, some au-

thors have proposed other predictive representations for learning and acting. Drescher

(1991) uses structural elements that assemble themselves into hierarchies while inter-

acting with a simple world. While strongly related to the notion of affordances used

here, this work does not connect to language and it is unclear how it scales to a prob-

lem of the size tackled in the studies presented in later sections. The work does contain

many insights into how affordances might be learned and organized by interacting with

a situation. More recently, Littman et al. (2001) have proposed a stochastic representa-

tion of an agent’s state based upon predictions of the outcome of a series of actions the

agent could take. These proposed representations are promising candidates for compu-

tational instantiations of affordances. However, in the implementation presented here

we rely on a known plan recognition paradigm that is suitable for the complexity and

structure of the scenario investigated. In other situations, for example in the robotic

case where action and perception are unreliable, but plans may be less complex, these

other ways of working with affordances may be more suitable.

Finally, there exists work on computationally modelling affordances more abstractly

as a theoretical tool to explore linguistic mechanisms (Steedman, 2002), as well as in

a non-linguistic setting to model a robot’s interactions with the real world (Stoytchev,

2005). While both research areas are relevant to the work presented here, they do not

address the need for a theory linking perceived affordances to linguistic concepts in an

implementable fashion. They do, however, suggest other ways to encode and reason

10



about affordances, which could enrich the work presented here in the future.

3 The ABC theory

The theory of Affordance-Based Concepts provides a solution to the problem of con-

cept detachment outlined in the last section. The nature of its basic units, perceived

affordances, ensures that it provides the linked triplet of perception, representation and

prediction at the most basic level. The theory therefore produces concepts connected

to the concept user’s world in the strongest possible sense, doing away with problems

of passive perception and lack of normativity. We describe the theory in this section,

and a computational instantiation that captures many aspects of the theory in the next

section.

3.1 Affordances

In the previous section we highlighted the need for mental structures that integrate

aspects of perception, representation and prediction. This section introduces the notion

of perceived affordances to fulfill this need.

3.1.1 Affordances and perceived affordances

The term affordance was coined by Gibson (1977). Working in the field of visual per-

ception, Gibson was responding to what we have called correspondence theories of

perception. Rather than focusing on image-like representations that are similar to, or

correspond to, the light information impinging on the retina, he proposed that percep-

tion encodes what the external world affords the perceiver. Thus, extended surfaces

are perceived to provide support for walking on, if the surface is of an appropriate

size relative to the perceiver and sturdy enough to hold the perceiver’s weight, and the

perceiver is actually able to walk. However, affordances are not necessarily perceived.

11



They are relationships between an actor and the embedding environment that hold inde-

pendently of the actor perceiving them. We therefore distinguish between affordances

and perceived affordances – those that the actor perceives and thus mentally represents.

Affordances are unique in that they are primitive aspects of the physical makeup of

the world that are neither objective nor subjective. They span the objective-subjective

boundary. There is no sense in which a chair affords sitting on, unless we think of

someone who is doing the sitting relative to the chair: the sitter must be of the right

size and weight to get onto the chair and be supported by it. Thus, a human sized chair

affords sitting for an adult human actor, but not for a horse. A chair might also afford

picking up and throwing for adult humans, but not if it is bolted to the floor. The set

of all affordances of an individual in an environment contains all possible interactions

of the individual with the environment. This set is not identical to the set of perceived

affordances of the individual. Neither is the set of perceived affordances a subset of the

set of all affordances, because the individual may be wrong about what the environment

affords it. If a person attempts (and fails) to sit on a cunningly designed object that

looks like a wooden chair but is actually made out of paper, the person perceived an

affordance that did not actually exist.

Perceived affordances, as we have described them here, fulfill the requirements of a

representation we arrived at in the last section: they are the product of perception of the

world, they encode some aspect of the structure of the world relative to the perceiver,

and they predict a possible interaction between perceiver and world. By implying a

prediction, they can be falsified. However, some incorrectly perceived affordances

may well never be falsified. If in the preceding example the perceiver decides not to

use the prediction and sit on the paper chair, the perceived affordance, though wrong,

will never be falsified. The distinction between true and false perceived affordances

is not necessarily a binary one. Agents may have degrees of belief in the validity of

perceived affordances, and in fact the implementation presented in Section 4 maintains

12



exactly such degrees of belief.

3.1.2 The structure of perceived affordances

An affordance concerns possible interactions between an actor and an environment,

and an interaction necessarily includes a temporal element. Given a joint state of actor

and environment an affordance is a possible future interaction and thus concerns at least

two points in time: the current moment, and the future point of interaction, which may

also be extended in time. Recall that affordances in general are not representations,

they are sets of possible interactions and thus exist simply because of the physical state

of the system that includes the state of the environment and the state of the actor – in

short, because of the situation. Here, we are more interested in perceived affordances,

which are mental representations, and thus must be finitely describable without requir-

ing a complete description of the situation. Due to what Smith calls the flex and slop of

the world (Smith, 1996), namely the property that in the macroscopic world of every-

day experience effects die off with distance, it is generally possible to produce a state

description of the situation that suffices to make good predictions without describing

it completely. The Markov Assumption of a state in a model proposes much the same

thing: that it is possible to predict the future behaviour of the system given only an

encoding of its current state. Perceived affordances thus include an encoding of some

aspects of the current situation. There are many examples of such state encodings

in current literature concerning decision making for artificial agents (Boutilier et al.,

1999).

In addition to a state encoding, an affordance predicts a possible interaction. This

prediction may be representationally explicit, such as a list of possible ways to pick up

a cup, or it may be implicit, such as an encoding of the cup’s geometry together with

a model of possible hand movements and configurations. Both representational styles

have their place at different levels of affordances. It seems unlikely that a list is a good

13



way to represent the myriad ways to pick up a cup, but it may serve well for thinking

about what to have for breakfast. In general, as Minsky (1985) points out, there are

many styles of representation that are amenable for different ways of thinking about

different things, or thinking differently about the same thing. As long as representa-

tions encode state and serve to predict possible interactions, they are candidates for

affordances.

An affordance addresses the possible action prediction problem at a single level

of representation. In the previous example, the possible ways to pick up a cup and

the choice of breakfast foods are on very different levels of representation. They are

connected, however, in that a possible breakfast choice may include pouring a cup of

milk, and thus picking up a cup. To make mental representation feasible it is important

to keep these levels of affordances related yet distinct. Keeping them distinct allows

one to reason on a single level, to achieve more concise yet still approximately Marko-

vian state encodings and to employ the representation and reasoning methods that are

best for that level. Keeping them loosely connected, on the other hand, allows for pre-

dictions that span levels and lets one fill in the details of high level plans, creating a

hierarchy of perceived affordances.

3.2 Affordance-based concepts

3.2.1 Concepts of objects

Note that so far we have not invoked the notion of objects per se – perceived affor-

dances are about the structure of the world that can be exploited to make predictions.

This structure can be below the level of everyday objects, for example when it con-

cerns the geometry of a graspable surface, which may or may not be part of a larger

structure that we usually label “doorknob.” Having replaced the notion of objects with

the notion of structural elements called affordances, we can now re-introduce objects

as bundles of affordances. A doorknob yields a set of interactions, as determined by

14



its physical properties and the agent’s abilities. When we engage in an active process

of representation to distinguish objects within the structure of the world, we carve out

a set of local affordances in the world and consider it an object. This process is not

arbitrary, however, as it exploits the pre-existing structure of the world, including our

own abilities. Thus while concepts of objects are the product of our perception, repre-

sentation and actions, and while we may decide to cut up the world into different sets

of objects at different times, we are externally constrained in our object categorizations

by our own structure and that of our environment.

In the following studies this unified representation of objects as bundles of per-

ceived affordances lets us capture the situation in terms of its possible functions for the

agent. For example, a door is represented by the uses an agent might have for it, such

as unlocking it, opening it or walking through it. This lets us interpret language by

connecting it to a representational substrate that already includes predicted actions and

abstractions and thus turns understanding into a filtering process on this substrate. For

example, “open the door” selects a subset of the perceived affordances of the listener

in his or her present situation that involve opening available doors.

3.2.2 Concepts and composition

Concepts of objects are instances of the more general class of structures we call con-

cepts. Each concept is a bundle of perceived affordances. In addition to representing

concrete everyday objects, concepts can represent sets of structures in the world not

limited to a single agent and object. Allowing arbitrary bundles of affordances gives

the Affordance Based Concept theory a unique representational power, but the use of

affordances imposes limits as it is constrained by the structure of subject and environ-

ment. One aspect of this power is the ability to represent abstraction. For example, the

command “let me into the next room” in our studies selects a more abstract interaction

of changing rooms that at lower levels expands out into the listener unlocking or de-

15



stroying the door to the next room, or pulling the correct lever to open it, followed by

the speaker moving to the next room. This is also an example of concept composition

in which the filter functions of lexical items are combined during the linguistic parsing

process. Thus, while “room” selects sets of affordances available in any single room

in the virtual environment, “next room” selects only those requiring exactly one room

change by the speaker.

In this paper we specifically address situated language. Here situated is used in

the sense that one cannot understand this type of language without knowledge of the

speaker’s immediate physical and intentional context. Other kinds of language are

less immediately situated, such as the displaced language used by someone relaying

a story about a recent trip, or a description of a fictional event in a book. While not

immediately situated, these types of language are still embedded in a strong intentional

context created by the story as well as background knowledge of speaker and listener.

In that manner, the methods presented in this paper for modelling intentional context

via plan recognition and mental simulation have relevance to understanding displaced

language.

While not covered by the implementation presented later in the paper, theoretically

ABCs also extend to non-physical concepts. Some labelled concepts have intuitively

clear constraints on interaction possibilities associated with them, such as “mass” or

“ease of use”. But we believe there is even a story of levels of affordances to be told

about a concept like “freedom”. As said, we do not claim that a single type of mental

representation suffices to account for all possible levels and types of affordances. The

following sections introduce one type of framework to maintain hierarchical levels

of affordances and to perform language understanding in terms of these affordances.

Some meanings of a word like “freedom” might be representable in that framework,

within the limited domain addressed - being unable to leave a room is certainly an

aspect of the puzzle the players encountered and our framework captures. We will need

16



to develop a representationally richer framework that relies less on explicit generation

of affordances to cover the full human meaning of a word in terms of affordances.

Mental simulations, plans and affordances, however, are likely to still be a part of

any such expanded framework, as shown by work on human understanding of abstract

language (Glenberg and Kaschak, 2002).

4 An implementation of the ABC

We now turn to a computational implementation of the Affordance-Based Concept

theory. The implementation described here demonstrates all of the main aspects of

ABCs:

• Predictive units that capture the possible interactions at a particular level of ab-

straction;

• A hierarchy relating affordances at different levels of abstraction;

• A mechanism to track the current situation in terms of perceived affordances of

all levels;

• A set of functions to form and combine concepts from the past and current per-

ceived affordances;

• The necessary relationships linking words and grammatical constructions to ABCs

to decode language into concepts given a situation.

As a first step in exploring the space of possible ABC models, the implementation is

limited in scope. While its mechanisms are general and should be transferable to many

domains, it achieves coherent treatment of hierarchical perceived affordances through

uniformity: each affordance is represented in the same way, namely as a single struc-

tured prediction of a probabilistic plan recognizer. While this particular representation

17



is useful for a number of problems and domains, we claim in no way that perceived

affordances should actually be uniformly represented.

Another caveat applies with respect to the high-level symbolic form of the input ac-

cepted by the system we are about to present (i.e. high-level game events such as player

movement and object manipulations, not raw visual or other sensory input). There are

many different levels of granularity at which affordances can be modeled. One such

level encompasses low-level, fine-grained sensory inputs such as camera pixels that

need to be aggregated and interpreted over time as well as raw motor outputs. We ac-

knowledge the need to address this layer of granularity and have proposed models that

do so elsewhere (Roy et al., 2004; Roy, 2005). The difficulties of sensing and acting

in the real world, however, confine the implementation of these proposals to controlled

real world scenarios and simple linguistic and social interactions. By turning to com-

puter games as a research platform we are able to focus on more complicated linguistic

and co-operative social interactions by greatly simplifying sensing and acting. We be-

lieve, however, that many of the problems of modeling affordances exist independently

of the granularity of input and output. For example, a model must be able to generate

affordances in a new situation, but constrain the production of affordances by known

limitations of the agent in relation to its environment. At a low level, this means ac-

knowledging the restrictions imposed by the agent’s body and the properties of the

physical environment, and evaluating the affordances of novel situations in the context

of these restrictions. At the level we address here, this means taking into account prop-

erties of how the game world works, and how the agents can affect it during their search

for a puzzle solution. The abstract affordance representation we employ here provides

a framework to generate the relevant affordances for a situation, and thus applies both

to lower level sensory input and motor output as well as the input and output of the

game setting.

18



4.1 Hierarchical plans

In the implemented system, the structure of perceived affordances hinges on the notion

of a hierarchical plan. A plan is a sequence of one or more steps an agent takes or

considers taking. A hierarchical plan is a plan in which a top level node is expanded into

sequences of lower level nodes each of which in turn may expand into yet lower level

nodes. The leaves of the plan structure form a non-hierarchical plan of concrete actions

the agent can actually take. Humans explicitly or implicitly maintain hierarchical plans

all the time, such as when planning to buy milk, which expands into going to the store

and purchasing milk, which in turn expands into walking to the car, getting in the car,

driving to the store, and so on. Hierarchical plans have the advantage of making some

independence assumptions: if your goal is to buy milk, how you get to the store does

not matter – you could walk, drive or bike. This independence assumption is a powerful

tool that buys computational tractability and an easy method to leverage substitutability

of sub-plans. However, if one suspects that this independence assumption does not

hold, context dependence can be achieved by providing distinct symbols that occur in

distinct contexts. For example, instead of a context-independent sub-plan to get to the

store, one would employ two context-specific sub-plans for getting to the store, one to

do so in a covered manner (to be used if it is raining) and one to get to the store in other

cases.

Plans and planning are intimately related to perceived affordances. In fact, per-

ceived affordances are the basis for planning. The current situation must contain an

affordance predicting one could go buy milk, as otherwise one would not plan for

it. Similarly, someone will only consider driving to the store if that persons actually

has access to a car (which includes planning to obtain access to a car). Perceived affor-

dances are thus not the elements of a plan, but at each step they are the possible choices

a planner faces when making decisions. Thus each planner must maintain sets of affor-

dances to perform its planning, and a hierarchical planner maintains hierarchical trees

19



of affordances.

Planning and plan recognition are tightly coupled activities. As soon as there are

two agents involved in a plan, the two activities become one and the same - to plan for

two people, each individual must recognize the other individual’s plan and incorporate

it. In the implementation presented here, we focus on hierarchical plan recognition,

because it allows us to model two human players’ intertwined affordances, model their

concepts and understand their language even though we cannot control their actions or

perceptions directly as would be possible with an artificial agent. As we will see, how-

ever, elements of planning will be necessary to understand language as well, and when

building an artificial language using machine, planning takes central stage. We will

outline how to proceed to a fully autonomous language using machine after describing

the computational modelling of the ABCs of human speakers via plan recognition.

4.1.1 Probabilistic context free parsing

The implemented representation of perceived affordances is based on methods of con-

text free parsing, which we now briefly introduce. A Context Free Grammar (CFG) is

described by a set of rules of the form X → AYZ where X is a single symbol called

a non-terminal, and AYZ is a string of symbols. Any symbol in AYZ (the tail of the

rule) that does not appear on the left side of an arrow in the set of rules (is not the

head of a rule) is called a terminal. Rules should be interpreted as re-write rules: X

can be re-written as AYZ (or AYZ as X , depending on the direction of analysis). In

a context free grammar the fact that every rule can only have one non-terminal as its

head enforces that when X occurs in the tail of a rule, it can be replaced with AYZ

independently of what symbols occur to the left or to the right of X in the same tail,

i.e. independent of X’s context. Given a string of terminal symbols, the basic task in

using a grammar is to apply re-write rules starting with the string of terminal symbols

until a pre-specified top-level symbol, S, is produced. This process is called parsing

20



R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST
R TAKE KEY

R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE
R ROOMCHANGE ROOM 1 TO ROOM 2

R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

Table 1: Sample Plan Recognition Grammar Fragment

and the tree of symbols produced due to rule applications is called a parse tree. Note

that the combination of a given terminal string and a given grammar can produce many

parse trees (a forest) due to ambiguity. There are a number of efficient parsing algo-

rithms, which work either as described by starting with S and expanding it (top-down),

or by starting with the given terminal symbols and applying rules by replacing the tail

with the head until the top level symbol is produced (bottom-up), or a combination

of top-down prediction and bottom-up parsing (Collins, 2003). By making the same

context-free assumption in a probabilistic context, namely that rules are expanded in-

dependently from each other during the parsing process, a CFG parser can be turned

into a Probabilistic Context Free Grammar (PCFG) parser by adding a probability p of

rule expansion to each rule. In the context of the paper, the important gain from adding

probabilities to rules consists of being able to judge the likelihood of different possible

continuations of a sequence of symbols.

4.1.2 Parsing for plan recognition

We employ context free parsing both to perform plan recognition by using events from

the game as an observation sequence, as well as to analyse the words in players’ ut-

terances. We focus first on the plan recognition in our examples, and later discuss

linguistic parsing. The whole point of context free parsing is to recover hierarchical

21



structures from a sequence of non-hierarchical observations, so it is natural that con-

text free grammars, and especially PCFGs have been suggested as ideal paradigms for

performing plan recognition (Bobick and Ivanov, 1998; Pynadath and Wellman, 2000),

a suggestion that originally dates back at least to 1960 (Miller et al., 1960). In this

case, the symbols in the terminal string correspond to observed events in a temporal

sequence, and the grammar specifies possible higher level event structures. Let us turn

to a simplified example from the studies that will be described in the next section. The

example involves two players, Roirry (prefix ’R’) and Isania (prefix ’I’), that engage in

the short sequence of events depicted in Fig. 1. Isania pulls a lever to open a door, and

Roirry goes through the door and fetches a key from a chest in the next room. Table 1

shows a small grammar fragment covering this example event trace. Given the obser-

vation sequence given in Fig. 1, a context free grammar parser would recover the parse

tree shown in Fig. 2.

4.1.3 Probabilistic earley parsing

There exist many different choices for parsers, some employing rather distinct parsing

strategies. As we will be using the internal data structures maintained by a parser to en-

code possible affordances at a certain point in time, we prefer parsers that predict only

those continuations of the sequence being parsed that are consistent with the higher

levels of affordances already predicted, as well as with the lowest level observations

I_PULL_LEVER O_OPEN_DOOR R_THROUGH_DOOR R_ENTER_ROOM_2 R_UNLOCK_CHEST R_LIFT_LID R_TAKE_KEY

RoirryIsania

0 1 2 3 4 5 6 7

Figure 1: Sample Event Trace

22



I_PULL_LEVER O_OPEN_DOOR R_THROUGH_DOOR R_ENTER_ROOM_2 R_UNLOCK_CHEST R_LIFT_LID R_TAKE_KEY

R_OPEN_CHESTI_MAKE_DOOR_PASSABLE R_ROOMCHANGE_ROOM_1_TO_ROOM_2

R_ROOM_1_TO_ROOM_2

R_RETRIEVE_KEY

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

Figure 2: Sample Plan Parse Tree

I_PULL_LEVER O_OPEN_DOOR R_THROUGH_DOOR R_ENTER_ROOM_2 R_UNLOCK_CHEST R_LIFT_LID R_TAKE_KEY

R_OPEN_CHESTI_MAKE_DOOR_PASSABLE R_ROOMCHANGE_ROOM_1_TO_ROOM_2

R_ROOM_1_TO_ROOM_2

R_RETRIEVE_KEY

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

Figure 2: Sample Plan Parse Tree

Position 0:
0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE

R ROOMCHANGE ROOM 1 TO ROOM 2

Position 1, I PULL LEVER:
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR

Position 2, O OPEN DOOR:
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE

. R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2

Position 3, R ROOMCHANGE ROOM 1 TO ROOM 2:
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2

Position 4, R ENTER ROOM 2:
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE

R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST

R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST

Position 5, R UNLOCK CHEST:
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID

Position 6, R LIFT LID:
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST

. R TAKE KEY

Position 7, R TAKE KEY:
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

Table 2: Earley State Sets for the Plan Parsing Example

19

Table 2: Earley State Sets for the Plan Parsing Example

23



encountered so far. The ideal candidate for an efficient parser along these lines is an

Earley parser, which performs a combination of top-down prediction and bottom-up

completion of parse trees (Earley, 1970).

An Earley parser is based on the notion of an Earley state, a structure that concisely

summarizes the state of the parser at a particular point in the observation sequence

(a sequence of game events in the plan recognition case), and at one hierarchy level

of the current parse. An Earley state consists of one rule from the parser’s grammar,

annotated with three extra pieces of information to encode how and where this rules

applies during the parse. Symbols in the sequence are numbered from 0 onwards,

where index 0 corresponds to no symbol having occurred yet, index 1 corresponds to

the first symbol having occurred, and similarly for the rest of the sequence. For each

state, the parser stores: 1) at which index in the sequence this state was created, 2)

where in the sequence this rule application started, and 3) how many symbols in the

tail of the rule have already been used in the parse so far.

We now step through a plan parsing example in some detail to convey the meaning

of Earley states and the workings of an Earley parser. Table 2 shows the state sets an

Earley parser would produce while producing the parse tree in Fig. 2. At position 0 in

the observation sequence (as indicated by the number before the colon in the states),

before any symbols have been observed, the parser predicts states, starting with the top

level rule that has R RETRIEV E KEY as a head. All of these states have a dot in

the beginning position of the tail, because no symbols have actually been parsed yet

(the dot always signifies which part of the rule has been used so far), and all start at

position 0, as indicated by the subscript preceding the rule. Each state can be seen as

predicting the symbol to the right of the dot - the symbol’s occurrence would be con-

sistent with the grammar and the symbols encountered so far. At position one, one of

the symbols predicted in the state set at index 0, namely I PULL LEV ER has been

observed, and thus the state that predicted it is copied into the state set at position 1 and

24



its dot advanced by one step. In state set 2 not only the symbol O OPEN DOOR

is used, but also the higher level symbol I MAKE DOOR PASSABLE which

is the head of a completed lower level rule. Thus in state set 2 we find a state that

starts at position 0, meaning that the parser has successfully parsed the first 2 symbols.

Parsing continues in this manner until in position 7 the state with the starting symbol

R RETRIEV E KEY is completed, indicating a successful parse of the whole sym-

bol string. The state sets are also visually represented as colour coded stacks below the

leafs of the parse tree in Fig. 2. Each state that has the dot to the right of the rule, mean-

ing that it has successfully completed the rule, is coloured in blue, whereas states that

still have predictions pending are coloured in green. The same colour scheme will be

used to visualize more complex plan parses in the next section. In short, at any given

position i in the parse, the Earley parser is predicting a set of next symbols, namely

the symbols to the right of a dot in the set of states at i (from those states coloured in

green). In a probabilistic Earley parser (Stolcke, 1995), the states that are created dur-

ing a parse are ranked by probabilities indicating how likely they are to occur. In turn,

this lets us rank the symbol predictions made by these states. At each step along the

sequence the Earley parser thus generates a set of hierarchically ordered states based

on its grammar and the symbols encountered so far. These states predict future sym-

bols, where predictions are ranked by their probabilities. However, the parser does not

produce all top-down parse trees, because it uses already present states to predict fu-

ture states. Thus, a non-terminal will only be expanded at a given position if it occurs

to the right of a dot, and each possible symbol will be only expanded once at a given

position because the Earley parser re-uses produced sub-trees. The parser thus does

not generate all possible predictions, but only those consistent with the grammar and

the symbols parsed so far.

25



4.2 Earley states as perceived affordances

An Earley state used for plan recognition is an ideal candidate for a computational

manifestation of a perceived affordance. Assuming that the parser is used to recognize

the plans of a particular agent, it

• predicts possible future interactions with the world at a particular point in time

(the symbols to the right of the dot in the state);

• ranks the likelihood of possible future interactions given the interaction seen so

far through its probability;

• applies to a particular level of abstraction, but is related to other levels due to the

hierarchical nature of the grammar;

• restricts the predicted interactions to those consistent with the past and with the

parser’s grammar.

As an Earley parser progresses, it maintains complete state sets for each point in time,

thus providing a complete history of past actions and predictions in addition to cur-

rently relevant predictions. We call the grammar used by this Earley parser an affor-

dance grammar. This grammar is a predictive model of the structure of the world,

representing one agent’s predictions about and possible interactions with the world.

4.2.1 Concise environment descriptions

While the representation for affordances presented in the preceding sections is amenable

to learning, in the current implementation they have been manually designed. The

many rules for the affordance grammar used to derive Earley states are specified con-

cisely via a rule generation system. The rule generation system produces a full set of

rules capturing the hierarchical structure in possible event sequences, so that events

and sub-events can be recognized and predicted at varying levels of description. The

26



generation system works from a set of meta-rules that concisely specify 1) the essential

events of interest and the sequence in which they must be observed to form higher level

events, 2) the hierarchical relationships between these events, 3) the times and types of

possible extraneous event structures within other events (note that what is extraneous to

recognizing one event sequence may be the core of another), 4) the physical structure of

the space (e.g. room connectivity) and 5) the parameterization of event structure (e.g.

which actors can be involved in which events). These aspects of the plan recognition

problem are interrelated; for example, the physical space structure determines possible

temporal event structures. However, specifying these constraints in relative isolation in

a meta-language lets the designer work in terms of intuitive constraints on the events

being modelled, and leaves the generation of the large space of detailed grammar rules

from this specification to the machine.

4.3 Language grounding via affordance filtering

So far, we have discussed parsing as a method for plan recognition. When an utterance

occurs during a game session, another parse occurs, namely a linguistic parse using an

English grammar. Note that during this linguistic parse the plan recognizer is stopped

- it has processed the game events leading up to this utterance, and its current set

of Earley states is that used for understanding the utterance during linguistic parsing.

This linguistic parsing step uses the same type of Earley parser as described earlier,

this time parsing a string of words. Whenever this parser produces a complete state,

that is, whenever it successfully applies a full grammatical rule and thus completes a

linguistic constituent, it attempts to ground this constituent in terms of ABCs by con-

necting words to the Earley states (perceived affordances) currently present in the plan

recognizer. We us a method of incremental composition driven by language syntax,

akin to other work that associates grammatical rules with lambda calculus expressions

(Schuler, 2003) and our own work that performs compositional grounding according

27



"open" "the" "gate"

DT NNVB

NP

VPselect(OPEN,select(DOOR))

select(OPEN)

select(OPEN)

select(DOOR)

select(DOOR)

select(DOOR)

Figure 3: Simple parse tree example and affordance filters

I_PULL_LEVER O_OPEN_DOOR R_THROUGH_DOOR R_ENTER_ROOM_2 R_UNLOCK_CHEST R_LIFT_LID R_TAKE_KEY

R_OPEN_CHESTI_MAKE_DOOR_PASSABLE R_ROOMCHANGE_ROOM_1_TO_ROOM_2

R_ROOM_1_TO_ROOM_2

R_RETRIEVE_KEY

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

I PULL LEVER O OPEN DOOR R THROUGH DOOR R ENTER ROOM 2 R UNLOCK CHEST R LIFT LID R TAKE KEY

R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2
I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR
I MAKE DOOR PASSABLE → I BREAK DOOR
I MAKE DOOR PASSABLE → I UNLOCK DOOR I OPEN DOOR
R OPEN CHEST → R UNLOCK CHEST R LIFT LID
R OPEN CHEST → R BREAK CHEST

0 : 0 I MAKE DOOR PASSABLE → . I PULL LEVER O OPEN DOOR
0 : 0 I MAKE DOOR PASSABLE → . I BREAK DOOR
0 : 0 I MAKE DOOR PASSABLE → . I UNLOCK DOOR I OPEN DOOR
0 : 0 R RETRIEVE KEY → . R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY
0 : 0 R ROOM 1 TO ROOM 2 → . I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2
1 : 0 I MAKE DOOR PASSABLE → I PULL LEVER . O OPEN DOOR
2 : 0 I MAKE DOOR PASSABLE → I PULL LEVER O OPEN DOOR .
2 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE . R ROOMCHANGE ROOM 1 TO ROOM 2
2 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → . R THROUGH DOOR R ENTER ROOM 2
3 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR . R ENTER ROOM 2
4 : 2 R ROOMCHANGE ROOM 1 TO ROOM 2 → R THROUGH DOOR R ENTER ROOM 2 .
4 : 0 R ROOM 1 TO ROOM 2 → I MAKE DOOR PASSABLE R ROOMCHANGE ROOM 1 TO ROOM 2 .
4 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 . R OPEN CHEST R TAKE KEY
4 : 4 R OPEN CHEST → . R UNLOCK CHEST R LIFT LID
4 : 4 R OPEN CHEST → . R BREAK CHEST
5 : 4 R OPEN CHEST → R UNLOCK CHEST . R LIFT LID
6 : 4 R OPEN CHEST → R UNLOCK CHEST R LIFT LID .
6 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST . R TAKE KEY
7 : 0 R RETRIEVE KEY → R ROOM 1 TO ROOM 2 R OPEN CHEST R TAKE KEY .

select(OPEN,select(DOOR))

select(OPEN)

select(DOOR)

Figure 4: Filter functions applied to affordance example

to explicit composition rules in the grammar (Gorniak and Roy, 2004). Here, we aug-

ment the linguistic parser’s lexicon with affordance filters that select a subset of the

affordances predicted by the plan recognizer.

While parsing the utterance, a noun like “gate” might select all plan recognition

Earley states involving opening, unlocking, breaking and walking through at all present

and past points in time, whereas a verb like “open” might filter these to only include

the possible and actual interactions of opening doors. At higher levels of the utter-

ance parse tree hierarchy, the selections from lower level words and grammatical con-

28



stituents are combined to produce more complex selection criteria. This simple exam-

ple is shown in Fig. 3. Fig. 4, on the other hand, shows its application to the pre-

vious affordance example. In sequence, the selected affordances for select(DOOR),

select(OPEN) and select(OPEN, select(DOOR)) are highlighted in orange. This

example is highly simplified: even in the restricted scenario presented in the next sec-

tion, there can be tens of thousands of affordances to be considered, and hundreds

of constituents completed during a single parse. We give examples of more complex

selection criteria necessary for words such as “that” when describing the studies per-

formed with this implementation in the next section.

In principle, the affordance grammar and thus the plan recognizer should include

all possible interactions including verbal ones. Giving a command or asking a question

is certainly an interaction with the world. For example, if a player commands another

to “pull the right lever” this should not only predict the listener’s next action, but also

influence the estimate of the speaker’s and listener’s joint plan. In the affordance gram-

mar and the studies presented in the next section, however, we face somewhat of a

chicken-and-egg problem: using the affordance grammar for plan recognition provides

a substrate for language understanding, but we need to understand language to write

an affordance grammar that can include verbal actions. Once the initial analysis using

an affordance grammar without utterances is complete, however, it should be possible

to extend this grammar with possible utterance actions and treat utterances identically

to other interactions with the world. The work presented here does not include this

last step, and thus treats utterances as events external to the affordance grammar. This

in turn means that while the meaning of utterances can be resolved in terms of how

they express interaction with the physical world, the meaning cannot include linguistic

interactions such as commands or descriptions. These are therefore handled externally

to the affordance parsing process in the current implementation. It should also be noted

that other work exists that deals with the effect of past utterances on the understand-

29



ing of future utterance (Litman and Allen, 1984), in fact, past utterance are often the

only type of situation taken into account by other language understanding systems. We

therefore intentionally focus the work here on taking into account the extra-linguistic

situation first and foremost, rather than the linguistic one.

5 ABC studies

We have evaluated our implementation of the ABC theory by employing it to interpret

situated language recorded from human-human communication during co-operative

game play. Specifically, we here provide the results of a study that uses our implemen-

tation to understand commands players give to each other, and quantitatively compare

our system’s predictions with the subsequent actions actually performed by the player

being commanded. To perform this study, it is not only necessary to record and analyse

human language, but also to apply the machinery introduced in the last section to model

the situation in which the language occurs. Studying real world human to human com-

munication presents difficult sensing and action problems unless one severely limits

the extent and detail of the physical space, the type of social relationships possible, and

the ways in which participants can affect the world. Here, we turn to multi-user graph-

ical online role playing games to provide a rich and easily sensed world to support and

capture human interaction.

In short, our study runs as follows. Two players play a computer game in which

they control characters in a world of rooms, doors and levers. They explore this world

in order to make their way to a final destination. On their way they encounter a series of

simple puzzles - levers that open various doors, locked doors that need keys, etc. The

puzzles are designed such that the players have to use language co-operate in solving

them. For example, one player might have to ask another to pull a certain lever.

Our implementation performs plan recognition on the player’s actions as the game

develops. Whenever one of the players issues a linguistic command to the other player,

30



the plan recognizer has taken into account the players’ actions up to this point in time,

and has produced a set of predictions. At this point, the linguistic parser analyzes

the player’s utterance to produce an affordance filter that it then runs on the current

affordance predictions from the plan recognizer. We now compare the most likely

prediction that passes the linguistic filter to the action actually taken by the human

listener. The combination of plan recognizer and linguistic parser thus models the

human listener’s understanding according to the ABC theory.

5.1 Choice of research platform

Current day multi-user graphical role playing games provide a rich interaction envi-

ronment that includes rooms and exterior areas, everyday objects like chairs, doors and

chests, possessions, character traits and other players’ avatars. All of these can be acted

upon by a player, be it through taking direct action on the world or through speaking

with other players. Here, we describe a set of studies using a commercial game, Never-

winter Nights1, that includes an editor allowing the creation of custom game worlds. A

sample in-game view from the player’s perspective in this game is shown in Fig. 5. As

pointed out before, we acknowledge that using games abstracts away from many of the

perception and action problems faced when considering affordances in the real world.

However, the generative, hierarchical interaction structures we apply at a higher level

here should apply to real world affordances as well, and using games lets us address

more socially and spatially complex situations and language.

We have instrumented the game’s software environment to record complete tran-

scripts of events in the game world, including player locations, actions such as pulling

levers or opening doors, as well as all in-game text messaging between players. Fig.

6 shows the map used for the study presented here. Dependencies between objects in

the map are indicated with dotted arrows. The two players start at the South end of the

1http://nwn.bioware.com

31

http://nwn.bioware.com


Figure 5: The in-game perspective of a player in Neverwinter Nights.

32



map. There are two pre-designed in-game characters available for them to play. One

of the characters is a rogue, with the ability to pick locks, whereas the other is a monk,

who has the ability to destroy doors with her bare fists. However, the rogue can only

unlock the doors and chests marked as unlockable on the map, whereas the monk can

only break the doors marked as breakable. The levers each open one door for a short

period of time, too short for the same character to pull the lever and run through the

door him- or herself. Finally, the chests contain a key each, the first unlocking the other

chest, the second unlocking the door behind the first chest. The only objective of the

puzzle is to reach the goal indicated on the map. When they start the puzzle, players

only know that there is a goal they need to step on somewhere in the module.

One possible puzzle solution plays out as follows: The rogue picks the lock on the

South-West door. The monk opens the next door for him with the South-East lever,

whereupon he picks the lock on the chest, obtains the key in it, and returns to the start

with help from the monk. The monk now opens the South-East door for him, and he

uses the key to open the chest here and obtains another key. Once more with help from

the monk opening doors, he makes his way back to the room with the first chest and

uses the key in the door leading from it (which also opens the center door in the East.)

Opening doors for each other, the two characters now switch places and then reach the

goal by unlocking or breaking their respective doors.

This puzzle is designed for players to separate and communicate their instructions

and goals by using language. As an added restriction, one of the players is randomly

chosen in the beginning and forced to only use one of the following phrases instead

of being able to speak freely: “Yes”, “No”, “I Can’t”, “Done”, “Now”, “What’s going

on?”, “OK.” The other player is free to use unrestricted language. By limiting one of

the player’s language repertoire, we exclude dialogue phenomena, which are not the

focus of this study.

33



goal

breakable

unlockable
and

breakable

unlockable

lever chest

start

unlockable

door

Figure 6: The map of the module used in studies.

5.2 Data collection and annotation

The study included 26 players who played in 13 dyads after responding to ads on the

bulletin boards on the Neverwinter Nights website. Eleven of these dyads completed

the puzzle in times ranging from 25 minutes to one hour, whereas the others gave

up after one hour. Even the two incomplete sessions completed most of the puzzle,

except for both players entering the last room. While previous studies showed that the

framework handles speech (Gorniak and Roy, 2005a,b), this study only collected typed

34



text to focus on the semantic problems at hand. Nine sessions served for development

purposes, such as writing the affordance grammar and estimating rule probabilities for

the linguistic parser, and a group of four sessions formed an unbiased evaluation set.

We first annotated the development data, built the system and estimated grammar rule

probabilities, then annotated the evaluation data and tested the implementation on this

previously unseen data. To generate linguistic parse trees, we first parse utterances with

the Stanford Parser (Klein and Manning, 2003) using a standard grammar for written

English, and then correct the parse trees by hand.

For plan recognition, the detailed event trace yielded by the game can be abstracted

into a simpler trace noting only the relevant changes in world state including

• object interactions (lever pulls, chest use, door interactions)

• room changes

• key acquisitions and exchange

• attempted actions such as attempted unlocks

Table 3 shows a sample event trace segment from one session. In this segment,

one of the players (player ’R’ for ’Roirry’, the player character’s name) unlocks the

Southwest door (door 4), then attempts to unlock the next door (door 7) and fails.

Player ’I’ (for ’Isania’) now first mistakenly pulls the Southwest lever (opening the

Southeast door), but then opens the correct door for Roirry by pulling the Southeast

lever (lever 9). Roirry enters the next room, lockpicks the chest in it and acquires the

key from the chest. Event traces from the study sessions range between 450 and 2000

events in length.

5.3 Language and situation modeling

The linguistic parser uses a grammar estimated by counting the rules used in the cor-

rected parse trees of the sessions’ utterances. The concept specification for the lexical

35



entries will be further described below.

A set of 90 meta-rules specify the affordance grammar, which captures

• the physical makeup of the puzzle, including room and door connectivity, effects

of levers, locations of chests

• the possible actions in every room, including moving to other rooms, pulling

levers, unlocking doors, etc.

• planning patterns for players, such as opening a door for the other player to enter

a room

• the current state of the world, including which rooms the players are currently in

and how much of the puzzle they have solved

• the distinction between actions that further the state of the puzzle solution and

actions that do not, such as opening doors without walking through them

The 90 rules expand to a full affordance grammar of about 6500 rules with 1300

non-terminal and terminal symbols. In essence, the meta rules parameterize entities

like actors and rooms, whereas the full rule set produces a unique rule for each param-

eter setting. The lack of parameterization in the actual plan recognition mechanism is

one of the shortcomings of using a pure context free grammar parser. However, the

parser is efficient enough to run on the large rule set produced by the precomputed

parameter expansion employed here. As already pointed out previously, it is desirable

to move to a plan recognizer that employs a more concise description of the situation,

but none of the existing paradigms near the efficiency and high quality algorithms that

exist for parsing. Note that a minimal puzzle solution consists of less than 50 events,

thus most of the hundreds of events players engage in constitute player experimen-

tation which we label noise. To predict player actions, it is essential to capture this

exploratory behaviour in the affordance grammar. We do this by allowing rules to con-

tain symbols labeled NOISE, which expand to patterns of player experimentation that

36



do not contribute to the completion of the rule. For example, if a player pulls a lever

three times in a row, the first pull (which opens a door) is important to select rules that

capture room changing behaviours, whereas the two redundant pulls would be classi-

fied as noise. Note that labeling actions as noise still lets us predict them, which is our

main goal. For example, we might predict several lever pulls if this is a common player

pattern.

Fig. 7 shows 4 sample rules from the full grammar. Symbols consist of parts sep-

arated by underscores. These rules can be read as follows: The initial part of each

symbol, if it is I or R indicates the player performing the action (the character names

in the modules are Isania the monk and Roirry the rogue.) These four rules describe

actions assigned to Isania, because their head symbols start with I. The heads further

tell us that in this action Isania moves from the South-West room (rooms are encoded

in Cartesian coordinates, thus this is room 0,0) and moves to the second room on the

East side. The last part of the head indicates that while this happens, the other player is

in room 0,0. To perform this action, the other player (Roirry) must first open the door

leading into room 1,1 (door 6) while being in room 0,0 (this action expands to pulling

the South-East lever and the door opening) while Isania must then walk to room 1,0 and

then to room 1,1. The last symbol is a roomchange sequence rather than a simple room

change because players can step back out of the target room and into it again before the

door closes. By having a symbol for any sequence like this, the whole episode can be

classified as a single room change event. The other three versions of this rule displayed

here add room specific noise rules in all possible positions. These rules are marked

as NM to indicate that they do not produce motion (room changes). The rule itself

appears, amongst other places, in the tail of NOISE2 R ROOM 0 0 I ROOM 0 0 →

I 2 ROOM 0 0 TO ROOM 1 1 O ROOM 0 0 NOISE2 R ROOM 0 0 I ROOM 1 1,

showing how room noise rules transition between each other via movement rules.

The probabilities for the rules stem from counting the number of rule applications

37



I_2_ROOM_0_0_TO_ROOM_1_1_O_ROOM_0_0 

  R_2_OPN_DOR_6_R_ROOM_0_0_I_ROOM_0_0

  I_ROOMCHNG_ROOM_0_0_TO_ROOM_1_0  

  I_ROOMCHNG_SEQ_2_2_ROOM_1_0_TO_ROOM_1_1_O_ROOM_0_0

I_2_ROOM_0_0_TO_ROOM_1_1_O_ROOM_0_0 

  R_2_OPN_DOR_6_R_ROOM_0_0_I_ROOM_0_0

  I_ROOMCHNG_ROOM_0_0_TO_ROOM_1_0

  NOISE2_NM_R_ROOM_0_0_I_ROOM_1_0

  I_ROOMCHNG_SEQ_2_2_ROOM_1_0_TO_ROOM_1_1_O_ROOM_0_0

I_2_ROOM_0_0_TO_ROOM_1_1_O_ROOM_0_0 

  R_2_OPN_DOR_6_R_ROOM_0_0_I_ROOM_0_0 

  NOISE2_NM_R_ROOM_0_0_I_ROOM_0_0 

  I_ROOMCHNG_ROOM_0_0_TO_ROOM_1_0 

  I_ROOMCHNG_SEQ_2_2_ROOM_1_0_TO_ROOM_1_1_O_ROOM_0_0 

I_2_ROOM_0_0_TO_ROOM_1_1_O_ROOM_0_0 

  R_2_OPN_DOR_6_R_ROOM_0_0_I_ROOM_0_0

  NOISE2_NM_R_ROOM_0_0_I_ROOM_0_0

  I_ROOMCHNG_ROOM_0_0_TO_ROOM_1_0

  NOISE2_NM_R_ROOM_0_0_I_ROOM_1_0

  I_ROOMCHNG_SEQ_2_2_ROOM_1_0_TO_ROOM_1_1_O_ROOM_0_0

Figure 7: A sample of 4 rules from the expanded affordance grammar.

in the most likely parse trees for the development sessions (the probabilities of rules

for the linguistic parser are estimated in the same way). Not all of the rules produced

by the meta-rules are actually used in the development sessions (remember that rules

are produced for all possible parameter settings), therefore two forms of discounting

are needed to produce probability estimates for the remaining rules. Witten-Bell dis-

counting assigns probabilities to rules whose heads have occurred, but whose tails have

not, by estimating how likely a new rule with this head is to be seen (Witten and Bell,

1991). This smoothing method uses the number of types of rules with a given head

to estimate how likely one is to see another new rule with this head, and divides this

probability amongst all the rules with this head that were not seen in the development

data. This works for rules whose heads were seen in the training data, but leaves those

rules with heads that were not seen. Absolute discounting reserves a fixed probability

mass for these rules, and subtracts the mass proportionally from all the rules that were

38



seen or received a probability via Witten-Bell discounting.

5.4 Communication strategies

Players employ many different types of language acts to communicate with each other

about the puzzle, and each type further subdivides into different strategies for express-

ing intentions. Broadly, these strategies can be broken down into 3 types of language

acts,

directives “pull the east lever”, “open”, “go into the room with the chest and the locked

door”

descriptions “there’s a lever here”, “my switch opens your door”, “none of these doors

can be lockpicked”, “I’m in the entry room”

questions “you’re not trapped in the west room are you?”, “does it open?”, “where

have you been?”

Players also produce utterances that have little to do with the actual puzzle solu-

tion, such as “it’s cold and dark in here”, “mutter” or “KILL THE PROGRAMMER!”

The current evaluation focuses on directives because their effect on the second human

player is relatively easy to measure. Furthermore, as pointed out in the last section, it is

a limitation of the current implementation that the affordance grammar does not include

possible interactions via language, because it is used to interpret these interactions in

the first place. To distinguish between language acts within the framework presented

here it is necessary to add them as possible interactions into the affordance grammar

itself, so that the system can reason about them. By dealing mainly with directives

we avoid this problem for now and interpret the produced grounding for an utterance

as a directive by selecting those affordances selected that pertain to the listener (i.e.

those the listener could take advantage of at the point in time the utterance occurs) and

39



considering them as likely actions. We do, however, sketch possible ways to interpret

descriptions and questions below, after presenting the results on directives.

Players typed a total of 1742 utterances in the development sessions, and 689 ut-

terances in the test sessions. We annotated 1320 of the development session utterances

as being on-topic, that is, relevant to solving the puzzle. Of these, 302 can be consid-

ered directives, whereas the remaining utterances are evenly split between questions

and descriptions - a distribution to be expected in a puzzle designed to separate players

while solving a puzzle. Similarly, the test sessions contain 69 directives out of 427

utterances.

5.5 Affordance filters

As described in Section 4.3, the final result of linguistic interpretation is an affordance

filter specification in the form of a nested function call. The affordance filtering pro-

cess has two stages. First, the final concept specification is interpreted as a filtering

function on the current set of affordances, producing another set of affordances that is

the interpretation of the utterance at hand in terms of possible physical actions and their

abstractions. Second, the utterance is interpreted as a language act, which involves de-

ciding on the type of utterance and taking any measures to treat it as such, which may

involve planning to get the character into a situation in which he or she can perform the

action predicted.

5.5.1 Filter functions

In addition to the affordance set arguments they take as described in Section 4.3, filters

are further parameterized with static parameters specified in the lexicon to re-use the

same filter for different words (for example “east” uses the same filter function as

“west” with different parameters). Many words have multiple meanings, of course,

even in the limited world of these studies. Some examples of several meanings (for

40



example for “that”) occur below, but not all meanings are covered by the system. We

discuss failures due to missing meanings in Section 5.6.1.

Simple Selection The simplest filtering function, select, selects affordances by sub-

strings in their predicted next symbols. Thus, a word like “open” selects all

affordances involving opening of chests or doors.

Actor Selection The actor selection filter can select either the speaker (“I”), the lis-

tening character (“you”), or both characters (“us”,“’s”) by filtering affordances

for the initial actor string in their predicted symbols.

Indexicality The expand set filter uses the currently predicted set of affordances for

the speaker as a source set, and selects a target set selecting either all affordances

that specify the same interaction but for any actor. This is the filter associated

with the word “this”, selecting, for example, all the possible interactions with

a lever next to the speaker for the fragment “this lever.” For the word “other”,

the same filter selects affordances of either actor of the same type (e.g. opening

doors or pulling levers) that are not currently available to the speaker (that are,

for example, not in the current room).

The select distant filter, on the other hand, collects affordances that were en-

countered by the speaker at some point in the past and are not available in the

speaker’s current state. It grounds, for example, one use of “that” as in “What

about that lever?” where the speaker is standing next to one lever, but referring

to another one with this utterance.

Movement Planning The plan path filter plans a path from the current set of affor-

dances to another by assuming that location changes are enough to bring about

the target set. This is largely a valid assumption in the puzzle discussed here:

players can usually interact with the things around them, though some plans pro-

duced this way may be invalid because the players have not yet advanced far

41



enough in the puzzle. For example, they may not have managed to open a door

yet that is necessary to enter a target room. Movement planning takes into ac-

count the rules of the puzzle, such that players have to open doors for each other

to get into certain rooms. This filter is used for words like “go” (as in “can you

go stand by the other lever”) or “run.” The same planning functionality is also

used when interpreting an utterance as a directive, which is discussed below.

Discourse Reference For every utterance, the parser stores the affordance set of the

last filter call that filters by neither actor or planning. A back reference filter

(back ref ) simply re-activates this set of affordance for words like “it.”

Past Interactions The select past filter finds those perceived affordances that were

actually taken advantage of by the agent in the past. This yields another use of

the word “that” as in “Let’s try that again.”

Location Reference The select location filter selects affordance sets by the possible

room changes they predict. This is used, for example, to ground “left” and

“West” by selecting for those sets of affordances that predict a room change

interaction in which the target room has an x value of 1. Note that this means

that locations are defined by how one leaves them (i.e. “west” is a location from

which one can walk East.) Again, this is obviously not the most general and only

meaning of location references, but it works very well in the scenario discussed

here.

Possession Players tend to use “my” and “your” to refer to objects they interacted with

recently, thus the select recent filter selects the most recently used affordances

in the current set.

42



5.5.2 Interpreting directives

For a directive, the system first applies the concept specification provided by the lin-

guistic parser to produce a set of affordances grounding the utterance. It then translates

the resulting set of affordances into a predicted next action by finding the most recent

affordances in the set and checking whether any are also available for the listener in the

currently predicted set. If they are, they are turned into the basic actions they predict

(that is, actions the player can actually take), by walking down the affordance grammar

until a lexical item is reached. If they are not currently available, but are known to

be available in other situations, the system will plan a path to the room in which such

an affordance would be available, and make the first action in this plan its immediate

prediction. Note that such a plan not only includes movement steps, but also the steps

necessary to gain passage such as pulling levers to open doors for other players. If no

predictions are produced in this way, it might be due to the fact that the next action

predicted is not the listener’s to take, for example in the case where the speaker must

open the door for a listener to walk through. Thus, the implementation now proceeds

with a depth first search for the next action of the listener starting with the currently

predicted symbols in the rules contained in the selected affordance states. If any of

these steps produce multiple predictions, they are ranked by the sum of the forward

probabilities in the Earley states producing them, and the most probable action is used

as the prediction.

Whenever one player gives the other a directive, the utterance is parsed by the

language parser to produce an affordance filter specification. The plan recognizer then

runs this filter specification on the complete set of affordances produced up to this

point in the game, which yields a filtered set of affordances. These are then interpreted

as described above to yield a single best prediction. To measure performance, this

prediction is compared to the next action the player in question actually takes, and

counted as correct if it matches.

43



5.6 Results

Table 5.6 shows the overall results of language understanding using this method. All

results are split between the development and the test set to show generalization to un-

seen data. The first row (All Directives (AD)) shows the performance on the complete

set of 302 directives in the development sessions and 69 directives in the testing ses-

sions. However, players do not always follow instructions, so the second row (Followed

Directives (FD)) shows performance only on the 281 cases where the player actually

performs an action that matches the directive as determined by the annotator (64 in the

testing session). Half of the directives players used and followed correctly are what

we will call action markers: single word utterances that do not significantly restrict the

nature of the action to be performed, but rather mark the time at which the obvious

action should be performed. Such utterances include “now”, “go”, “lever” and “open.”

While the high frequency of such action markers supports the claim made here that the

interactive situation determines much of the meaning of language (sometime so much

that language becomes unnecessary), the performance of the linguistic component of

the system is not evaluated in these utterances. Followed Long Directives (FLD) in Ta-

ble 5.6 therefore shows performance on the half of the directives that contain more than

one word. The average length of the total set of directives lies at 3.6 words, but rises

to 6.2 words when restricted to the set of development directives employing more than

one word (4.5 vs. 6.5 in the test set). Performance on this set of linguistically interest-

ing directives is generally lower because the language groundings used in this study do

not cover all of the meanings that occur (omissions and problems are discussed further

below). However, the gap to the pure plan recognition baseline widens significantly on

this utterance set, showing that the system can understand more complex language and

produce the correct prediction for many of these directives.

Table 5.6 shows a number of prediction baseline results for the same data sets. The

Hierarchical Plan Recognition value shows the performance if language is ignored -

44



that is, if we simply pick the most probable prediction of the plan recognizer at the

point an utterance occurs, without paying attention to the words in the utterance. As

above, FD and FLD restrict the pure plan recognition baseline to those directives that

were correctly acted upon by the listener (FD), and then further to those that use more

than one word (FLD), respectively. State Based Maximum counts the actions players

took when they were in a specific combination of two rooms, and in response to a

directive predicts the action taken most often in this combination. Finally, State Based

Random randomly picks amongst all the actions players were ever observed to perform

in a room combination.

When interpreting these results, it is important to keep in mind that perfect pre-

diction cannot and should not be achieved in any of these cases. The puzzle naturally

causes much exploration by the players, and, as will be discussed further below, situa-

tions and directives often do not limit players to a single next action. Some amount of

variability is thus inherent in the scenario.

The best overall performance of the complete system was 72%. Given the complex-

ity of the problem and the leeway players appear to give each other in following their

own utterance, this figure indicates that the theory and implementation presented in

previous sections make for an effective substrate for language understanding systems.

It is clear from these results that the hierarchical plan recognizer captures impor-

tant aspects of the puzzle solution: it shows over 20% improvement in predictions

compared to a simple predictor baseline. Prediction is also no simple task, as the low

random baseline shows (even this baseline does not pick amongst all possible actions,

but only those players performed in the development data). Language understanding

heavily relies on plan recognition - often the meaning of an utterance is highly con-

strained by the player’s states and plans. Taking the words into account, however,

improves again on the pure plan recognition performance. The best measure of this

improvement is the 11% gain (8% in the test set) seen when considering the set of cor-

45



rectly followed directives longer than one word. The percentage performance gain is

smaller when considering all utterances because performance is dominated by action

markers, for which linguistic content plays little role, and thus yields no improvement

in performance. Not all action markers are acknowledged by the simple rule of con-

sidering one word utterances to be action markers: “go for it”, “go go go”, and other

multi-word action markers occur in the data, but they occur rarely.

Performance on the test utterances is entirely comparable to that on the develop-

ment utterances, showing that the plan recognition grammar and linguistic parser, while

restricted in their coverage, generalize well to unseen data. As already discussed, in-

dividual sessions differ greatly in playing and communication style. In fact, there is

a single session in the test set that contains very repetitive and easily predicted player

behaviour. When it is omitted, the test set performance baselines are equal to or lower

than the development set baselines.

5.6.1 Detailed performance and mistakes

Examining the utterances in detail yields clues as to the benefits and shortcoming of

the implementation presented.

Action Markers We call utterances that impose next to no restrictions on the action

to be performed via their words action markers. The most common ones (about

half the data) are “go”, “now”, “open.” There is an external bias imposed favour-

ing “now” because it was one of the only action markers available to the non-

speaking character. For this class of utterances, performance of the utterance

understanding algorithm can only be as good as predictions made by the plan

recognizer. However, the performance figure here also underestimates the per-

formance of the language understanding system: it seems that in many cases

players do not have an exact action in mind. For example “open” might really be

taken to mean “open anything and everything you can” or “open something” in

46



several cases, especially when players cannot see each others’ characters. Some-

times players even explicitly indicate this as in “try something else.” We will

discuss performance of the plan recognizer further below.

Simple Selection Almost every utterance that is not simply an action marker uses at

least one content word involving simple selection of affordances (and even an

action marker like “lever” or “open” does). The overall performance speaks to

the usefulness of the affordance filtering approach in understanding directives in

a plan recognition context.

Location Reference These include utterances like “throw the one to the west” and

“now head to the east lever.” These occur a significant amount in the data (35

utterances in the development data) and are correctly understood if in combina-

tion with a simple request. 4 of the 35 are incorrectly understood because they

involve constructions or commands not covered by the affordance filters, such as

“can you try thief’ [sic] picking either the chest or north lock.”

Discourse Reference 7 out of 11 uses of “it” (as in “I need you to pull it” in the de-

velopment data were correctly understood via the back ref filter. The remaining

suggest that there are influences on the use of “it” in this context beyond the

discourse one.

Indexicality Indexicals including “this”, “that” and “other” were understood correctly

in half of the cases (14 out of 28). In the 4 (out of 9) misunderstood cases of

“this” the mistakes are due to problems with actor attribution, not with indexi-

cality, as they are all of the form “throw it and i’ll throw this one” or “let me go

down this way once more ... not saying it’ll help.” “That” is correctly interpreted

in 5/7 cases and “other” in 5/12. This only partially indicates problems with

their current groundings, as some of the mistakes are due to other words in the

utterance such as in “can you try to open from the other side somehow?”, which

47



lacks groundings for “side” and “from” at minimum.

Movement Planning Is not only used for phrases like “go to” and “stand by”, but also

to interpret any utterance that produces affordances not available to the listener

in his or her current location. As such, it is involved in understanding most

utterances and performs extremely well.

Other communication strategies occurred too rarely to allow for meaningful anal-

ysis. There are a few overarching problems and omissions with the implementation

presented here:

Missing Meanings There are a few classes of meanings that occur in the data for

directives that the implementation currently does not handle at all. There are

a number of idioms like “go for it” and “come back” that perhaps should be

handled as idioms and not analysed word by word. Sometimes complicated lin-

guistic structures occur, often expressing temporal dependencies and causality.

These can even be intermixed with descriptions such as in “I need you to pull

it when I open the door for you ... I think it opens the door on the other side.”

However, constructions this complex are rare.

Spatial Coarseness Spatial locations in the structural grammar are purely room based,

and thus relatively coarse. For distance based directives, for example those in-

cluding “that”, utterances can be misunderstood because the player considers

him- or herself distant from an object and uses “that”, but is still considered to

be in the same room as the object by the affordance grammar.

Multiple Interpretations The particular implementation discussed here uses the best

interpretation of an utterance exclusively. In previous work we have shown ways

to consider multiple weighted interpretations simultaneously by probabilistically

mixing the linguistic elements from the language parser with the affordances

produced by the structural grammar (Gorniak and Roy, 2005a). It would clearly

48



be beneficial to adapt those methods to the system described here to consider

multiple word and constituent meanings and their interpretations simultaneously.

Learning The paradigm presented here lends itself to supporting learning by a syn-

thetic character. Possible learning targets include the weights and rules of the

structural grammar, the function bindings for words, and the interpretation of

words in terms of affordances. Especially together with a coherent framework

for considering multiple interpretations such a learning framework would likely

improve robustness of the understanding system over the partially handcrafted

approach taken here.

Omniscience vs. Player Modelling The plan recognizer used here models both play-

ers simultaneously and is informed of the structure of the puzzle. This eases

recognition of interdependent actions by the players (such as pulling a lever to

let the other person through a door), and increases prediction accuracy by taking

into account the actual puzzle structure. However, when interpreted as perceived

affordances, the plan states should correspond to those maintained by an indi-

vidual player attempting to solve the puzzle, not to an omniscient planner for

both players. For many directives this is not a problem, because “pull the east

lever” can be understood in either model. Problems arise when players are mis-

taken about how to solve the puzzle, for example when they assume that levers

act differently when pulled simultaneously. This presents two problems, one for

directives and one for descriptions, discussed below. An utterance like “let’s try

that again” might refer to the joint action of the characters pulling their respec-

tive levers, which is not modelled in the plan used. In the particular puzzle there

are few directives of this sort, but the effect on performance of the plan recog-

nizer, which does not acknowledge these falsely perceived structures, may be

degrading performance.

Descriptions The second problem with an omniscient plan recognizer is that it makes

49



it hard to interpret descriptions. A player utters a description to inform the other

player of the physical makeup of the puzzle (“there’s a chest and a locked door in

this room”), his or her mental model of how the puzzle works (“they both open

opposite doors”), or the effects of actions (“both door and chest remain locked”).

Intuitively, each should produce a change in the listener’s mental model of the

situation: he or she might consider new affordances or discard ones previously

thought to be available. As only the correct affordances are available in the

omniscient plan recognizer, it is impossible to model this effect. However, the

filtering mechanisms proposed here lend themselves to exactly this type of effect

when run on a different type of plan recognizer – one that is uninformed about

the puzzle structure and has limited perception of the other player’s actions.

Questions Questions are in content very much like descriptions in the data collected

for these studies, because the listener could respond only with primitive utter-

ances. Thus, they usually read like a description in question form, for example

“is the door back there locked?”, in effect filling in the questioner’s model of the

puzzle workings and world state via the response.

Plan Recognition Beside the problem of whether to use an omniscient or several

player-specific plan recognizers (or both in tandem), there are other problems

with the plan recognizer used here. As Pynadath and Wellman point out, while

successful in estimating hierarchical plans of agents, grammar based plan recog-

nizers are not naturally parameterized in an intuitive or useful way. For example,

many of the thousands of rules used in the plan recognizer here are due to the

fact that they are largely conditioned on the rooms the players find themselves

in. Rather than being parameters, these rooms are part of the symbols used in the

grammar rules, and are explicitly produced by the meta-rules. The meta-rules

are in essence a parameterization of the grammar, but they are not used during

the actual plan recognition. To more easily derive and estimate affordance gram-

50



mars, and also to reason directly about the underlying state variables, it seems

advisable to go to a combined model of a grammar and an underlying state model

that are linked but represented separately (Pynadath and Wellman, 2000).

Many of the limitations we have mentioned are due to our particular choice of

plan recognizer. As we have pointed out, alternative models of plan recognition exist

that utilize more intensional and less omniscient representations. The ABC theory of

casting language understanding as a filtering process on possible affordances transfers

directly to these alternative computational approaches and in the future we hope to

show that a such revised implementation scales to larger problems, handles questions

and descriptions and does not require a complete model of the entire problem a priori.

6 Conclusion

We hope to have convinced the reader at this point of four things, namely

• that language understanding depends on a mental representation designed for

interaction with and prediction of the world

• that the notion of an affordance captures the crucial element of a theory of con-

cepts that from the ground up acknowledges the need for interaction with the

world

• that affordances make for powerful computational instantiations based on plan-

ning and plan recognition and lead to a new method for truly grounded compu-

tational language understanding

• and that, by example, this new method can feasibly be implemented and performs

well in understanding spontaneous human language in a complex situation.

The implementation presented in this article provides a convenient framework for

probabilistic hierarchical reasoning about affordances while understanding situated

51



language. As it stands, this provides one possible interpretation of the theory presented

for the case of language situated in the current physical and intentional context. The

performance of the implementation when compared to human decisions shows the via-

bility of the theory in leveraging intentions and affordances to understand language of

this type. In doing so, it also lends further support to work on affordances as an aspect

of human cognition by providing a working synthetic model understanding human lan-

guage that employs affordances (Glenberg and Kaschak, 2002). It will be important to

integrate this framework with other approaches and views on affordances (Steedman,

2002; Roy, 2005) and to re-phrase existing approaches dealing with other aspects of

grounded language understanding in an affordance-based framework.

The particular framework of hierarchical, probabilistic plan recognition using context-

free grammars is one possible choice, and it works well for the high level events that

constitute the input in the computer game worlds studied here. Other choices are cer-

tainly possible, the schemas introduced by Roy (2005) being a different one that is

more applicable to directly modeling low-level sensory input and motor action. How-

ever, each of the possible instantiations of the ABC theory must share important fea-

tures: they must all dynamically generate the affordances for a situation particular to

the agent and its environment. To predict or generate an agent’s choices, they must take

into account the agent’s goals and respect how the agent’s goals and abilities interact

with the environment and other agents. They are likely to be hierarchical to capture dif-

ferent levels of granularity, though a complete solution is unlikely to employ a uniform

encoding of affordances like the Earley states used here. Particularly, while a context-

free grammar is generative it is not concisely parameterized, more intensional models

are more likely to be successful at levels and in situations where an extensional listing

of affordances is simply prohibitive due to their numbers. That said, we see no reason

that the model introduced when appropriately parameterized (as is done in many hier-

archical planners such as HTN planners) should not scale to cover a larger range from

52



sensory inputs to high level planning, and should not be able to deal with more complex

environments. In fact, due to its hierarchical, abstract nature, our framework may be an

ideal candidate for tying together more modality and task specific representations into

a coherent affordance modeling framework.

We believe the ABC theory to be a useful new view of mental representation of

concepts. It is unique in its computational interpretation of Gibsonian affordances

based on plan recognition, and its successful realization in a language understanding

task dealing with spontaneous, situated human language. We hope that this pairing of

theory and implementation speaks to those studying human mental representation as

well as those building artificial language processing systems.

6.1 Future work

To handle questions and descriptions in addition to commands, the implementation

needs to be address partial observations and lack of knowledge. As a first step, one

might replace the symbol string representing events in the game world with a confu-

sion network Mangu et al. (1999). When players are in the same room, the confusion

sets of this network contain a single member because players can see each others’ ac-

tions. When they are in different rooms, however, each confusion set representing an

action by the other player contains all possible actions currently available to that player.

Using confusion networks would spread the probability assigned to the current world

state over many possible states as players take actions without seeing each other act.

This directly leads to the ability to interpret a subset of descriptions and questions such

as “I’m in the Northwest room” or “Did you make it into the next room?” The de-

scriptions would have the effect of narrowing the probability distribution over possible

world states by raising the probability of the described state. Beyond uncertainty about

the current state of the world, future extensions might include an explicit treatment of

lack of knowledge about the structure of the world, such that when a player encounters

53



a lever for the first time, he or she might be modelled as generating predictions about

possible effects of this lever that might then be verbally described or experimentally

explored. The omniscient plan recognizer employed by the current implementation has

access to too much a priori knowledge of the game’s structure to model such thought

processes directly, or to be deployed in an environment that is not modelled ahead

of time. More generally, we hope to apply the ABC theory to other research plat-

forms such as communicating robots, which have other requirements such as sharing

the physical world with their human communication partners. They will therefore im-

pose different demands on future interpretations of the ABC theory, but their concepts

will also be designed for interaction from the ground up.

7 Acknowledgements

We thank Josie Hughes for letting us use her brain drawing for illustration purposes.

This material is based upon work supported by the National Science Foundation under

Grant No. 0083032..

References

Allen, J. and Perrault, R. (1980). Analyzing intention in utterances. Artificial Intelli-

gence, 15:143–178.

Barsalou, L. (1999). Perceptual symbol systems. Behavioural and Brain Sciences,

22(4):577–609.

Bickhard, M. H. (2001). Function, anticipation and representation. In Dubois, D. M.,

editor, Computing Anticipatory Systems. CASYS 2000 - Fourth International Con-

ference, pages 459–469, Melville, NY. American Institute of Physics.

Bobick, A. F. and Ivanov, Y. A. (1998). Action recognition using probabilistic parsing.

54



In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of AI Research, 11:1–94.

Bui, H. H., Venkatesh, S., and West, G. (2002). Policy recognition in the abstract

hidden markov model. Journal of Artificial Intelligence Research, 17:451–499.

Chapman, D. (1991). Vision, Instruction and Action. MIT Press, Cambridge, MA.

Clark, A. (1998). Being There: Putting Brain, Body and World Together Again. MIT

Press.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Com-

putational Linguistics.

Drescher, G. (1991). Made-up minds. MIT Press, Cambridge, MA.

Duranti, A. and Goodwin, C. (1992). Rethinking Context: Language as an Interactive

Phenomenon. Cambridge University Press.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the

ACM, 6(8):451–455.

Erol, K., Hendler, J., and Nau, D. (1994). Htn planning: Complexity and expressivity.

In Proceedings of the American Association for Artificial Intelligence.

Geib, C. and Goldman, R. (2005). Partial observability and probabilistic plan/goal

recognition. In IJCAI-05 workshop on Modeling Others from Observations.

Gibson, J. (1977). The theory of affordances. In Shaw, R. and Bransford, J., editors,

Perceiving, Acting and Knowing, pages 67–82. Wiley, New York.

Glenberg, A. M. (1997). What memory is for. Behavioural and Brain Sciences, 20:1–

55.

55



Glenberg, A. M. and Kaschak, M. P. (2002). Grounding language in action. Psycho-

nomic Bulletin and Review, 9(3):558–565.

Gorniak, P. and Roy, D. (2005a). Probabilistic grounding of situated speech using plan

recognition and reference resolution. In Proceedings of the International Conference

on Multimodal Interfaces.

Gorniak, P. and Roy, D. (2005b). Speaking with your sidekick: Understanding situated

speech in computer role playing games. In Proceedings of Artificial Intelligence and

Digital Entertainment.

Gorniak, P. J. and Roy, D. (2004). Grounded semantic composition for visual scenes.

Journal of Artificial Intelligence Research, 21:429–470.

Hsiao, K., Mavridis, N., and Roy, D. (2003). Coupling perception and simulation:

Steps towards conversational robotics. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS).

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings

of teh 41st Meeting of the Association of Computational Linguistics.

Laurence, S. and Margolis, E. (1999). Concepts and cognitive science. In Margolis,

E. and Laurence, S., editors, Concepts: Core Readings, chapter 1, pages 3–81. MIT

Press.

Litman, D. J. and Allen, J. F. (1984). A plan recognition model for clarification subdi-

alogues. In COLING, pages 302–311.

Littman, M., Sutton, R., and Singh, S. (2001). Predictive representations of state. In

NIPS.

Mangu, L., Brill, E., and Stolcke, A. (1999). Finding consensus among words: Lattice-

based word error minimization. In Proceedings of EUROSPEECH’99, volume 1,

pages 495–498, Budapest.

56



Miller, G. A., Galanter, E., and Pribram, K. H. (1960). Plans and the Structure of

Behavior. Adams, Bannister, Cox, New York.

Minsky, M. (1985). Society of Mind. Simon and Schuster, New York.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., and Wu, D. (2003). Shop2: An

HTN planning system. Journal of Artificial Intelligence Research.

Prinz, J. (2002). Furnishing the Mind: Concepts and their Perceptual Basis. MIT

Press, Cambridge, MA, USA.

Pulvermüller, F., Härle, M., and Hummel, F. (2001). Walking or talking?: Behavioral

and neurophysiological correlates of action verb processing. Brain and Language,

78:143–168.

Putnam, H. (1975). The meaning of ’meaning’. In Philosophical Papers, Vol. 2: Mind,

Language and Reality. Cambridge University Press.

Pynadath, D. V. and Wellman, M. P. (2000). Probabilistic state-dependent grammars

for plan recognition. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence, UAI2000. Morgan Kaufmann Publishers.

Roy, D. (2005). Semiotic schemas: A framework for grounding language in action and

perception. Artificial Intelligence.

Roy, D., Hsiao, K.-Y., and Mavridis, N. (2004). Mental imagery for a conversational

robot. IEEE Transactions on Systems, Man, and Cybernetics, 34(3):1374–1383.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding.

Lawrence Erlbaum Associates.

Schuler, W. (2003). Using model-theoretic semantic interpretation to guide statistical

parsing and word recognition in a spoken language interface. In Proceedings of the

Association for Computational Linguistics.

57



Smith, B. C. (1996). On the Origin of Objects. MIT Press, Cambridge, MA, USA.

Steedman, M. (2002). Formalizing affordance. In roceedings of the 24th Annual Meet-

ing of the Cognitive Science Society, pages 834–839.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that com-

putes prefix probabilities. Computational Linguistics, 21(2):165–201.

Stone, M. (2001). Representing communicative intentions in collaborative conversa-

tional agents. In AAAI Fall Symposium on Intent Inference for Collaborative Tasks.

Stoytchev, A. (2005). Behavior-grounded representation of tool affordances. In Pro-

ceedings of IEEE International Conference on Robotics and Automation (ICRA),

page ??

Winograd, T. (1970). Procedures as a representation for data in a computer program

for understanding natural language. PhD thesis, Massachusetts Institute of Tech-

nology.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the

probabilities of novel events in adaptive text compression. IEEE Trans. Information

Theory, 37(4):1085–1094.

Zwaan, R. A. (2003). The immersed experiencer: Toward an embodied theory of

language comprehension. The Psychology of Learning and Motivation, 44.

58



High Level Events
R ATTEMPT UNLOCK DOOR 4
R UNLOCK DOOR 4
R ATTEMPT UNLOCK DOOR 4
R OPENDOOR DOOR 4
I THROUGH DOOR 4
I ROOMCHANGE ROOM 0 0 TO ROOM 0 1
R THROUGH DOOR 4
R ROOMCHANGE ROOM 0 0 TO ROOM 0 1
R ATTEMPT UNLOCK DOOR 7
I THROUGH DOOR 4
I ROOMCHANGE ROOM 0 1 TO ROOM 0 0
I ACTIVATE LEVER 10
O OPENDOOR DOOR 6
I ROOMCHANGE ROOM 0 0 TO ROOM 1 0
O CLOSEDOOR DOOR 6
O DEACTIVATE LEVER 10
I ACTIVATE LEVER 9
O OPENDOOR DOOR 7
R THROUGH DOOR 7
R ROOMCHANGE ROOM 0 1 TO ROOM 0 2
I ROOMCHANGE ROOM 1 0 TO ROOM 0 0
O CLOSEDOOR DOOR 7
O DEACTIVATE LEVER 9
R ATTEMPT UNLOCK CHEST 13
I THROUGH DOOR 4
I ROOMCHANGE ROOM 0 0 TO ROOM 0 1
R UNLOCK CHEST 13
R OPENPLACEABLE CHEST 13
O INVENTORY CHEST KEY 14

Table 3: A Sample Event Trace Segment from a Study Session

Selected Utterances Accuracy - Development Accuracy - Test
All Directives (AD) 70% 68%
Followed Directives (FD) 72% 70%
Followed Long Directives (FLD) 61% 68%

Table 4: Results of Understanding Directives in the Neverwinter Nights Puzzle Sce-
nario

59



Prediction Type Accuracy - Development Accuracy - Test
Hierarchical Plan Recognition (AD) 65% 63%
Hierarchical Plan Recognition (FD) 66% 64%
Hierarchical Plan Recognition (FLD) 50% 60%
State Based Maximum (AD) 42% 48%
State Based Random (AD) 15% 17%

Table 5: Prediction Baselines for the Neverwinter Nights Puzzle Scenario

60


	Introduction
	Background and related work
	Existing computational approaches

	The ABC theory
	Affordances
	Affordances and perceived affordances
	The structure of perceived affordances

	Affordance-based concepts
	Concepts of objects
	Concepts and composition


	An implementation of the ABC
	Hierarchical plans
	Probabilistic context free parsing
	Parsing for plan recognition
	Probabilistic earley parsing

	Earley states as perceived affordances
	Concise environment descriptions

	Language grounding via affordance filtering

	ABC studies
	Choice of research platform
	Data collection and annotation
	Language and situation modeling
	Communication strategies
	Affordance filters
	Filter functions
	Interpreting directives

	Results
	Detailed performance and mistakes


	Conclusion
	Future work

	Acknowledgements

