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Abstract

Inexpensive storage and sensor technologies are yielding a new generation of massive multi-
media datasets. The exponential growth in storage and processing power makes it possible
to collect more data than ever before, yet without appropriate content annotation for search
and analysis such corpora are of little use. While advances in data mining and machine
learning have helped to automate some types of analysis, the need for human annotation
still exists and remains expensive.

The Human Speechome Project is a heavily data-driven longitudinal study of language ac-
quisition. More than 100,000 hours of audio and video recordings have been collected over
a two year period to trace one child’s language development at home. A critical first step in
analyzing this corpus is to obtain high quality transcripts of all speech heard and produced
by the child. Unfortunately, automatic speech transcription has proven to be inadequate for
these recordings, and manual transcription with existing tools is extremely labor intensive
and therefore expensive.

A new human-machine collaborative system for rapid speech transcription has been devel-
oped which leverages both the quality of human transcription and the speed of automatic
speech processing. Machine algorithms sift through the massive dataset to find and seg-
ment speech. The results of automatic analysis are handed off to humans for transcription
using newly designed tools with an optimized user interface. The automatic algorithms are
tuned to optimize human performance, and errors are corrected by the human and used
to iteratively improve the machine performance. When compared with other popular tran-
scription tools, the new system is three- to six-fold faster, while preserving transcription
quality. When applied to the Speechome audio corpus, over 100 hours of multitrack audio
can be transcribed in about 12 hours by a single human transcriber.
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Title: Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction

Profound changes in science, technology and society are being driven by the increasing

availability of sensors, storage, and processing power. Moore’s Law, which predicts the ex-

ponential increase of processing power per unit cost, is being coupled with similar increases

in storage capacity [58], making it possible to store and process more data than ever be-

fore. Products such as Apple’s iPod or the ubiquity of digital cameras are two examples

illustrating how the effect of these technological advances are not limited to technical fields,

but are finding their way into our daily lives. Combined with high quality, low cost sensors

such as digital video cameras and audio recorders, the necessary elements are in place for

almost anyone to collect a huge, multimedia dataset. From shared video repositories such

as YouTube, to personal digital archives such as MyLifeBits [20], we are sure to see exciting

new applications built using these technologies.

Yet few applications are ever built with the intention of merely collecting and storing in-

formation. Although the cost of information is decreasing, it is not free. Information that

is never used is only so much wasted hard drive space. One problem is that the informa-

tion that is worth collecting is often hidden in a sea of information that is not of interest.

Online processing can frequently serve to filter out what is unwanted, but in cases where it

is unknown in advance exactly which information is of interest, it is better simply to keep

everything. While technological advances are making it possible to store more information,
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how to make such massive information stores easily accessible remains an open question.

The answer to this question, of course, critically depends on what sort of information is being

stored, and what one wants to do with it. Finding documents on the web using a search

engine is perhaps the most well known example of such a problem. Very good search engines

can be built using purely automatic methods, which do not require a human librarian to

index and catalog the documents according to their content. Companies like EveryZing

and Blinkx are applying technologies such as speech recognition and image analysis to help

annotate audio and video data, and make it searchable. Other approaches relying on human

generated annotations, such as tags, are used by websites like Flickr and YouTube.

Speech transcripts are used for far more than audio and video indexing. The entertain-

ment industry makes heavy use of transcription services to produce captions for television

and movies. DVDs and many television broadcasts may optionally be viewed with these

captions displayed. Medical transcription services are used to convert notes dictated by

medical professionals to text records. In both of these applications, accurate transcription

is critical and relies heavily on human review, if not completely manual transcription. Sci-

entific research on human language acquisition also depends on accurate, detailed speech

transcripts. This is not simply for the purpose of using the transcripts as a way to find audio

(or video), but as the actual data for analysis. Statistical analyses of word frequency and

grammatical analysis of the relation between words depends on these speech transcriptions.

This thesis presents a system for transcribing a massive multimedia corpus for the purposes

of studying human language acquisition. The work is driven by the Human Speechome

Project, although the methodology should be more broadly applicable.

1.1 The Human Speechome Project

The Human Speechome Project (HSP) will study human language acquisition by collecting

a new, ultra-dense audio/video corpus taken from the home of a family with a young child

[46]. Data collection has been underway since the birth of the child, and will continue for

between two to three years. At the time of this writing, over two years of data has been
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collected. The home of the child has been augmented with eleven cameras and fourteen

microphones mounted in the ceilings, in nearly every room of the house. Recording takes

place for roughly ten hours per day, for nearly all of the child’s waking hours. Audio is 16

bit resolution, recorded at 48KHz and video is approximately 1 megapixel resolution. This

corresponds to about 200 - 300 gigabytes of data per day, at about 350 days per year, for

a span of nearly 1000 days. This constitutes a dataset of unprecedented size for the study

of human language learning.

There have been two major efforts toward fulfilling the goals of the Human Speechome

Project. Building the recording and storage infrastructure has been a significant project

[14], and work on the massive storage system continues. When complete, the disk array

will be over 350 terabytes. Yet obtaining and storing the recorded data is only part of

the problem. Appropriate tools and methodologies are necessary to support the kinds of

studies intended for this dataset. In terms of language acquisition, speech transcripts will

be essential in studying how how children learn language. Thus, the challenge presented

by HSP is how to obtain transcripts of as much, if not all, speech from a corpus containing

more than 100,000 hours of audio.

1.2 Thesis Goal, Approach, and Contributions

The goal of this thesis is to build a system that drastically decreases the time required to

transcribe speech. The problem is raised by the Human Speechome Project, which will con-

tribute the most comprehensive child language acquisition dataset to date. With fourteen

audio channels recording daily, we expect to collect nearly 150,000 hours of audio over a two

to three year timespan. Because of the amount of data, new tools and methodologies will

have to be developed. While existing manual transcription tools are available, they are un-

suitable for the HSP data for a number of reasons. First, reports of transcription times with

these tools range anywhere from ten to fifty times the actual audio time being transcribed

[53, 3]. That corresponds to over one million hours of labor if the tools are used without

additional specialized processing, far beyond the timeframe acceptable to most researchers.
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Assuming a cost of $20 per hour for human transcriber time, that is also far beyond the

budget for most research groups. The nature of the data also poses problems for existing

tools. While some tools are designed to handle multitrack audio [5], this is usually for audio

split into separate tracks by speaker. In HSP, the audio channels overlap and tend to pick

up the same sounds, and part of the problem is picking which audio channel to use for

transcription. On the other hand, automatic speech recognition has advanced to a stage

where it works well in specialized domains and under controlled acoustic environments, but

the speaking style in a home environment, particularly one with a young child learning to

speak, is still beyond the reach of even the best speech recognition systems. More detail

on existing tools and experience with automatic speech recognition is provided in the next

chapter, but these problems alone should illustrate the need for an approach suited to the

data collected for the Human Speechome Project.

The approach this thesis takes is to combine human effort and machine processing to en-

able rapid transcription. The full transcription task is divided into subtasks that can be

accurately and quickly performed by a machine, while the more difficult tasks relying on hu-

man judgment and understanding are performed by a human transcriber. Tools specifically

designed to work with this semi-automatic approach are crucial in optimizing the human

transcriber’s efficiency, and in keeping the automatic system performing well. A sketch of

the approach is as follows. Multichannel audio data collected in HSP is automatically dis-

tilled into into speech segments, using signal processing and pattern recognition algorithms.

These speech segments are tuned to be easily transcribable by a human transcriber using

the tools, in that they are not too long or too short. The transcription tool presents the

detected speech segments in a list, and the transcriber need only “listen and type”. This

means that the human transcriber need not use the mouse to navigate the audio, or switch

attention from anything other than listening to speech and typing transcriptions. Errors

produced by the automatic system can be quickly identified, and the automatic system is

specifically tuned to maximize the efficiency of the human transcriber.

The result of this work is a system which takes roughly two to three times the actual audio

time to produce a complete transcription. For the HSP data, this is between 2.5 to 6
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times faster than other tools. These are concrete numbers due to an empirical evaluation,

however, in practice the factor may be even higher, since the existing tools were only

evaluated on single channel audio data that they could handle. In addition, other effects

such as human transcriber fatigue were not considered, but human transcribers reported

preferring the system presented here over other systems. This thesis contributes a speech

detection system, and presents a semi-automatic transcription methodology that tightly

links human and machine performance. The resulting system will help fulfill the promise of

the Human Speechome Project.

1.3 Thesis Summary

The thesis begins by presenting background material on the Human Speechome Project,

and considers approaches to the transcription task. Transcription is considered from a

functional standpoint, and is broken down into subtasks. This is the basis for comparing

existing transcription approaches to the new approach. The specifics of the automatic

components of the system are described in Chapter 3, and details on the transcription task

left to the human are presented in Chapter 5. Chapter 4 provides a detailed evaluation and

interpretation of the performance of the automatic components, and Chapter 6 analyzes

the task which the human annotator performs. A strong link between the automatic and

human elements of the system is made by studying the effects of errors resulting from the

automatic system on the human annotator, and how the human can respond to these errors.

Chapter 7 concludes the thesis, providing a summary of the results, directions for future

work, and the potential impact on the field.
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Chapter 2

Background and Motivation

The fundamental human capacity for language has long been of interest to scientific inquiry.

The study of language acquisition focuses on how it is that humans, seemingly effortlessly,

learn to communicate. It appears deceptively easy – we take it for granted that a newborn

baby, in only a few years, will learn to speak and communicate with others. Yet building

artificial systems with the same capability for language remains out of reach, nor is it obvious

how it should be done. Our understanding of the mechanism for language acquisition is

insufficient.

The Human Speechome Project is a study that is motivated by these questions. Broadly

speaking, the goal is to understand the relationship between a child’s linguistic development

and the environmental stimuli they receive. While many theories of language acquisition

exist, the data used to test and develop these theories have all suffered various shortcomings.

One of the shortcomings the HSP dataset addresses is the problem of data sparsity [53].

Studies which track a child’s progress with periodic samples of data taken over a long pe-

riod of time fail to capture how apparently sudden changes in linguistic abilities occur (such

as new vocabulary, grammatical constructions, etc.) The CHILDES archive [30] provides

widely used corpora for language acquisition research, yet most of the datasets cover less

than 1.5% of a child’s linguistic experience, and little visual context. While data collected

from a laboratory gives the researcher more control, the setting does not necessarily cap-
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ture the child’s natural behavior or caregiver-child interactions. For Bruner [10], studying

language in “the clutter of life at home” was preferable to a well equipped laboratory. This

motivates the Human Speechome Project: collect and study the most comprehensive record

to date of a child’s experience learning language in a natural environment. Not only will

the HSP corpus be a unique scientific resource, addressing the many challenges along the

way will help pave the way for future studies.

2.1 Collecting and Analyzing the HSP corpus

The recording infrastructure for the Human Speechome Project allows user control of audio

and video recording, though it is designed to run continually and without intervention.

Video is recorded from eleven fisheye lens cameras embedded in the ceilings, recording

up to 15 frames per second at roughly 1 megapixel resolution. Fourteen boundary layer

microphones in the ceilings throughout the house capture audio at 16 bit, 48KHz resolution.

Because of the density of sensors and layout of the house, events usually register in multiple

channels, particularly for audio.

The first step in analyzing the HSP data is to produce speech transcripts. These transcripts

are needed not only to study language, they are also helpful for indexing the massive dataset,

in the same way that companies like EveryZing and Blinkx use transcripts for video search.

Studying how a word is used cannot be done without speech transcripts, which align blocks

of text to the corresponding segments of audio. Each segment should be short enough to

contain only a few words, so that from a transcript the speech can be localized. A speech

transcript may also include additional information such as the speaker identity or prosody

information. By linking transcripts to video annotations, such as speaker locations or head

pose (the subject of a related project, see [14]), a more detailed analysis of speech in context

can be performed. A first analysis of language use that highlights the possibilities of the

dense HSP dataset is to trace the “lifetime of a word.” For a particular word, we can look

at how it was used by caregivers, the first “proto-word” versions of the word as uttered by

the child, and study how it develops and how its meaning changes over time. This analysis
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can only be done with speech transcripts that enable finding all the uses of a word in the

corpus.

2.2 Speech Transcription

Transcribing speech is the essential task for annotating the HSP corpus, but how is it done?

From a purely functional perspective, four basic tasks are involved:

1. FIND the speech in the audio stream.

2. MARK the speech boundaries, distinguishing the speech from the rest of the audio.

3. LISTEN to the audio for the speech segment.

4. TYPE the transcription for the speech segment.

Audio can be represented visually using a waveform, which plots the signal directly, or

with a spectrogram, which is an image showing the frequencies present in the audio over

time. In a spectrogram, speech has a distinct visual structure due to the specific frequencies

produced by a vibrating vocal tract, which a human annotator can learn to recognize. So

a human transcriber can both listen to audio and visually inspect a spectrogram to find

speech. Figures 2-1(a) and 2-1(b) shows the waveform and spectrogram of speech between

a caregiver and child. Marking an utterance with a segment distinguishes it from the rest

of the audio, as shown in figure 2-1(c). Next, the transcriber listens to the segment and

types the transcript, shown in figure 2-1(d). Figure 2-1(e) shows the fully segmented and

transcribed audio.

This is a preview sketch of a purely manual transcription process, and the next sections

describe how these actions are performed using specific tools. Unfortunately, manual tran-

scription is extremely time consuming, while purely automatic transcription using automatic

speech recognition (ASR) technology produces too many transcription errors on the HSP

corpus, largely due to the speaking style. Thus, a semi-automatic approach is developed,
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(a) Waveform of audio containing speech.

(b) Spectrogram of the same audio.

(c) Speech marked with a segment.

all done?

(d) A transcribed segment.

all done? all done all doneall done? what do
we say

(e) The complete segmentation and transcription.

Figure 2-1: Waveform and spectrogram visualizations of audio, and the sequence of steps
required to transcribe speech. This is an actual exchange between caregiver and child from
the HSP corpus. The caregiver asks “All done? All done?” The child responds “All done!”,
the caregiver asks the child again, and the child responds “All done!”
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which automates the FIND and MARK stages, letting the transcriber focus on the LISTEN

and TYPE tasks with specialized tools. Streamlining transcription in this way results in a

significantly faster transcription system.

2.3 Manual Transcription

A number of manual tools for speech transcription are available, but two – CLAN and

Transcriber – have been selected for consideration here. These tools were chosen based

on their applicability to the task, and their popularity in the field. Procedurally, manual

transcription tends to work the same way across different tools, following the FIND, MARK,

LISTEN, TYPE (FMLT) paradigm. Other detail such as the speaker identity may also be

annotated using most tools, which adds further complexity to the task.

Transcriber [3], provides a graphical interface which displays the current transcript and the

audio waveform. Audio is played either continually, or by highlighting specific segments for

playback. Segments are defined by creating markers in the audio stream, and each audio

segment links to a line in a main transcription panel for entering the associated text. In

addition, speaker turn taking can be entered in order to associate speaker identity with

each transcript. Figure 2-2 shows the Transcriber user interface.

CLAN [30], is actually a suite of tools that were developed as part of the CHILDES research

effort. This set of tools is one of the most widely used in the language acquisition research

community. CLAN pre-dates Transcriber, and its user interface is less sophisticated in some

ways. Like Transcriber, it provides a waveform display of the audio file and a text area for

entering transcripts. One difference between CLAN and Transcriber is that the user does

not see the entire segmentation of the audio file. Instead, the portion of audio corresponding

to a given transcript may be highlighted if desired. This results in a segmentation that may

contain overlapping segments, which may or may not be desirable. CLAN also makes more

extensive use of codes embedded in the transcript to signify speaker identity and other

information. Transcription roughly proceeds by playing through the audio, identifying and
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transcribing a segment of speech, and associating the transcript to the segment of audio.

Figure 2-3 shows the CLAN transcription interface.

2.4 Challenges of Manual Transcription

Manual transcription is a laborious process. To give a sense of how long it may take, in

[3] the authors found that transcribing one hour of audio from various radio programs,

newscasts, and televised news bulletins and documentaries took roughly fifty hours. They

found this factor of fifty times real time to be consistent across transcribers, with variability

depending on the program. A factor of ten to twenty times real time is reported in [53].

Why does manual transcription take so long? The FIND, MARK, LISTEN, TYPE sequence

in CLAN and Transcriber requires physically moving one’s hands between keyboard and

mouse, and it also requires “cognitive switching” between modes of interacting with the

system. The annotator starts with the “input” mode of visually scanning and listening to

audio, decides on a segment, switches to “output” mode using the mouse to mark the seg-

ment, returns to the input mode of listening to and interpreting the speech, and then moves

to the keyboard to output a transcription. Figure 2-4 illustrates the FMLT decomposition

in terms of how the annotator interacts with the system.

It may be pointed out that, at least in Transcriber, the annotator could first segment all

speech and then transcribe the segments, but in practice this did not occur. One explana-

tion is that when marking speech, the annotator usually hears the speech and can start a

transcription, needing to replay the segment fewer times.

The effect of cognitive switching, or more generally, cognitive load, introduced by user

interfaces is discussed in depth in Oviatt [35]. In fact, Oviatt makes a very strong case for

considering a user’s unconscious cognitive abilities as a primary design principle for building

user interfaces. Even apparently simple task-switching can create significant cognitive load

for a user [33].

Transcription times that take a factor of ten to fifty times the actual audio time may be
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Figure 2-3: CLAN user interface. A segment in the waveform visualization at the bottom of
the screen can be highlighted, and “bound” to a transcription in the top panel. Transcription
follows a particular syntax, starting with a speaker code and then the transcription for the
segment.
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Input Output

Visual FIND

MARK Mouse

LISTENAural

KeyboardTYPE

Figure 2-4: A functional decomposition of transcription, in terms of human input and output
tasks and the modes of interaction in CLAN and Transcriber. The human transcriber must
first find the speech by visually scanning a waveform. They then mark the speech segment
using the mouse, listen to the segment, and type the transcription.

acceptable for a small corpus, consisting of tens or even hundreds of hours of audio. However,

in HSP there are tens of thousands of hours of of audio. A typical day of recording gives

rise to 14 simultaneous tracks, spanning roughly 10 hours, for over 140 hours of audio per

day. Even listening to all this audio would take prohibitively long, let alone transcribing it.

However, only about 2-5% of this audio contains speech, but even if all the speech could be

isolated, at an optimistic factor of ten times real time it would still take a week of manual

effort to transcribe a single day. A better solution is clearly needed.

Instead, if some of these functions could be automated, the transcription process could

be streamlined. The approach taken here is to eliminate FIND and MARK by performing

this with an automated system, and to build tools that are optimized for listening and

typing. The next section introduces a semi-automated approach designed to streamline the

transcription task.
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2.5 Semi-Automatic Speech Transcription: The New Method-

ology

The system presented in this thesis is designed to maximize the speed and efficiency of

speech transcription by combining human and machine capabilities in a harmonious way,

based on a philosophy of human-machine collaboration [29]. The term “collaboration” is

used here because the system leverages the complementary capabilities of both human and

machine, and each helps the other perform their task better.

The approach automates as much of the FMLT task as possible, not only to reduce the total

amount of work required for the human, but also to simplify the process and reduce cognitive

load. Algorithms are used to FIND and MARK speech, allowing the human transcriber to

focus only on the LISTEN and TYPE tasks. These last two stages still require manual

transcription, largely because the speaking style in the HSP corpus is too challenging for

automatic speech recognizers. The semi-automatic system presented in this section is at

least 2.5 to 6 times faster than manual transcription alone.

2.5.1 Methodology Overview

The semi-automatic speech transcription system works as follows: Automatic channel selec-

tion and speech detection algorithms sift through the multi-track HSP audio corpus to find

and mark speech segments. These speech segments are picked to be “easily transcribable”,

which means that they are in the loudest and clearest channel, and are the right length for

human transcribers to store in short-term memory so they can quickly “listen and type.”

The speech segments found by the automatic system are then transcribed by a human an-

notator, who uses BlitZcribe (pronounced “blitz scribe”), a specialized tool designed for

the listen and type process. BlitZcribe presents the detected speech segments in a list, and

the human transcriber need only use the keyboard to play the audio and transcribe what

they hear. They can also easily navigate the list and mark certain common errors using

only the keyboard. There is no need to reach for the mouse, nor any need to examine
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Safe mode
Fast mode

LISTEN TYPECHECK

Figure 2-5: Semi-automatic transcription sequence, showing safe mode and fast mode. Safe
mode begins by checking for missed speech, and then moves to fast transcription, which
cycles between listening and typing.

spectrograms or search for speech. The simplified interface minimizes cognitive load, and

focuses the human annotator’s effort on exactly the steps of the FMLT process that cannot

be performed automatically.

The introduction of the automatic component also introduces a source of potential errors.

Missed speech and segments which do not actually contain speech are the two main error

types. Fortunately, because the human annotator is an integral part of the system, human

oversight can be added without creating significant additional work. Segments which do not

contain speech are easily handled in BlitZcribe as part of the listen and type process. Missed

speech requires a different tool to manually find and mark the segments. This tool, called

TotalRecall, is a more general data browsing and annotation tool, and the user interacts

with it in a manner similar to other manual transcription tools. Performing this step is

optional and depends on whether the human transcriber feels satisfied with the automatic

speech detector performance. Using TotalRecall to check for missed speech constitutes safe

transcription mode, while skipping this step can be called fast transcription mode. In the

FMLT paradigm, safe mode adds the CHECK step to the set of tasks. Figure 2-5 illustrates

the steps for safe and fast transcription modes. Not only does human oversight monitor

the automatic system performance, it also provides feedback the system can use to improve

and adapt to changes in the acoustic environment. By explicitly considering all the human

factors which arise in the semi-automatic approach, the automatic components and the user

interfaces can be tuned to optimize the total system performance.
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2.5.2 Terminology

The following sections refer to three basic data types used in the system: raw data, transform

data, and metadata. Raw data is the original audio and video that is actually collected.

Transform data is data that is a transformed representation of the raw data which may

help a human annotator interpret the raw data. Spectrograms are a type of transform data.

Both raw and transform data are stored on a filesystem. Finally, metadata are specific,

semantically meaningful units of information about other data, usually raw data in this

case. Segments, which are simply the combination of a channel and a time block, and

annotations, which are labels for segments are the most common types of metadata in HSP.

Metadata is stored in a central database.

2.5.3 Automatically Finding and Marking Speech

The first two steps of finding and marking speech in the audio stream are performed au-

tomatically. This process not only reduces the amount of audio that a human transcriber

must listen to, it also simplifies the manual transcription task.

Finding speech segments is done using a statistical pattern recognition system that has been

trained to distinguish between speech and non-speech. If a single stream of audio is input

into the speech detection and segmentation system, a sequence of segments are returned

which the detector believes contain speech.

However, since the audio data in HSP is actually recorded simultaneously from multiple

overlapping channels, it is first necessary to identify the “best” channel. This must be done

because audio channels overlap, in the sense that a sound occurring in one part of the house

will register on multiple microphones. Choosing the loudest audio channel provides the best

input signal not only to the speech detector, but also to the human transcriber who must

eventually transcribe the segment. Raw, multichannel audio is sent to the audio activity

tracker, which outputs a sequence of timeblocks and corresponding channels that represent

the best channels over the course of a day. This can be thought of as a virtual channel,
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Audio 
activity 
tracker

Speech 
detector

Channel 1
Channel 2
Channel 3

Channel 14

...

DB

TotalRecall

BlitZcribe

Virtual channel

1 4 2 12

Figure 2-6: System diagram for the automatic speech detector. Multi-track HSP audio is
processed by the audio activity tracker, which outputs a virtual channel of the loudest,
clearest audio over time. The audio from the virtual channel is sent to the speech detector,
which identifies the speech and produces segments that are “easily transcribable” by a
human transcriber. The speech segments are stored in a central metadata database, which
is used by BlitZcribe and TotalRecall.

which is like a channel that draws its source audio from various real channels over time. The

speech detector then processes this virtual channel and output segments of speech. Figure

2-6 summarizes these automated steps. Given the rate of data collection in the Human

Speechome Project, automatic speech detection runs on-site on a daily basis to keep up

with the data flow, and status emails are automatically sent to administrators who monitor

the system.

2.5.4 Tools

The metadata extraction described above is the first half of the system presented, but once

speech segments are identified the human annotator must provide transcriptions for these

segments. In addition, human oversight is needed to ensure the quality of the automatic

processes. To accomplish both of these tasks, appropriate tools are necessary and are

described in the following sections.
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TotalRecall

The primary browsing and annotation tool is known as TotalRecall [28]. In addition to

general browsing and annotation, it has been optimized specifically for transcription. At

the simplest level it enables a user to view the data at multiple time scales. The interface

presents a timeline view of all channels, and allows the user to zoom out to a time scale of

years, or zoom in to a time scale of seconds. A playback head displays the user’s current

position in the data, and a selected audio or video channel can be played at that point. For

video, a separate window shows all video channels playing simultaneously at a low resolution,

and the selected channel playing at full resolution. In the case of audio, only the selected

audio channel plays. The user can control the visibility of metadata, which is displayed

in the appropriate channels and temporal locations in the interface. Transform data in

each channel visualizes the corresponding raw data, which is essential for navigating and

interpreting the data without necessarily playing it. Figures 2-7 and 2-8 show screenshots

of TotalRecall and the video player, respectively. TotalRecall is the product of the efforts

of multiple members of the Cognitive Machines group.

Data Visualization

In order to browse the data in TotalRecall without playing it back, visualizations are dis-

played. The user can select which channels to view – from a single channel, to a full view

of all channels. Figure 2-7 shows four “open” channels – audio and video for both the

kitchen and living room. The other horizontal bands are collapsed channels. All channels

are synchronized in time, thus looking across channels for a given time can give a sense of

what channels had activity, and often what sort of activity was taking place.

Audio visualizations are standard spectrogram images, which show the frequency content

of the audio signal as a function of time. With a little practice, speech can be identified

just by looking at the spectrogram. Figure 2-1(b) shows the spectrogram of speech between

a caregiver and child. With spectrograms, a large amount of audio can be quickly scanned

for potentially interesting segments. A custom spectrogram processor was written in C++

36



F
ig

ur
e

2-
7:

T
ot

al
R

ec
al

l
br

ow
se

r
an

d
se

tt
in

gs
w

in
do

w
s.

E
ac

h
ho

ri
zo

nt
al

ba
nd

re
pr

es
en

ts
a

ch
an

ne
l.

Fo
ur

ch
an

ne
ls

ar
e

op
en

in
th

is
sc

re
en

sh
ot

-
th

e
to

p
tw

o
ch

an
ne

ls
ar

e
th

e
vi

de
o

an
d

au
di

o
fo

r
th

e
ki

tc
he

n,
re

sp
ec

ti
ve

ly
,

an
d

th
e

bo
tt

om
tw

o
ar

e
th

e
vi

de
o

an
d

au
di

o
fo

r
th

e
liv

in
g

ro
om

.
T

he
du

ra
ti

on
of

ti
m

e
be

in
g

di
sp

la
ye

d
is

ab
ou

t
on

e
m

in
ut

e.
T

he
vi

de
o

vo
lu

m
e

sh
ow

s
tw

o
pe

op
le

m
ov

in
g

in
th

e
ki

tc
he

n,
w

it
h

on
e

br
ie

fly
en

te
ri

ng
th

e
liv

in
g

ro
om

.
B

ot
h

au
di

o
ch

an
ne

ls
sh

ow
sp

ee
ch

ac
ti

vi
ty

,a
nd

th
e

sp
ec

tr
og

ra
m

s
lo

ok
si

m
ila

r
si

nc
e

th
e

m
ic

ro
ph

on
es

in
bo

th
ro

om
s

ar
e

pi
ck

in
g

up
th

e
sa

m
e

au
di

o.

37



Figure 2-8: TotalRecall video player. On the left are low resolution videos from all cameras
that are currently on. On the right is a full resolution (about 1000x1000 pixels) video from
the kitchen, which is the currently selected channel.
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using the FFTW library [19]. The primary requirements were to run as fast as possible, and

to handle the custom HSP audio format. Figure 2-7 shows spectrograms as they appear in

TotalRecall.

Video visualizations are video volumes, which roughly show the movement of people and

objects in the video as static images. They are generated by calculating which pixels in

individual video frames are in motion, and displaying these pixels, while making all non-

moving pixels transparent. Successive frames are transformed in this way, and “slid” from

left to right in a new image, with the amount of overlap between these transformed frames

determined by the amount of time between each frame. Thus, a span of video produces an

image with the height of a video frame, and the width proportional to the amount of time

in the video clip. Figure 2-7 shows video volumes of two channels in TotalRecall. The video

volumes are of two people in the kitchen, with one briefly entering the living room and then

returning to the kitchen.

Both video volumes and spectrograms are types of transform data, described in section

2.5.2. They are simply channel specific images at various resolutions, representing one

minute to one day of raw data for a channel. Using multiple resolutions is an optimization

to help minimize the number of images that TotalRecall must load.

BlitZcribe

BlitZcribe is a tool specifically designed for rapid speech transcription in the semi-automatic

framework. It is built with a simplified interface that focuses the transcriber’s entire effort

on listening to speech segments, and typing transcripts. The core interface element is a list

of text boxes, with one for each segment. The user can play (or replay) a segment with a key

press, type the transcript, and advance to the next segment using only the keyboard. Since

the automatic segmenter is tuned to produce short segments that the human transcriber can

easily remember, the need to replay segments is minimized. Common errors that do result

from the speech detector can also be quickly marked with the keyboard as part of the normal

workflow. By relying only on the keyboard, no extra time is needed to physically switch
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between keyboard and mouse. In contrast to TotalRecall, which is a general browsing and

annotation tool and is designed to present a comprehensive data view, BlitZcribe minimizes

cognitive load by not presenting distracting or extraneous information. The key idea of

BlitZcribe is to focus the transcriber’s effort on the task of listening and typing short, easy

to remember speech segments using a simple and streamlined mode of interaction.

In addition, because of the limited data access provided by BlitZcribe, it addresses some

privacy concerns. Transcribers only hear segments of audio and cannot browse, which is

important given the personal nature of the data and the need for transcribers who may

not be closely connected to the project. In cases where a transcriber cannot completely

understand what was said, some simple transcription conventions have been adopted. These

segments can later be reviewed in TotalRecall by a privileged annotator with full access

to the audio and video. A screenshot of BlitZcribe is shown in figure 2-9. The green

text box (number 289) is the segment the transcriber is currently working on, and all

previous segments have been annotated. BlitZcribe was written by Jethran Guinness, using

components developed by various members of the Cognitive Machines group.

2.5.5 Process Summary

Now that the basic elements of the system have been introduced, the semi-automatic tran-

scription process can be summarized. A detailed description is reserved for section 5.1.

Automatic speech detection algorithms identify speech segments in the multi-track audio

data, choosing segments to be an “easily transcribable” length and in the clearest audio

channel. These speech segments are stored in a central metadata database, where they can

be read by BlitZcribe. BlitZcribe is optimized for rapid transcription by minimizing the

cognitive load on the transcriber. TotalRecall can be used for more general annotation or

correcting errors and problem segments, since it allows all the audio and video to be played

and displays transform data for efficient browsing. The human created annotations from

BlitZcribe and TotalRecall are stored in the same metadata database, and an administrator

can feed these human-created annotations back into the system to adapt and improve the
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Figure 2-9: BlitZcribe. The green text box (number 289) is the currently active segment,
which the transcriber is listening to. Transcribers can listen and type simultaneously, or
mark common errors using only the keyboard. After finishing the segment, the transcriber
hits return, and BlitZcribe will advance to the next segment.
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automatic components. The total human-machine system is significantly faster – at least

2.5 to 6 times as fast – as purely manual approaches.

2.6 Fully Automatic Transcription

Although the previous sections have suggested that fully automatic transcription is not

a viable option, it is an attractive idea and worth discussing in greater detail. Automatic

speech recognition (ASR) systems process audio input and produce textual output. Though

still an active area of research, such technology is finding its way into everyday applications,

such as navigating telephone menu systems. For example, Gorin et al. present research for

a spoken dialog system for call routing in [23]. Yet effective systems for unconstrained,

conversational speech are still a long way off [15].

In an early pilot study, audio data collected for HSP was processed with a state of the

art speech recognition system [11]. A large amount of manually transcribed speech was

provided, along with the corresponding audio, to evaluate the recognition performance.

One issue that came up was the need for a significant amount of transcribed audio in order

to retrain the recognition system – a minimum of fifty hours was recommended. Since

obtaining this amount of transcribed speech early in the project was a significant task in

itself, a preliminary test applying the existing recognition system to ten hours of transcribed

audio was performed. The audio data actually consisted of hundreds of short, extracted

audio clips concatenated together, with an appropriate transcription file. Unfortunately,

the initial results on this evaluation were quite poor, with a word error rate of about

95%. One reason for these results is simply that the speaking style is very informal, and

significantly different from the type of speech that most ASR systems can handle. There

is also background noise, variable acoustic conditions, and vocalizations from a child who

at the time was not yet producing speech. ASR systems still have a long way to go before

they can accurately recognize “speech in the wild.”
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2.7 Related Work

This thesis draws from prior work in speech transcription and annotation tool design, pat-

tern recognition, and machine learning. Also of interest is work in language acquisition,

user interface design and cognitive modeling of task performance. A selection of related

work is presented here.

2.7.1 Annotation Tools

Transcriber and CLAN are the two annotation tools that are considered in depth, but other

tools exist. CLAN and Transcriber are designed for speech transcription, but they also sup-

port other relevant annotations such as speaker identity. TransTool and SyncTool [34] are

two complementary tools intended for multimodal spoken language corpora. Transcription

is performed using TransTool, while SyncTool is used for aligning transcriptions with the

corresponding audio (and video) recordings. The authors report creating these because of

a lack of existing tools; those they could find were built for a specific purpose or standard,

or were not available on multiple platforms.

The Annotation Graph Toolkit (AGTK) [31] is a toolkit for building applications which

use the annotation graph formalism [4] for linguistic annotations of time series data. An

annotation graph is a directed acyclic graph data structure capable of representing linguistic

annotations, such as orthographic, phonetic, intonational, or other metadata.

Bird et al. describe a set of tools built upon the Annotation Graph Toolkit (AGTK) [5].

TableTrans is a spreadsheet based annotation tool, in which each row of the spreadsheet

view corresponds to an annotation which is linked to a segment of audio, and each column

a user definable annotation type. An extensible toolkit, AGTK uses third party software,

such as WaveSurfer [50] for displaying audio waveforms, or Quicktime components for video.

MultiTrans is another tool described in [5], designed for transcribing multi-channel audio

signals. Its user interface is similar to Transcriber, but with a transcription panel for each

audio channel. While the HSP audio is multi-channel, because the channels are overlapping
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the multi-channel capabilities of MultiTrans do not provide any particular benefit.

WaveSurfer [50] and PRAAT [6] support powerful speech and signal analysis capabilities,

and can also be used for transcription. Both tools can produce various visualizations of

audio data, such as spectrograms, waveforms, pitch and power curves, as well as other

transforms. However, the interface is not optimized for speech transcription, so would not

be very useful for large-scale transcription.

MacVisSTA [44] is a system for multimodal analysis, which provides time synchronized ac-

cess to multiple data sources, such as audio, video and other time-series data. For example,

if sensors were used to track the hand position of a subject for gestural analysis, a hand

position variable could be displayed with the corresponding audio and video. Along with

audio, video, and time series data types, sequences of annotation metadata are supported.

MacVisSTA also supports changing the temporal zoom level. By synchronizing annotations,

audio and video, MacVisSTA is similar in spirit to TotalRecall.

A review and comparison of annotation tools is provided in [17]. Reidsma et al. discuss the

challenges of annotating multimodal corpora in [42]. They summarize the annotation time

factors for annotating various types of data, characterize the basic properties of different

annotations tasks (for example, segmentation is a basic element of many annotation tasks),

and discuss the implications for designing new annotation tools. See [43] for more on this

work.

2.7.2 Audio Processing

The automatic speech detection algorithms draw from work in signal processing, pattern

recognition, and machine learning. Many of these themes fall under the heading of “auditory

scene analysis.”

Auditory scene analysis refers to audio processing for extracting and interpreting informa-

tion in the environment. Bregman gives a comprehensive treatment of this field in [7].

Computational auditory scene analysis (CASA) considers computational approaches to un-

derstanding the auditory environment, such as automatically separating speech from noise.
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Bottom-up approaches to analysis, which integrate low level information and forward it to

higher level processes corresponds to primitive segregation in Bregman’s terms. The speech

detector in this thesis uses a bottom-up approach. Top-down approaches, equivalent to

Bregman’s schema-based segregation, use information at higher level modules to bias lower

level perception. Ellis [18] describes a system that uses a predictive model to interpret the

auditory scene by resolving expected input with actual received input.

Speech detection may be viewed both as a recognition and segmentation problem. Seg-

menting an audio stream into classes may be performed without recognition, as in [55]. In

this work, an audio stream is represented as a sequence of feature vectors, and the distance

between successive features is computed. Changes in the audio signal, such as the start or

end points of a speech event, should produce peaks in the distance function. Splitting the

audio stream by choosing peaks results in a segmentation. Goodwin [22] takes a similar ap-

proach, but does use a training phase to find a distance function that reweights the features

appropriately to focus on boundaries that distinguish acoustic classes. In addition, the peak

picking procedure in [22] uses dynamic programming to find the best set of peaks to use as

segment boundaries subject to a cost function. This work is interesting, but for this thesis

we are only interested in detecting acoustic changes between speech and non-speech.

Computational auditory scene recognition focuses on recognizing the auditory context, or

environment, rather than specific sounds [37]. Here, the authors are interested in recognizing

environments like streets, restaurants, offices, family homes, and cars. The system in [8]

recognizes auditory objects as part of recognizing the broader auditory context. Their

interest is for mobile, wearable computing applications which are context-aware in order to

minimize annoying or distracting interruptions. They point out the difficulty introduced

by overlapping sounds, and the potential benefit of incorporating knowledge of human

audition. Kapoor and Basu [27] explore auditory event and environment recognition using

a representation they call an audio epitome, based on the idea of image epitomes developed

in [26].

Speech segmentation in spontaneous speech is the subject of Yoshida [61], which used a

statistical model of speech and silence based on frame level MFCCs, log frame energy,
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and first and second derivatives. Segments were determined by smoothing frame label

sequences with a four-state finite state machine that required a certain threshold of speech

or non-speech in order to switch states. This work also considered the relative cost of

false positives to false negatives, but did not consider the costs in terms of the effect on

human performance. Yoshida also looked at higher level cues to improve speech utterance

segmentation, an interesting adaptation that might also be explored in the speech segmenter

in this thesis.

Other interesting work in this field tries to discover auditory objects from the data itself.

Siegler et al. [49] used clustering to group utterances from broadcast news audio together,

with the idea that clusters for individual speakers should form. Park and Glass [36] used

an unsupervised clustering method on audio from academic lectures and were able to iden-

tify words and phrases. Smaragdis [51] used non-negative matrix factorization to identify

acoustic objects in artificial as well as real data. In the real data, the acoustic objects were

words, although in both [36] and [51], the acoustic environment is not nearly as complex as

the audio collected in the Human Speechome Project.

Just as human annotators may review video in the HSP corpus to help resolve ambigu-

ous words, machine algorithms may also benefit from multiple data modalities. Roy and

Mukherjee present Fuse [45], which uses visual context to help speech recognition perfor-

mance. Smaragdis and Casey [52] develop a method to determine meaningful audio and

video features for events in a video stream, which they then use for segmentation. Mak-

ing better use of the rich, multimodal data collected in the Human Speechome Project

should not only improve speech detection and speaker identification, it should also enable

extracting more complex and interesting meaning from the data.
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Chapter 3

Automatic Speech Detection

The semi-automatic speech transcription system introduced in Chapter 2 tightly couples

human effort with machine processing. The human works with the system using two primary

tools – TotalRecall and BlitZcribe. With these tools, the results of the automatic processes

are leveraged to enable the human to work faster and more efficiently. But it is important

to recognize that although the automatic processes are intended to minimize human effort,

they also require some maintenance. As a long term project, the overall health of the system

relies on human oversight. In order to understand how the automatic component behaves,

how to keep it running at its best, and how its performance characteristics affect the human

task, the system must first be explained in more detail. This chapter focuses on the core

elements of the automatic system.

3.1 Audio Activity Tracking

One reason collecting the HSP data is not overly burdensome to the participants is that it

requires minimal attention to the recording process. While the participants have control of

recording, it is designed to run continually and without intervention. As such, much of the

recorded data doesn’t contain any events of interest. In the case of audio, there may be

stretches of silence or non-speech noise. When there is audio activity, only the microphone
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closest to the sound source (ie. the loudest) need be processed, and the others can be

ignored. The audio activity tracker does not distinguish between different sounds, its job is

only to remove silence and track the best channel. Subsequent processing then focuses on

speech, or potentially other sounds in the future. Functionally, the audio activity tracker

processes the multichannel audio recordings and produces a sequence of segments containing

audio activity. This sequence of segments may be thought of as a virtual channel.

3.1.1 Identifying the Loudest Channel

The audio activity tracker tracks the loudest channel over time, switching channels when

there is sufficient evidence to support a channel switch. At equal intervals, a window is

placed over the audio stream for a channel, and the power for that window is computed.

For a window size of N samples, and audio samples xi in the window, the power is defined

as

p =

√√√√ 1
N

N∑
i=1

(xi − x̄)2

Sliding the window results in a sequence of power values for each channel. This sequence is

parameterized by the window size (N) and the window shift. The window shift is simply

how many samples to shift the window for each power computation. In practice, a window

size and window shift corresponding to 300 milliseconds (ms) has been chosen.

If the power pj for a window at position j in the audio stream is below a minimum threshold

α, the channel is determined to be silent. For the HSP audio, α has been chosen to be .00004.

When all channels are silent, one can think of there being a currently active “silent channel”.

In this way it fits into the paradigm of choosing the “best” (or “active”) channel.

3.1.2 Tracking the Best Channel

Simply choosing the loudest channel at each window results in a virtual channel that is

fragmented. This can happen when two adjacent channels have roughly equal power due to

a nearby sound source, and they toggle back and forth as the loudest channel, or a spurious
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sound in another room occurs. Because of the high density of microphones in the house,

multiple channels can often represent the source audio with similar fidelity. Therefore, it

is not critical to always choose the loudest channel – other nearby channels can be used as

well. Not only that, since segments are the basic element of annotations and are specific

to a channel, a channel switch in the middle of an utterance will mean that the utterance

cannot be represented by a single segment, which has implications for transcription later.

So in the first case, it is better to simply pick one channel rather than switch back and

forth. In the second case, a very short event in one channel should not cause a switch from

a channel with sustained activity.

To reduce fragmentation, a smoothing step is performed to decide when to switch channels.

This is accomplished using a dynamic programming [41] scheme that balances a cost for

switching channels and a cost for choosing a channel that is not the current best channel.

Following this smoothing, segments in the same channel separated by a short block of silence

are merged. The dynamic programming algorithm used is the Viterbi algorithm, but it is

used to minimize cost rather than maximize probability. However, the structure is identical.

Algorithm 1 gives pseudocode for the process.

Notice that setting the channel switch cost to 0 essentially reduces to selecting the loudest

channel at each window. Before the channel sequence is output, a pass over the channel

segments merges any segments of the same channel which are separated by a short silence.

One property of this algorithm is that at each point in time, a single channel is designated

to be active (if no channel is active, these gaps can be thought of as segments in an active

“silence” channel). This means that if there are two distinct sound sources, only the loudest

source will “win” and make its channel the active channel (subject to the smoothing condi-

tions.) Experience with this process has encountered only two common problems that were

easily solved without requiring a more sophisticated algorithm. The first was due to the

sustained, loud noise in the laundry room from the washer and dryer, where speech almost

never occurs. The laundry room channel was simply removed from the activity tracking.

The second problem was due to the low-frequency rumbling of the garage door, or large

trucks passing by outside. This was resolved by filtering out audio below about 200Hz, out
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Algorithm 1 GlommiViterbi
N : number of sample windows of audio
K: number of channels
α: silence threshold

δ0 ← {0}K {Initialize the state sequence}
γ0 ← {0}K {Initialize the cost vector}

for i = 1 to N do {For each sample window i}
o← getActiveChannel(i, α) {Get loudest, or silent, channel for window i}

for each “to channel” c ∈ {channels} do
for each “from channel” k ∈ {channels} do

previous cost ← γi−1(k)
transition cost ← getTransitionCost(k, o, c)
costs[k] ← previous cost + transition cost

end for
δi(c)← arg minj costs[j] {Store the minimum cost “from” channel to c}
γi(c)← minj costs[j]

end for
end for

c← arg minj γN (j) {Get the minimum cost final state}
sequence ← {c}
for t = N − 1 to 1 do {Unroll the minimum cost sequence}
c← δt(c)
sequence ← (c, sequence)

end for

segments← makeSegments(sequence) {Convert to sequence of segments}
segments← removeSilentSegments(segments) {Remove silence segments}
segments← glom(segments) {Merge segments of same channel if close}

return segments
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of the range of most sounds of interest.

However, to properly build a better audio activity detector, a method for determining

whether the energy in a channel is due to the same sound source as a louder channel, or

a different sound source should be applied. If the sound sources are different, then there

should really be two virtual channels. The current algorithm assumes only a single sound

source at a given time. The virtual channel that the audio activity tracker produces is

stored as a file that is used by the speech detector.

3.2 Speech Detection

The speech detector is the component of the automatic process which processes an audio

stream, and returns a set of speech segments. In practice, it takes the virtual channel

produced by the audio activity tracker as an input. The speech detector is built from a

combination of signal processing, pattern recognition, and smoothing algorithms.

3.2.1 Algorithm Overview

At a high level, the audio stream is first represented as a sequence of feature vectors. Feature

vectors are computed from short windows, or frames, of audio. These feature vectors are

then presented to a “frame level” classifier, which may output “silence”, “speech”, or “noise”

for each frame. The sequence of frames is then smoothed and grouped into segments. The

speech detector only outputs the speech segments, along with a confidence value for each

segment indicating how sure it is that the segment is speech. Figure 3-1 shows the sequence

of steps in the speech detection algorithm, and the following sections explain the algorithm

in more detail.

3.2.2 Feature Extraction

The first step in speech detection is the feature extraction stage. A sequence of feature vec-

tors are extracted from the audio stream, and summarize aspects useful for disambiguating
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Figure 3-1: Speech detection block diagram. The speech detector processes a virtual chan-
nel, and outputs a set of speech segments. Internally, separate modules perform feature
extraction, frame-level classification, smoothing and segmentation, and splitting of long
segments to produce the final output.

sounds of different types. Each feature vector may be thought of as a point in the feature

space. The choice of appropriate features is crucial for a successful pattern recognition ap-

plication. A good feature representation groups examples of the same class together in the

feature space, and separates examples of different classes. The pattern recognition algorithm

uses these feature vectors to discriminate between examples of the different classes.

Since the rule for discriminating between classes by their feature vectors is usually unknown

a priori, or is too complex to encode manually, it is the task of a machine learning training

algorithm to find such a rule from a set of labeled examples. The training algorithm will

be discussed in section 3.3.1.

Feature extraction begins by filtering and downsampling the audio from 48 KHz to 8 KHz.

This is done both for speed purposes (by reducing the number of samples to process) and

because it removes higher frequencies that are outside of the main speech frequency range.

Using this narrower band produced better empirical results. After downsampling, the audio

is partitioned into a sequence of 30 ms frames, shifted by 15 ms. For each frame a feature

vector is extracted.

3.2.3 Feature Representation

The feature extraction stage processes the audio stream into a sequence of feature vectors,

where each feature vector is composed of different feature types, described below. The

features represent both temporal and frequency properties of the audio.
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MFCC features

MFCC features are frequency domain features, which are transformations of the magnitudes

of the frequencies present in a frame. Instead of considering the many raw frequencies

present in the frame, a more compact representation is obtained by using knowledge of

speech production and perception [13].

Each MFCC (or “Mel Frequency Cepstral Coefficient”) vector is a function of a single

Fourier transform output vector. MFCCs are computed by first producing a small set of

weighted averages of different frequencies. This is the Mel filtering stage. A triangle func-

tion, which is defined by a center frequency and a bandwidth, is placed over the FFT vector

at the center frequency, and the average of the magnitudes of the contained frequencies is

computed, weighted by the triangle function value at each frequency. In other words, for

a triangle function Tc,w[j] with center frequency c and width w, and frequency vector f [k],

the weighted average

w =
N∑

k=0

Tc,w[k]f [k]

is computed. M triangle functions are chosen with centers {ci} and widths {wi} based on

perceptual information. The discrete cosine transform of the Mel-filtered spectrum is then

taken, resulting in an MFCC vector.

Give a sequence of sample frames, the MFCC extraction procedure produces a sequence of

MFCC vectors. MFCCs are computed using customized code based on the CMU Sphinx

package [57]. For more information on MFCCs, see [13].

Other features

In addition to MFCCs, other features are used to represent the audio stream.

• Zero crossings

The zero crossing feature is the count of how many times the signal crosses the zero
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point. This is the number of times the signal amplitude transitions from a positive

value to a negative value, or vice versa, in the frame.

• Max amplitude

The max amplitude feature is the maximum observed amplitude in the frame.

• Power

The power feature is the total power of the signal in the frame. Two power features

are computed – one in the short 30 ms frame, and a second over a wider 330 ms

window.

• Spectrum entropy

The spectrum entropy calculates the entropy of the frame’s frequency magnitude

vector, if it is viewed as a probability distribution. Entropy is a quantity in information

theory that roughly measures how “peaked” a probability distribution is [12]. In this

case, the idea is that common noise in the HSP audio, which has roughly equal power

in all frequency bands (approximately uniform) has a higher spectrum entropy than

speech, which has peaks at specific frequencies.

• Relative power

The relative power is the ratio of the signal power in one frequency band against that

of another frequency band. In speech, most of the power is in the frequency band

100 Hz to 4000 Hz. Thus the ratio of power in this band against the entire frequency

band (0 - 24000 Hz, for the raw HSP audio) will be close to 1. However, in the case

of white noise, there is power in the entire frequency range, so the amount of power

in the range 100 Hz to 4000 Hz will be only small fraction of the total power in the

signal.

3.2.4 Frame Classifier

The result of feature extraction is a sequence of feature vectors, which are then used for

classification. While the goal of the the speech detection algorithm is to produce speech

54



segments, internally each feature vector is first classified by a frame-level classifier. This

classifier is built using the Weka machine learning library [60], and is written in Java.

The classifier used is a boosted decision tree. Decision trees [39] are classifiers that perform a

sequence of decisions on an input feature vector to obtain a classification. The classifier can

be viewed as a tree, where at each node the feature vector is evaluated based on a criterion

specific to that node. The outcome of the evaluation determines which child node should

next evaluate the feature vector. Each leaf node in the tree corresponds to a classification

– when a leaf node is reached the classification is returned.

The performance of decision trees can be improved through a technique known as boosting

[47] [40] [16]. Boosting is a method for generating an improved classifier from an ensemble

of classifiers. Roughly, boosting works by building a classifier, re-weighting the training

data to emphasize misclassified training examples, building a new classifier, and so on, to

produce an ensemble of classifiers. The re-weighting step is intended to produce a classifier

that performs better on the misclassified examples. Classification is performed by combining

the outputs of the component classifiers in the ensemble.

In practice, this is done using the MultiBoostAB algorithm in the Weka library [59]. The

extracted features are passed to the frame level classifier, which applies the boosted de-

cision tree classifier to the sequence of feature vectors, and returns a sequence of frame

classifications and associated confidence values.

3.2.5 Speech Segmentation

The frame classifications produced by the frame level classifier are only an intermediate

result. The final speech segments are obtained by grouping these frame classifications into

actual speech segments. A simple approach to obtaining speech segments is to identify

contiguous blocks of frames that have the same classification, and return each block as a

segment. However, as with audio activity tracking, this would produce too many short seg-

ments, due to spurious classifications. A desirable segment, from a transcriber’s perspective,
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is one which is long enough to contain a word, but short enough that the transcriber can

remember what was said.

While the frame level classifier has a myopic view of the audio stream, and treats each

frame independently, the transcriber’s notion of a speech segment is at a broader timescale.

Even if an individual frame appears to be speech, if the surrounding frames aren’t speech

then it is likely a spurious classification. Similarly, speech segments often contain speech

sounds which are indistinguishable from noise, or silences when there are pauses. Thus, the

relationship between adjacent frames must be considered in order to identify good speech

segments. One way to view the problem is that there is a true underlying transition point in

the audio stream at the boundary of speech and non-speech, and the task of the segmenter

is to identify these transitions from the observed frame classifications.

This is accomplished in the system using a smoother similar to that developed for the audio

activity tracker. The smoother takes a sequence of frame classifications as an input, and

returns a smoothed sequence of frame classifications, where some frames have been relabeled

by the smoother. The smoothing algorithm assumes that there is a true hidden state, which

may either be speech or non-speech. There is a cost for switching states, and a separate cost

for being in a state which differs from the frame classification. A dynamic programming

algorithm [41] then runs to find the minimum cost state sequence, subject to the costs

and the frame classification sequence. This state sequence represents a segmentation of the

audio stream.

However, smoothing may still produce segments which are too short or too long. Segments

which are shorter than a minimum length threshold α are discarded. Segments which are

longer than a maximum length threshold of β are split into multiple shorter segments, with

duration between α and β. In practice, α = 350 ms, and β = 5000 ms. This choice of β has

been made so that the human transcriber will never need to transcribe a speech segment

that is too long to store in short-term memory.

For long segments, finding the optimal split points proceeds by looking for local minima

in the confidence function, and looking for silence points. The confidence function is a
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function over the confidence values for the frame classifications. The confidence values are

first smoothed using an averaging scheme. If there are regions in the frame classification

sequence where the classifier was less confident of the speech label (for example, the frame

classifier was less sure or the smoothing actually relabeled the frame from non-speech to

speech), then the minimum point is a good split candidate. In addition, a point of minimum

energy may also be a good split point, since it could correspond to a silence between words.

Functionally, the splitter takes a single speech segment as an input, and returns a set of

speech segments within the target duration range. Each speech segment has an associated

confidence value, which is the average of all the frame level confidence values in the segment.

3.2.6 Summary

The final result of feature extraction, frame classification, smoothing, segmenting and split-

ting is a set of speech segments, which are stored as metadata in a central database. These

will be the segments presented to a human annotator for transcription in BlitZcribe. An

example will help make the speech detection algorithm more concrete. Figure 3-2 shows a

visualization of the speech detection processing stages. Figure 3-2(a) shows a spectrogram

of audio. Features are extracted, several of which are shown in figure 3-2(b) (the features

have been scaled and positioned over the spectrogram for clarity.) The set of features are

processed by the frame-level classifier, which produces a classification for each frame, visu-

alized in 3-2(c). Each frame classification should be read as a column from bottom to top:

the output classification color starts at the bottom and goes up to a height proportional to

its confidence, then the next most confident label color is displayed, and so on. The next

picture shows the result of smoothing the frame classifications. Since the audio was fairly

clean, the starting frames were actually well segmented to begin with, but the output of

the smoother defines the segments. However, the rightmost block of speech is longer than

the maximum allowable segment length, so the splitter has broken it into three segments,

attempting to find the best split points.
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(a) Audio spectrogram

(b) Spectrogram with selected features plotted. From bottom to top: short window energy, zero
crossings, mfcc2, mfcc1, mfcc3

(c) Spectrogram with frame-level classifications displayed

(d) Smoothed frame-level classifications. Note the relabeled frames

(e) Spectrogram with segments. Long speech block has been split into three segments

(f) Final speech segments

Figure 3-2: Processing sequence in speech detection. The colored band in figures 3-2(c) and
3-2(d) are visualizations of the individual frame classifications. Frames labeled as speech
are blue, silence is red, and noise is green. After smoothing, segments are defined by the
boundaries between different acoustic classes. However, the speech block on the right is too
long, and is split by the splitter algorithm into three segments.
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3.3 Building the Speech Detector

The speech detection algorithm has a boosted decision tree frame-level classifier at its core.

This section describes how the frame classifier is built, and how other speech detector

parameters are set.

3.3.1 Training the Frame Classifier

The training algorithm starts with a hand labeled training set, which is a set of examples

drawn from the different classes to be differentiated. In this case, speech, silence, and

noise segments are hand labeled. Rather than grouping silence and noise together into a

“non-speech” class, they are kept separate, in part with an eye toward future development.

Training proceeds as follows. First, all examples of speech, silence and noise are collected

from the database, and feature extraction is performed. The same feature extractor used

for classification is used for training. For each training segment, all the extracted feature

vectors for that segment are labeled with the segment label. These labeled feature vectors

are then input to the Weka boosted decision tree training algorithm. For details on training,

see [39] and [59]. The result of training is the core Weka classifier model, which is saved as

a file, and a frame-level performance summary.

3.3.2 Frame Classifier Performance

The frame classifier which results from the training procedure may be characterized in terms

of its error rate, and the types of errors that it makes. Since the label of each frame is known,

a set of training data can be held out from the training process, and used for testing. The

training data is actually partitioned into five sets, and five-way crossvalidation performed.

As part of the training procedure, it is useful to output performance characteristics of the

model along with the model. Before the training procedure returns, the new model is used

to classify each frame of the test set. A classification error occurs whenever the classifier
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label disagrees with the human label for a particular frame. A simple measure of error

is just the total number of frame errors relative to the total number of frames. However,

a more detailed summary of the classifier performance can be obtained using a confusion

matrix, and calculating the precision and recall for each class.

Measures of Classifier Performance

Given k classes, a k×k matrix can be populated which contains all possible error types. Each

row corresponds to an actual, human label, and each column corresponds to a “guessed”,

classifier label. Entry i, j in the confusion matrix corresponds to the number of times an

example labeled by the human as i was classified by the classifier as j. Any entries on the

diagonal correspond to correct classifications, and any off-diagonal entries are errors. If the

classifier is allowed to return “no classification”, an additional column can be added to the

confusion matrix.

A confusion matrix immediately shows whether two classes are being confused with one

another, if there are large counts in a particular off-diagonal entry. Recall represents the

fraction of examples with a particular human label that are also correctly guessed by the

classifier. Precision represents the fraction of examples that the classifier labels with a

particular label which are actually correct. More compactly, given a confusion matrix Ci,j

and a label l,

recalll =
Cl,l∑
j Cl,j

precisionl =
Cl,l∑
iCi,l

While one would prefer a classifier with perfect precision and recall, in practice this rarely

occurs, and in fact there is often an inherent tradeoff between the two. For example, consider

a classifier that labels all examples with a particular label. It will have perfect recall for

that class, but poor precision. On the other hand, if the classifier classifies only a single

example with a particular label and is correct, it will have perfect precision, but poor recall.
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The result of classifier training is a classifier model and the frame-level performance char-

acteristics. While the frame-level performance obviously affects the final speech detector, it

does not characterize the complete system performance as observed by a human annotator.

System level performance issues are briefly described in section 3.3.4 and will be further

discussed in Chapter 6.

3.3.3 Improving the Frame Classifier

The various components of the speech detector all contribute to its final performance. The

feature extractor must provide useful features for discriminating between sounds of different

types. The addition of a good feature can significantly improve performance. The frame

level classifier must be built using a good core classifier algorithm, but also depends critically

on the training set. Finally, the smoothing and segmentation parameters must be selected

to produce high quality speech segments.

In this architecture, if the performance of the frame-level classifier is poor, the resulting

segmentations will also suffer. Assuming the architecture is fixed, one way of improving the

classifier is to continually improve the training set. If the confusion matrix reveals a frequent

confusion between two classes, simply adding more training data can help. Classification

errors, when corrected by a human, can be added to the training set to help prevent such

errors in the future. In addition, alternatives to boosted decision trees can be used simply by

changing a configuration file. In building the system, experimenting with feature extraction

has had significant impact, but these experiments are not the focus of this work and are

omitted here.

3.3.4 Speech Detector Performance Tradeoffs

The end product of automatic speech detection is a set of segments which the transcriber

works with. Measuring the speech detector performance is important since it is directly

relevant to the human transcriber.
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False Positives and False Negatives

As with the frame classifier, precision and recall are useful for characterizing the speech

detector performance, as are other measures. Consider a particular class, such as “speech”.

As a binary labeling problem, all speech segments are positive examples with respect to the

label “speech”, while all non-speech segments are negative examples. If a speech segment

is missed by the system, it is falsely labeled as negative – in other words, it is a false

negative. Likewise, a speech segment which is found that is not actually speech is a false

positive. True positives and true negatives are segments which have been correctly labeled

(ie. skipped, for negatives). A confusion matrix can be collapsed into a table of such counts

for a given class.

False positive and false negative errors are subject to the same tradeoff as precision and

recall, mentioned above. Internally, many classifiers use a confidence threshold to decide

when to output a particular classification. Varying this threshold will affect the false positive

and false negative rates. A lower threshold for outputting a speech classification would result

in a more “aggressive” speech detector, which outputs more speech but also produces more

false positives, while a more conservative classifier will miss more speech but produce fewer

false positives. Other parameters can also affect how aggressive or conservative a classifier

is.

Tuning the Speech Detector

For the speech detector, the smoother and segmenter determines how the sequence of frame

classifications is mapped to speech segments. Adjusting its parameters tunes the final

speech detector performance. These can be adjusted using a parameter search process.

The primary smoother parameters are the cost of switching states, and the cost of being

in a state which disagrees with the current frame classification. Finding a good setting for

these parameters is accomplished by a grid search over the parameter space, and picking

the parameters that produce the best resulting segmentation relative to a human specified

segmentation.
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The best segmenter for semi-automatic transcription is not simply the one with the min-

imum total error. This is because each error by the speech detector directly affects the

workload for the human annotator, and different errors may require different amounts of

effort. The best speech detector is the one which minimizes human effort. In a very concrete

sense, there is a cost for both false positives and false negatives – that is the monetary cost

for additional transcriber time.

By understanding the relationship between the automatic system performance and the

human transcriber performance, the speech detector can be optimized in a principled way.

The next chapter discusses evaluations of the speech detector, and chapter 6 gives an in-

depth analysis of the connection between the human and machine performance.

63



64



Chapter 4

Evaluating the Speech Detector

This chapter evaluates the speech detector as a standalone system. Several types of error

may result from the speech detector, but the two primary errors discussed are false positives

and false negatives. The automatic system is complex, consisting of multiple modules as

illustrated in figure 3-1, and errors can propagate. These modules are further investigated

here.

4.1 Performance Metrics

Functionally, the task of the speech detector is to break an audio segment into easily tran-

scribable chunks of speech. The main requirements are that segments labeled as speech

contain speech, and segments labeled as non-speech do not contain speech. In addition,

segments containing speech should be a reasonable length – they should not be so long

that a transcriber will have difficulty remembering what was said. It is also desirable that

a speech segment does not clip the speech at the ends, or contain excessive amounts of

non-speech.

These last two aspects – clipping and excessive non-speech within a segment – may be

considered secondary. Such speech segments are still in need of transcription, but the
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transcriber may spend more time than necessary listening to the audio, or have trouble

distinguishing words at the boundaries if there is clipping. Ideally the speech segments are

all tightly end-pointed at word boundaries. Keeping the segments short enough is a matter

of breaking up long speech segments at appropriate points. The issue of false positives and

false negatives, however, still holds primary importance.

4.1.1 Comparing Segmentations

Evaluating the output of the automatic processes relies on appropriate similarity and error

metrics. While the quality of the output is ultimately reflected in the human task perfor-

mance times, this is an indirect measurement, and obtaining these measurements is a time

consuming process. Instead, a mechanism for evaluating segmentations directly would be

useful. This approach relies on comparing the machine generated segmentation against a

human generated baseline. However, unlike some other labeling tasks, there may not be

any “true” segmentation – two human annotators may produce different segmentations of

the same audio stream, and yet both be completely happy with either segmentation. Still,

two human segmentations should be quite similar, since both should at least agree which

portions of the audio are speech or non-speech.

Definitions

Before proceeding, it is useful to define some of the relevant concepts more precisely. A

segmentation is a set S of segments (ts, te, l), where ts is the start time of the segment, te

is the end time, and l is the label. For simplicity, consider only segmentations where for

any pair of segments a, b, a does not intersect b. Two segments intersect if they share a

common block of time. Furthermore, consider only contiguous segmentations in which the

union of all segments covers the entire block of audio. The result of these simplifications

is that for any time t in the audio stream, there is exactly one segment containing t, (and

thus one label for each point in time). This constrained form of segmentation is a function

f : T → L for all t in the time range T of the audio, and l in the set of labels L. The speech
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density of a segmentation is a very useful quantity, which can be defined as the total amount

of time in speech segments relative to the total audio time. Speech density characterizes

how much speech is in an audio stream, and is a good predictor of transcription task time.

Alternatively, speech density can be defined as the number of speech segments per unit of

audio time, which will also be used in later sections.

4.1.2 Similarity

Perhaps the simplest way of comparing two different segmentations of a single audio block is

to accumulate the amount of time the segmentations are in agreement. Using the simplified

notion of a segmentation described above, a simple similarity function can be computed by

scanning the audio from beginning to end, and at each point t evaluating the label l for

both segmentations. The cumulative amount of time both labels are in agreement relative

to the total amount of time represents a similarity between two different segmentations.

More compactly, if L = {−1, 1}, let the overlap be

overlap(Sa, Sb) =
N∑

t=1

fa[t]fb[t] + 1
2

This simply counts the number of agreements between Sa and Sb. For an audio stream of

length N , the similarity is then

sim(Sa, Sb) =
overlap(Sa, Sb)

N

This has the nice property that sim(Sa, Sa) = 1 and the similarity of a segmentation S and

its complement S is sim(S, S) = 0.

This simple similarity function could also be restated using a different definition of segmen-

tation. If the constraint of contiguity is relaxed, and all intervening non-speech segments are

removed, the overlap is the cumulative amount of time in the intersection between segments

in Sa and Sb.
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4.1.3 Error

If one segmentation is assumed to be the “true” segmentation, then an error can be com-

puted for other segmentations relative to the provided true segmentation. Assuming the

simplified segmentation described above, false positive and false negative rates can be com-

puted, as well as the related measures of precision and recall.

Let A be the “actual” segmentation, and G be the “guessed” segmentation. Then for the

corresponding segmentation functions, for each time t in the audio stream we have a[t]→ la

and g[t] → lg. For our purposes, each l is either “speech” or “non-speech”. Considering

speech as the “positive” class, then the following table results:

lg = speech lg = non-speech
la = speech True positive False negative

la = non-speech False positive True negative

Table 4.1: False positives and false negatives

In the similarity metric, the sum was over all agreements relative to the total amount of

time. In this case, the four types of agreements and disagreements are binned appropriately

and accumulated. For each time index t, a[t] and g[t] are computed, and the appropriate

cell of the table is incremented.

Sections 3.3.2 and 3.3.4 discuss false positives, false negatives, as well as precision and recall.

Precision and recall were previously defined in terms of a confusion matrix. Precision and

recall can also be computed from this table as follows:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

Precision measures the fraction of the classifier’s guesses that are actually correct, while

recall measures the fraction of the actuals which are correctly guessed. The true positive
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and false positive rates can also be computed. They are defined as

TPr =
tp

tp+ fn

FPr =
fp

fp+ tn

Another useful quantity to remember is the false negative rate, which is FNr = 1 − TPr.

From the pool of all negative examples (non-speech, in our case), the fraction of times

the classifier incorrectly labeled such examples as positive (ie., speech) determines the false

positive rate. A hypothetical classifier which labels everything as speech will have an FPr

of 1, since all non-speech is labeled as speech. On the other hand, the true positive rate

looks at the fraction of positive examples that are actually correctly labeled as positive by

the classifier. In fact, the TPr is the same as the recall.

4.1.4 ROC curves

Many classifier algorithms produce, for any particular input, a “degree of belief” or confi-

dence over possible output classifications. For a particular label, the classifier can be thought

of as a binary classifier, where all classifications with a particular label are positives and all

others are negatives. The choice of whether or not to output the label usually comes down

to thresholding the confidence. By varying this threshold, the classifier will be more or less

likely to produce that label as an output, and thus varying this threshold impacts the TPr

and FPr. A curve which relates TPr and FPr for different threshold values is known as

an ROC curve. The ROC curve effectively summarizes the quality of the whole family of

classifiers which are parameterized by the threshold.

ROC curves typically depict the false positive rate on the x-axis and the true positive rate

on the y-axis. An informal way to look at the process of generating an ROC curve is as

follows. All examples are sorted according to the classifier’s confidence that they have a

particular label. A confidence threshold divides this list into two halves – everything in

one half is labeled as a negative, everything in the other half is labeled as a positive. The
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group of positives consists of true positives and false positives, so as the number of false

positives increases, the number of true positives cannot decrease, and vice versa. Since the

denominators of both the TPr and the FPr are constants, then the resulting ROC curve

will be monotonically increasing. Generally, a classifier with a steeper curve is a better

classifier. Figure 4-1 shows the ROC curve for the frame classifier.

4.2 Frame Classifier Performance

The frame classifier is the first module in figure 3-1 where errors can occur relative to a

human specified ground truth. Errors at this stage will degrade the performance of the

segmenter, so reliable frame classifier error metrics are needed to monitor frame classifier

performance. Section 3.3.2 describes how the training procedure determines frame errors,

using five-way crossvalidation. Precision, recall, and FPr are used to summarize the perfor-

mance of the frame classifier. In addition, an ROC curve shows how the classifier performs

for a particular class as a function of a varying confidence threshold.

The performance of the frame classifier used in this thesis are as follows:

Precision Recall FPr
.890 0.943 0.060

Table 4.2: Frame Classifier performance

The ROC curve in figure 4-1 also summarizes the performance for the “speech” class,

assuming a confidence threshold is applied to the frame classifications. The four different

curves represent four different training runs, in which various aspects of the training process

had been varied. The best frame classifier, represented by the steepest, solid blue ROC

curve, is the one used for all evaluations. One point about the frame classifier is that

since it uses a decision tree as its core classifier, it does not necessarily provide good class

membership probabilities, or confidences. Therefore, there is not a broad distribution of

confidence values, and as the threshold is varied to produce the ROC curve, most of the

actual observed (FPr, TPr) pairs are in the top left of the plot. Techniques for modifying

decision trees to produce better probability estimates are explored in [38], [1] and [54].
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Figure 4-1: Frame classifier ROC curves, for four different frame classifiers. The solid blue
line is the ROC curve for the frame classifier used in these evaluations.

A number of modifications were evaluated to improve the frame level performance, such

as changing the feature extraction algorithms, modifying the training procedure, and using

different core classifier algorithms. These details, while interesting, are not essential to the

thesis and are omitted.

4.3 Speech Detector Performance

The speech detector performance measures the quality of the actual output that a human

annotator will work with. One way to evaluate the speech detector is to apply it to audio,

and have a human look at the segmentation and identify errors. However, this is time

consuming and does not permit automatic performance optimization where parameters are

adjusted and performance re-evaluated. Alternatively, the speech detector’s segmentation

can be compared to a human generated, ground truth segmentation. The performance

measures described in section 4.1 are used here to evaluate segmentations.
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Segment density
Trial Tool Duration a1 a2 Similarity

1 CLAN 5 .483 .527 .939
2 Transcriber 5 .395 .403 .922
3 CLAN 5 .525 .560 .922
4 Transcriber 5 .421 .451 .929

Average .928

Table 4.3: Similarity between human segmentations of the same audio stream. This gives
a sense of a “good” similarity, and a target range for machine segmentation algorithms.

4.3.1 Human Segmentation Comparison

Before computing the automatic speech detector performance with the similarity and er-

ror metrics, what sort of numbers should be expected? Assuming two human annotators

segmented the same audio, how similar are their segmentations? Four manually segmented

blocks of audio from two transcribers were compared. These were segmentations generated

using CLAN and Transcriber. Table 4.3 summarizes the comparison.

One way to interpret a similarity of “.939”, as in trial 1, is to assume that two human

segmentations should be roughly correct, and thus .939 is an example of a “good” similarity.

However, the meaning of this number is still somewhat vague. Another way to look at it

is to consider a random segmenter, which for each frame assigns the label “speech” with

probability p, independent of the audio. To be fair, p should be chosen so that the resulting

expected speech density matches the density obtained by the human. In this case, p should

be chosen to be the observed speech density. Then, two such segmenters with parameters

p1 and p2 will produce an expected similarity of p1p2 + (1− p1)(1− p2), which for trial 1 is

about .52.

Now consider a model which does use the actual source audio. Conditioned on the true frame

label, each segmenter has a probability of producing that frame label or an error. More

compactly, if a frame is truly speech, then segmenter 1 produces “speech” with probability

Pr1(s|s) and “non-speech” with probability 1 − Pr1(s|s). Similarly, if the frame is truly

not speech, segmenter 1 may return “non-speech” with probability Pr1(s̄|s̄) or an error

with 1 − Pr1(s̄|s̄). Assuming the segmenters are independent given the observed frame,
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the similarity can be thought of as the chance that the segmenters agree, subject to their

respective probabilities of being correct.

A similarity of .939 means that the two segmentations agree on about 94% of all frames,

and disagree on about 6%. For a 5 minute block of audio, they disagree for a total of about

18.3 seconds. This disagreement could be due to missing segments, or differing boundaries.

For an average speech segment length (in trial 1) of 1210 ms, this corresponds to 15 miss-

ing speech segments out of the roughly 125 speech segments found by both annotators.

Assuming no missed speech segments and only boundary differences, this corresponds to

boundaries being off an average of 144 ms for each speech segment, which is really more like

72 ms for each boundary (since all segments except the first and last have two adjustable

boundaries). It’s not so unreasonable to assume that a human annotator could pad 72 ms

to the beginning and end of each speech segment, though it seems less likely that they will

clip a speech segment.

Rather than focus only on the similarity measure, how can the error measures be evaluated

given the human segmentations? One simple way is to assume one human segmentation is

the “true” segmentation, and evaluate the other in terms of it. That should give an idea

of the appropriate range of numbers for a “good” segmenter. The advantage of looking

at the error rather than the similarity is that it indicates the performance of the speech

class, which is what is most important for this application. Tables 4.5, 4.6 and 4.7 show

the error performance of each human segmentation relative to the other. Note the precision

and recall are simply swapped in each table.

Returning to trial 1, an 89.3% recall for a1 relative to a2 implies that,

FN time = duration× density × (1− recall) (4.1)

minutes of speech was missed by a1 relative to a2, which is about 16.9 seconds in this case.

An FPr of .011 implies that

FP time = duration× (1− density)× FPr (4.2)
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minutes of non-speech, according to a2, was labeled as speech by a1, which is roughly 1.6

seconds. This is a breakdown of the 18.3 seconds of disagreement between segmentations.

This analysis of the similarity and error metrics links the performance measures back to

actual audio times and the transcription task, which is dependent on false positives and

false negatives.

4.3.2 Machine Segmentation Comparison

The same audio blocks were used as input to the automatic speech detector in order to

evaluate the similarity, as well as error, with respect to the human segmentations. The “M

vs H” column of tables 4.4, 4.5, 4.6 and 4.7 show the average pairwise performance of the

machine segmenter against the human segmentations. Perhaps more interesting than the

performance measures are the total false positive and false negative times, as compared to

the same times for human segmentations. This is a conversion using equations 4.1 and 4.2

from performance measures to actual seconds of false positive or false negative audio.

In the case of false negative times, the numbers are quite close to the human performance

numbers. This indicates that the machine segmenter misses about as much speech as another

human would. On the other hand, the false positive times are higher, indicating that the

segmenter is fairly aggressive, and human transcribers working with these segmentations will

encounter more non-speech than if they were working with a manually created segmentation.

4.3.3 Extensions to Similarity and Error Metrics

One problem with the above similarity and error metrics is that they consider the segmen-

tation agreement at a granularity that is not necessarily important to a human transcriber.

Most human annotators would consider two different segmentations equally acceptable even

if their boundaries didn’t precisely line up. In fact, they need not even have the same number

of boundaries – an utterance containing multiple words might just as easily be represented

as a single segment, split into phrases, or possibly even segmented into individual words.
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Similarity
Trial H vs H M vs H

1 .939 .861
2 .922 .852
3 .922 .907
4 .929 .765

Average .928 .846

Table 4.4: Similarity comparison between two human segmentations, and the average sim-
ilarity between the automatic segmenter and the human segmentations.

Precision
Trial a1 vs a2 a2 vs a1 M vs H

1 .989 .893 .806
2 .912 .893 .767
3 .956 .891 .893
4 .952 .888 .676

Average .952 .891 .786

Table 4.5: Precision comparison between a1 and a2, and the average precision of the
automatic segmenter relative to both human annotators.

Recall FN time
Trial a1 vs a2 a2 vs a1 M vs H a1 vs a2 a2 vs a1 M vs H

1 .893 .989 .950 16.92 1.59 7.58
2 .893 .912 .904 12.94 10.43 11.49
3 .891 .956 .926 18.31 6.93 12.04
4 .888 .952 .885 15.15 6.06 15.04

Average .891 .952 .916 15.83 6.25 11.54

Table 4.6: Recall comparison between a1 and a2, and the average recall of the automatic
segmenter relative to both human annotators.

FPr FP time
Trial a1 vs a2 a2 vs a1 M vs H a1 vs a2 a2 vs a1 M vs H

1 .011 .107 .227 1.56 16.6 33.71
2 .058 .071 .182 10.39 12.89 32.81
3 .044 .110 .112 5.81 15.68 15.37
4 .037 .087 .327 6.09 15.11 55.33

Average .038 .094 .212 5.96 15.07 34.31

Table 4.7: FPr comparison between a1 and a2, and the average FPr of the automatic
segmenter relative to both human annotators.
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Without over-complicating the metric, adding the ability to ignore precise boundary dif-

ferences could be a useful feature. Yet while more elaborate error metrics may have some

advantages, the error metrics used here have the benefit of being simple and interpretable.

Further development of the error metric may be a good candidate for future work.

4.3.4 Summary

To summarize, the performance metrics developed in this chapter were applied to evaluate

the automatic speech detector. In order to understand the meaning of the metrics, they

were applied to human segmentations, and then to automatic segmentations of the same

source audio. This demonstrated that the automatic speech detector was comparable to a

human in terms of recall, but had more than twice the false positive rate than a human.

The performance numbers were also converted back to concrete false positive and false

negative times, reflecting the actual amount of audio for each error type. As expected, the

results show that the automatic segmenter is quite comparable to a human in terms of false

negatives, but it is more aggressive than a human in terms of producing false positives.

Out of four 5-minute audio segmentations, the automatic segmenter missed an average of

about 12 seconds of speech audio, which is between the 6 seconds of speech audio missed

by one human segmenter and the 16 seconds missed by another. On the other hand, it

produced an average of about 34 seconds of false positive audio, compared with about 6

seconds and 15 seconds produced by human annotators, relative to each other. Whether

this tradeoff of producing more false positives than false negatives is desirable in terms of

the total annotation time will be answered in Chapter 6.
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Chapter 5

Semi-automatic Transcription

5.1 Transcription Process

The automatic processes are only successful to the extent that they provide conditions for

the human transcriber to work more effectively. The tools used by the human transcriber,

primarily TotalRecall and BlitZcribe, leverage the automatically generated metadata in

order to simplify the annotation task. They are designed to be complementary, though

both are critical parts of the process. Because the automatic speech detector is error prone,

it is important to incorporate human oversight without making the task overly burdensome.

The following sections detail the transcription process of the automatically identified speech

segments.

5.1.1 Assignments

Transcribing the speech in the HSP data will require significant human effort, and will be

performed by multiple annotators. In order to manage the work, assignments are created

and assigned to individual annotators. An assignment is simply a block of time to be

transcribed by a particular annotator. Assignments are created in TotalRecall, and can

be managed by an administrator. This helps an administrator track the progress of the
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transcription task as a whole, and the progress of individual transcribers. A simple approach

to assignments is to assign all speech segments in the timeblock for transcription, but

one problem with this is that not all speech is necessarily relevant to the child language

acquisition study. For example, if the child were asleep at the time, or in a room where

they could not hear the speech, it need not be transcribed. Such speech might also be of a

private nature between adults, an additional reason not to transcribe it.

5.1.2 Identifying Relevant Data

In order to identify relevant audio, the location and whether the child is awake or asleep is

manually annotated. This is is carried out in TotalRecall using video volumes and the video

player. Experience with this task indicates that a day of data can be manually annotated in

about two hours. By knowing the child’s location throughout the day, a set of potentially

relevant audio channels is inferred. The relation between a video channel and a set of

potentially relevant audio channels is fixed ahead of time, based on the house layout and

knowing which microphones could pick up sounds occurring in different video zones. A set

of speech segments for transcription is defined by combining the annotated location of the

child with the assignment.

5.1.3 Transcription

When a transcriber is ready to transcribe, they start BlitZcribe and are presented with a

list of open assignments. Choosing an assignment loads all relevant speech segments and

presents them in a list view. BlitZcribe is designed with speed in mind, and to minimize

the cognitive load on the user. It does this by only providing functionality for playing a

segment, typing a transcription, or indicating various types of errors, such as whether the

segment is not speech (ie. is a false positive) or is clipped. The segments are also short

enough to remember, which reduces the number of times the segment is replayed. All of

this helps optimize the LISTEN and TYPE steps of transcription.
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Transcription is straightforward to explain, but doing it well requires diligence and good

judgment. Familiarity with the data is extremely helpful, and transcriber skill definitely

improves with practice. Perhaps the main difficulty with transcription for the HSP data

is the informal nature of much of the speech. Child speech can be hard to understand, or

the child may be babbling, and adult speech may not be well articulated. Furthermore,

in the HSP context, multiple people may be speaking at the same time or there may be

background noise.

Adopting simple conventions can help mitigate the difficulties of transcription. Table 5.1

summarizes the conventions used.

yyy Use for a word (or phrase) which cannot be understood

[?] Use when a transcription is entered, but the transcriber is unsure if it is correct

[v] Use for a non-speech vocalization, for example, a yawn or cough

[b] Use to indicate baby babble

; Use to separate utterances by different speakers

Table 5.1: Transcription conventions

It was originally proposed to mark all baby babble by a “[v]”, but this was unsatisfying to

transcribers who preferred their transcription to be as meaningful as possible if it didn’t

require extra effort. So “[b]” was chosen for baby babble. When transcribers have worked

with the data and tools enough it is important to trust their judgment, and any special

sound may be transcribed as long as it occurs in square brackets. For example, a yawn

could be indicated by “[yawn]”. If an utterance contains multiple speakers, “;” helps to

group utterances together by speaker, and it also serves as an indicator that the segment

may need further processing.

In addition to transcription conventions, hot-keys for marking segment errors, such as “not

speech” (ie. a false positive) or “cut off speech” are provided. Figure 2-9 shows some of

these transcription conventions and segment error flags in use.

Transcription proceeds by opening the assignment, and for each segment in the transcription
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list, listening, typing, and marking errors. Hitting “return” advances to the next segment,

“tab” replays the segment, and the up and down arrows can be used to navigate (and

automatically play) the segments. If a segment is left blank, hitting “return” marks it as

non-speech before advancing. In this way, the user need not move their fingers from the

keyboard.

Transcribers can save their work before it is complete, which stores it in the metadata

database. When they have transcribed all segments (and marked errors appropriately)

they can mark the assignment as “complete” so it will not appear the next time they view

open assignments.

5.1.4 Finding Missed Speech

In BlitZcribe, the transcriber only hears the audio for speech segments that have been

previously created. If the speech detector misses speech, then the transcriber will never

transcribe it in BlitZcribe. Safe mode adds a CHECK step to the FMLT process, in order

to monitor and correct errors that result from the automatic process. This is important for

ensuring the quality and completeness of the transcribed data, as well as for improving the

automatic speech detector by improving the training set.

Missed speech can occur for a variety of reasons, but candidate speech segments can often

be quickly identified by visually scanning a spectrogram, and verifying whether they are

speech by listening to the audio. TotalRecall is the appropriate tool for browsing audio

and viewing spectrograms, however, the usual mode of browsing data in TotalRecall can

present an information overload. For HSP, fourteen audio channels, eleven video channels,

potentially hundreds of automatically detected speech segments, and people moving be-

tween channels can obscure any missed speech. Therefore, a simplified view is provided

for this purpose. This view displays the virtual channel of all potentially child relevant

audio (not just speech) for an assignment. Playback in a virtual audio channel plays the

appropriate source channel, automatically switching channels as necessary. The spectro-

grams for a virtual audio channel are composites of the source channel spectrograms. All
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Figure 5-1: TotalRecall displaying the virtual channel. Note the missed speech that has
been highlighted, and the grayed-out regions where speech had been detected.

speech segments that have been previously identified (and will thus appear in BlitZcribe)

are “grayed out” of the spectrogram. In this way, the spectrogram that remains shows only

the audio that could contain missed speech. Roughly, this view collapses information across

both channels and time.

When annotators wish to scan an assignment for missed speech, they open TotalRecall, load

the virtual channel for their assignment, and create segments for any missed speech they

find. These segments are created in the virtual channel, and then automatically migrated

to the source audio channel. Figure 5-1 shows a screenshot of TotalRecall being used to

find missed speech.

5.2 Performance Factors

Performance on a transcription task can be measured in terms of speed and accuracy. Since

there is very little one can say about accuracy without a human verified baseline, it is of

more immediate interest to have as much human annotated and reviewed data as possible.
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The operating assumption is that significant speed increases can be achieved by increasing

efficiency. Thus, the primary goal is to make the process faster through human-machine

collaboration.

5.2.1 Modeling Transcription Time

There are a number of issues which occupy the attention of a human transcriber. These

factors affect transcription time, and are explicitly considered here.

One way to model the time demands of a given transcription task is as follows. There is

an ideal “minimum” amount of time required to transcribe the speech in an assignment.

Assuming a “perfect” segmentation, and no errors, the time taken depends only on how

much speech there is, and the inherent complexity of the speech. For example, an assign-

ment in which an adult is reading a story to a sleepy (and quiet) child might constitute

a lot of speech and yet be fairly simple to transcribe. Multiple speakers overlapping with

background noise could actually result in a shorter transcript and yet be more difficult to

transcribe.

Additional time is required of the human transcriber due to errors and imperfections in the

segmentation. A perfect segmentation is not a well-defined notion (at least at the present

time), rather it is used as a placeholder for allowing that while many different, error-free

segmentations may exist, there may be an optimal segmentation for a transcriber to work

with. In other words, if it were possible to measure the time taken for the same transcriber

to transcribe different segmentations of the same audio, the perfect segmentation would

be that which results in a minimum time required. The significance of different error-

free segmentations on transcription time is currently unknown, although the heuristic of

choosing segments which are not too short or too long is employed.

While the perfect segmentation is an abstraction, segmentation errors are not. The two

primary error types discussed above are false positives and false negatives. These are also

known as type I and II errors, respectively. In addition, clipped speech and excessively long
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speech segments constitute errors. This work focuses only on the two primary error types,

and their associated costs.

5.2.2 Cost of Errors

The cost of false positives and false negatives can be considered from two viewpoints. The

first viewpoint considers what impact each error type has on the scientific goal of the

Human Speechome Project. Any false negative which is not corrected results in speech that

will not be analyzed. However, one must weigh this against the natural amount of missed

speech. Over the course of three years, vacations will be taken, the child will be outside, the

recording system may be off briefly – this all results in naturally missed speech, or speech

that is never collected in the first place. Given this, a small percentage of false negatives

does not significantly damage the quality of the HSP corpus.

The second viewpoint for considering errors is that of the added cost of transcription due to

the additional human effort required. Handling false negatives requires scanning the virtual

channel spectrograms as described in section 5.1.4. Handling false positives is accomplished

in BlitZcribe. How much time is added to the transcription task to handle each of these error

types? Correcting a false negative error requires scanning the virtual channel spectrogram,

potentially listening to the audio, and creating a segment and annotation. A false positive

requires listening to the complete audio clip plus the time required to mark it. Adding

spectrogram images to BlitZcribe could be helpful for identifying false positives, although

from a design perspective complicating the user interface may cause more harm than good.

So far, the hypothesis has been that false negatives are more costly both in terms of the

project goals as well as the time required to handle them. This is simply because identifying

a false positive depends only on the short, bounded duration of audio in the candidate speech

segment. The BlitZcribe interface has been designed to make it easy to handle these false

positive errors. On the other hand, a false negative can be anywhere in the variable amount

of audio left over in the virtual channel for the assignment. On the assumption that false

negatives are more costly than false positives, in terms of human transcriber effort, the
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system has been built to err on the side of producing more false positives. Studying and

quantifying the relationship between the different error types and human performance is

the subject of the next chapter.

84



Chapter 6

Semi-automatic System Evaluation

This chapter evaluates the semi-automatic transcription approach. It begins by evaluating

transcription times using CLAN, Transcriber and the new system. The direct comparison

shows that the new system is at least 2.5 to 6 times faster than existing approaches. How-

ever, there are some new factors in the semi-automatic system that must be considered.

Specifically, false positive and false negative errors caused by the automatic speech detector

increase total transcription time. Experiments show that false negative errors require a fac-

tor of about eighteen times more effort to correct than false positive errors, which provides

a principled scheme for tuning the automatic speech detector. The chapter concludes with

a summarization and discussion of the results.

6.1 Evaluating Manual Transcription

As a starting point to evaluating the semi-automatic system proposed in this thesis, it

is useful to determine the baseline performance using purely manual methods. How long

does transcription take using a purely manual system? For this evaluation, CLAN and

Transcriber (see section 2.3) were selected, as well as TotalRecall. While both CLAN and

Transcriber fall short in that they do not handle multi-track audio, this was ignored because
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it was assumed that a separate (manual or automatic) procedure could identify the relevant

audio channels.

CLAN was used in “sonic mode,” in which the waveform is displayed at the bottom of a

text editor. The user transcribes by highlighting and playing a block of audio, typing a

transcription, and then binding the transcription to the audio segment using a key com-

bination. In Transcriber, key combinations can be used to play or pause the audio. A

segment break is created whenever the user hits the “enter” key. The segment break ends

the previous segment, and begins a new one. Each segment corresponds to a line in the

transcription window. By typing, a transcription is entered which is bound to the cur-

rent segment. One approach to transcription in Transcriber is to listen to the audio and

mark speech boundaries roughly, then go back and adjust the boundaries and transcribe

the individual segments. Alternatively, one may transcribe and segment simultaneously.

The basic experimental procedure was as follows. First, several short blocks of audio con-

taining speech were identified in the HSP data for transcription. Each annotator would

separately transcribe the same blocks of audio using the same tool, and use a stopwatch

program to time the how long the task took. Six audio clips were exported from the HSP

data, five minutes each, from different times of the same day in two separate rooms. These

blocks of time were selected from a single channel that contained heavy speech activity.

Before beginning for the first time with a tool, a shorter 1 minute block of audio was tran-

scribed as a warm up. This was not timed, as it was only intended to familiarize the user

with the tool.

Transcription for this experiment used the same conventions as used for BlitZcribe. How-

ever, in CLAN, identifying the speaker is part of the syntax. Each transcription line begins

with a speaker identity code. In Transcriber, it requires more effort to annotate speaker

turn taking, and in BlitZcribe, checking or correcting automatically identified speaker labels

is not yet implemented. To compare these three systems fairly, speaker identification was

skipped in Transcriber. It was performed in CLAN, because it is part of the syntax and

it should take about as much effort to type the true speaker identity code as a fixed code

for all speakers. This does result in a richer transcription when using CLAN, so separate
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Trial Tool Speech duration Annotator time Avg time factor
a1 a2 a1 a2 Actual Speech

1 CLAN 2.42 2.64 50 50 10 19.8
3 CLAN 2.63 2.80 44 45 8.9 16.4

20 Transcriber 2.78 2.52 34 32 6.5 12.3
30 Transcriber 2.01 1.94 27 26 5.3 13.5
16 TotalRecall 3.24 22 4.4 6.79
17 TotalRecall 3.17 21 4.2 6.64
2* Transcriber 1.98 2.02 46 49 9.5 23.8
4* Transcriber 2.11 2.26 47 41 8.8 20.2

Table 6.1: Transcription time in minutes. Each trial is on a separate five-minute block
of HSP audio from a single channel, which contained heavy speech activity. The speech
duration indicates the total duration of speech segments found by each annotator. Audio
is from either the living room or kitchen only, on Jan 10 and Jan 15, 2007. For trials 2*
and 4*, speaker identity was also annotated, which makes Transcriber significantly slower.

trials with speaker annotation were performed in Transcriber, to compare it to CLAN and

to check against results reported in the literature.

Finally, an informal test was conducted using TotalRecall for manual transcription. Hot-

keys can be defined in TotalRecall for performing different tasks, and in this case one hot-

key was defined for creating segments and another for creating a transcription annotation.

As soon as a transcription annotation is created, the transcription field is activated and

the user need only type. Alternatively, an annotator might segment the audio first, and

then transcribe in a batch. If done in this manner, as soon as a transcription is entered,

TotalRecall advances to and plays the next segment so the annotator can listen and type,

without worrying about navigation. This task was performed by annotator a1, who in

practice did both segmentation and transcription at the same time.

Table 6.1 collates the results of manual transcription using these tools. The first thing to

notice is the consistency in the time per transcriber for each trial. The average transcriber

performance is not far from the observed performances. The second thing to look at is

the speech duration. Each trial consisted of five minutes of actual audio time, or “house

time” from the HSP corpus, and about half of the actual audio time was speech. So the

trials were fairly similar in terms of the amount of transcription needed. On the whole,

the conditions for comparing these tools are favorable. The results from this evaluation
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show that CLAN is the slowest tool, requiring a factor of about nine to ten times actual

time for transcription, or about eighteen times speech time. Transcriber requires about six

times actual time, or thirteen times speech time. Interestingly, with speaker annotation,

Transcriber is the slowest, requiring about nine times actual time, or twenty-two times

speech time. TotalRecall is the fastest tool, requiring just over four times actual time for

transcription. Conversations about the user experience indicated that the spectrograms

were significantly more useful than the waveform in the other programs. Scrolling through

audio is also very smooth, hot-keys permit quick segmentation and annotation, and the

responsiveness of the interface all contribute to TotalRecall being about 25% faster than

Transcriber and 50% faster than CLAN.

These manual transcription times are at the low end of the range reported in [53], and

much faster than the factor of fifty reported in [3]. This could be for several reasons. First,

transcribing five minutes of audio can be done in one sitting, but after about an hour of

transcription most annotators would need to take a break. The transcription time factor

may actually increase for longer transcription assignments. Transcription detail was also

fairly basic, without speaker identification (except in CLAN) or other annotations. More

detailed annotation or finer segmentation would certainly require more time.

6.2 Evaluating Semi-automatic Transcription

This section evaluates the new semi-automatic transcription system. It answers the basic

question of how long transcription takes using the semi-automatic system, in order to com-

pare against manual approaches. Blocks of data were assigned to annotators, who used

a stopwatch program to time how long the task took in either TotalRecall or BlitZcribe

(for BlitZcribe, the stopwatch was added to the program itself.) Most blocks were assigned

to multiple annotators, although some trials were performed by just one annotator. Each

annotator used a Macintosh computer and sound-muffling headphones. Time for launching

the applications was not included.

In the semi-automatic transcription methodology (section 2.5), transcription can be per-
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Trial Audio duration Annotator time Avg time factor
Actual Speech a1 a2 a3 Actual Speech

5 5 3.13 10 13 2.43 3.88
6 15 7.96 27 1.8 3.39
7 15 8.75 26 1.73 2.97
8 5 1.92 5 1 2.6
9 5 2.52 8 9.35 11 1.89 3.76
10 5 0.82 1.5 2 2 .37 2.22
11 10 5.95 18 1.8 3.03
14 10 4.23 11.5 14 .1 1.28 3.03

Average 1.54 3.11
Std Dev .64 .56

Table 6.2: Transcription times using the semi-automatic system in fast mode.

formed in either safe or fast modes. In safe mode, TotalRecall is used to check for and mark

any false negative speech segments. In fast mode, only the segments found by the speech

detector are transcribed. This evaluation looks at both of these modes, beginning with fast

mode.

6.2.1 Fast Mode

Three transcribers used BlitZcribe to transcribe audio from the HSP corpus, and used the

timer or a separate program to time, in minutes, how long transcription took. Table 6.2

shows transcription time, and calculates the time factors in order to compare with manual

transcription.

The time factors for speech transcription with the semi-automatic system in fast mode are

about 1.5 times actual audio time, and 3 times the total speech time 1. This is significantly

faster than manual transcription using any tool. It is almost four times faster than Tran-

scriber, and more than six times faster than CLAN relative to the actual audio time to

transcribe. Similar factors hold for the speech time.

Four additional transcription trials were performed under different speech detection con-
1For these experiments, the total speech time actually includes manually identified false negatives. So

this time factor really reflects the time to transcribe all speech in the audio, and not just the audio found
by the speech detector. This causes a slight over-estimate of the average speech time factor for fast mode.
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(a) Manual segmentation

Trial Audio duration Annotator time Avg time factor
Actual Speech a1 a2 a3 Actual Speech

12- 10 4.13 10.5 1.05 2.54
13- 10 5.93 15.5 1.55 2.61

Average 1.3 2.58
Std dev .35 .05

(b) Automatic segmentation, with random segments added

Trial Audio duration Annotator time Avg time factor
Actual Speech a1 a2 a3 Actual Speech

18+ 5 4.98 10.5 15 2.55 2.56
19+ 5 5.17 12 18 17.33 3.16 3.05

Average 2.85 2.81
Std dev .43 .35

Table 6.3: Semi-automatic transcription in fast mode, under special conditions. Table 6.2(a)
shows the transcription times in BlitZcribe when the speech was manually segmented. Thus,
there will be no false positives for the transcriber to work with. In table 6.2(b), the non-
speech audio blocks, according to the automatic speech detector, were randomly segmented
and relabeled as speech. Thus there would be many false positives in BlitZcribe.

ditions. These times are presented in table 6.3 The “-” indicates that a purely manual

segmentation was performed in TotalRecall on the data, and thus no false positives should

occur in BlitZcribe. The “+” indicates that the automatic speech detector was run, and

then all “non-speech” segments were randomly segmented (with the same minimum and

maximum length constraints) and also labeled as speech. Thus, the annotator would en-

counter significantly more false positives in BlitZcribe, but no speech would be missed.

These results illustrate a few points. First, the manual segmentation results in faster tran-

scription times as compared against the time factors in table 6.2. This is expected, since

there will be no false positives, and the speech segmentation may be better. On the other

hand, the automatic segmentation with random segments has a slower actual time factor,

since there are many false positives, but a faster speech time factor. The faster speech time

factor is likely due to the fact that it is faster to annotate a false positive in BlitZcribe than

to produce a transcription. So the proportion of true speech relative to the total speech

time is lower, implying less transcription is needed.

Figure 6-1 incorporates all the data in tables 6.2 and 6.3, and shows a consistent linear
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Figure 6-1: Transcription time vs. cumulative “speech” time in BlitZcribe

relationship between the speech time and the transcription time, for each of the three

annotators. This makes intuitive sense – in order to transcribe an assignment, one must

listen to all the audio segments. As explained above, trials 18 and 19, which were the trials

in which all non-speech was randomly segmented and relabeled as speech, take less time than

expected because annotating false positives is faster than transcribing speech. The amount

of effort introduced by false positives is considered in more detail later in this chapter. While

this linear model for transcription time is simple, it is significant and extremely useful as

a predictive model for estimating the amount of work that will be required to transcribe

speech in the HSP corpus.

6.2.2 Safe Mode

Safe mode transcription is the same as fast mode, but in addition the transcriber searches

for missed speech, and manually creates segments for any speech found so that it can be

transcribed in BlitZcribe. This step helps monitor the automatic speech detector perfor-

mance, identifies errors that can be used to improve the system, and helps maintain the
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Trial Audio duration Segments
found

Time Avg time factor

Actual Remaining a1 a2 a1 a2 Actual Remaining Segment
5 5 1.93 6 4 3 3 .6 1.55 .63
6 15 7.1 6 3.5 .23 .49 .58
7 15 6.64 33 4 .27 .60 n/a
9 5 2.65 14 16 5.2 5.15 1.04 1.95 .35
10 5 4.56 23 21 6.5 4.5 1.1 1.21 .25
11 10 4.26 16 18 7 8.33 .77 1.80 .45
14 10 6.77 86 14.75 1.48 2.18 .17
21 10 4.31 7 5.5 .55 1.28 .79
22 15 7.52 19 7.63 .51 1.01 .40
23 5 3.5 8 3.75 .75 1.07 .47
24 10 3.92 14 5 .5 1.28 .36

Average .71 1.31 .44
Std dev .37 .53 .18

Table 6.4: Time spent identifying missed speech in TotalRecall for safe mode transcription.
The time factors are the ratios of annotator time to the amount of actual audio time, the
amount of remaining audio, and the number of segments found.

quality of the HSP dataset. TotalRecall is used in a mode that displays a virtual channel,

which shows only the portions of spectrograms that could contain missed speech.

Transcribers used TotalRecall and a separate stopwatch program to time how long it took

to find missed speech. Table 6.4 shows these results. The column “remaining time” refers

to the amount of non-speech time, and “segments found” to the number of missed speech

segments that were found. This table shows that finding missed speech takes a factor of

about .75 times actual time, and 1.3 times remaining time. While these factors may over-

simplify the model for the time to find missed speech, they still provide a useful estimate

of the additional time factor required to transcribe in safe mode. These additional factors

mean the total transcription time in safe mode for the semi-automatic system should be

about 1.54 + .71 = 2.25 times actual time. The total transcription time relative to the

speech time is slightly more complicated, since remaining time is defined in terms of speech

time. It is 1.3× (actual time− speech time) + 3× speech time. The average speech density

reflected by the times for the trials in tables 6.2 and 6.4 is about .46. Making a very rough

assumption of a typical speech density of .5 results in total transcription time factor of

about 4.3 times speech time. Interestingly, the assumption that speech time is about half
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Tool Time factor
Actual Speech

CLAN 9.5 18.1
Transcriber 5.9 12.9
TotalRecall 4.3 6.7

Semi-automatic (safe) 2.25 4.32

Semi-automatic (fast) 1.54 3.11

Table 6.5: Time comparison between all tools

of actual time would mean that 4.3 times speech time is about 2.15 times actual time, close

to the direct estimate of the actual time factor. The task time per segment found is also

shown in the “segment” average time factor column. Figures 6-2(a) and 6-2(b) show the

task time for finding missed speech in safe mode, relative to the remaining audio time and

the number of segments found, respectively.

6.2.3 Comparison to Manual Transcription

In summary, the evaluation of manual transcription against semi-automatic transcription

shows the semi-automatic system to be significantly faster. Table 6.5 compares the time

factors for all transcription methods.

Depending on the mode of semi-automatic transcription, it is in the range of 2.6 to 6.1

times faster than CLAN or Transcriber. This is without even considering the limitations of

CLAN and Transcriber on a massive corpus of multi-track audio, where isolating the audio

for transcription is itself a challenge.

6.3 The Cost of Speech Detection Errors

In manual transcription, the FMLT paradigm means that a human essentially processes all

the audio, even audio which does not require transcription. On the other hand, the semi-

automatic approach dispenses with the need to have a human FIND and MARK speech,
2The estimate of this time factor is based on rough assumptions of speech density, and is explained at

the end of section 6.2.2.
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(a) Task time vs remaining time

(b) Task time vs found segment count

Figure 6-2: Task time identifying false negatives
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Figure 6-3: Time factor comparison

resulting in significant speedups. However, it also means that errors in these two steps may

result from the automatic speech detector. Identifying and correcting these errors adds

a time factor which is not present in manual transcription, which is the time required to

handle errors finding speech (roughly, false negatives) and errors marking speech (roughly,

false positives). This section analyzes the cost, in terms of additional task time, incurred

by these errors.

6.3.1 Time Identifying False Positives

Non-speech segments encountered in BlitZcribe, or false positives, are expected to require

less transcriber time than actual speech segments. This is because the transcriber need only

listen to the audio segment, and if it is not speech, mark it as such and move on to the next

segment. Marking false positives in BlitZcribe is done quickly, by hitting “return” without

typing a transcription, or by using a hot-key.

In order to understand how much time false positives contribute to the transcription task,

the timer module in BlitZcribe accumulates the total time spent per segment. When the
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annotator has finished transcribing, a time log is saved for analysis. Annotators were told

of this functionality, and were able to see the timer display as well as pause and resume it if

necessary, so that a segment would not accumulate time if the annotator stopped working.

However, annotators were asked to perform this task at a time when there would be few

interruptions.

Figure 6-4 shows the relationship between actual cumulative false positive time and the

time spent on these false positives. A simple model of the transcription time required by a

false positive is to break it into the time spent listening to the segment, and the time spent

marking the segment. In BlitZcribe, it is reasonable to assume that the action of marking

a segment is roughly constant – the annotator uses the same keystroke for a false positive

regardless of how long it is. Under this assumption, the time to handle a false positive

should depend on the length of the segment. Figure 6-4 supports this model, showing

a linear relationship between the cumulative false positive duration and the time spent

annotating false positives. Interpreting the slope of each trend line as the factor required

to handle a false positive, we obtain roughly 1.25 - 1.75 times real time. Recalculating the

trend lines to require a y−intercept of 0 results in a range of about 1.5 - 2 times real time.

Assuming a y−intercept of 0 simply means that if there are no false positives identified,

then no time was spent identifying them. However, the positive y−intercept may actually

be capturing the time required to mark the segment in the limit, as actual false positive

time goes to zero.

Since the average false positive time observed is about 800 ms, the average amount of

annotator time spent per false positive should be in the 1000 - 2000 ms range.

6.3.2 Time Identifying False Negatives

The evaluation of the automatic speech detector showed a false negative rate comparable

to a human annotator. This implies that spending time searching for false negatives in

TotalRecall may not yield many missed segments. Even so, transcribing in safe mode helps

ensure the quality of the system and can help improve performance.

96



Figure 6-4: Time required to mark false positives relative to the actual duration of false
positives, in BlitZcribe

The process for finding missed speech is described in section 5.1.4. The transcriber uses

TotalRecall to scan spectrograms which only visualize audio that could contain false nega-

tives. If a speech segment is found, the annotator creates a segment and speech annotation.

Figure 5-1 shows TotalRecall being used for this purpose. In cases where speech was missed

due to being clipped in an existing segment, it can usually be ignored, since it will later

be identified as “clipped” in BlitZcribe. This process goes fairly quickly, generally taking

about .75 times the actual audio time. The time to find missed speech correlates positively

with the amount of remaining audio and the number of segments found, illustrated by figure

6-2. The expected “cost” of a false negative, in terms of human annotator time, can be

estimated as the average time spent per false negative. From table 6.4, the average time

per false negative is .44 × 60 ≈ 26 seconds, with a standard deviation of about 11 sec-

onds. Rather than attempt a rigorous statistical analysis, we’ll wait until the implications

of different ranges of false negative times is more meaningful.
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6.3.3 Modeling the Time to Identify False Negatives

Unlike the time required to mark false positives, the task time to find missed speech does

not correlate as strongly with any single variable, but instead seems to have a more complex

relationship. This section develops a model of the time required to find false negatives.

Finding Missed Speech: Subtasks

Procedurally, there are essentially two functions annotators must perform in TotalRecall to

find false negatives. They must scan the audio (both visually and by listening to portions of

it) and they must create segments and speech annotations. The first requires navigating the

audio stream. The amount of time spanned in TotalRecall is still the actual assignment time,

but interspersed within this span are visible spectrogram portions. The more spectrogram

there is to look at, the more time must be spent visually scanning, listening, and scrolling.

Secondly, whenever a missed speech segment is found, it takes time to highlight the correct

audio block, create a segment, and associate a speech annotation. One would suspect it

takes roughly as long to create a 500 ms segment as a 1500 ms segment, since most of the

overhead is in highlighting the region and using the hot-keys that create a segment and

associate a speech annotation. So, assuming a roughly constant amount of time for each

speech segment, the more segments are identified, the more time would be required.

Assuming a roughly constant amount of time to create a segment, the variability in time

required per segment should be due to the seek time to find each segment. Thus, if the

missed speech segments are thinly spread out over the remaining audio time, each segment

will require more annotator time to locate. On the other hand, if they are packed close

together, more of the annotator time will be spent creating rather than seeking segments,

per segment. The segment count density quantifies how many segments are packed into the

audio span. Using segment count density, the claim is that the annotator labor time per

segment will actually decrease as the density of false negative segments increases. This is

not saying that the total annotator time decreases – it is expected to increase as the number
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Figure 6-5: Annotator time per false negative, as a function of the density of false negatives

of false negatives increases – but the time per segment should decrease. Figure 6-5 provides

some evidence for this claim.

Power Law Model

If this model is roughly correct, we might expect to find a power law relationship between

the false negative density and the time per segment, rather than the linear trend shown in

figure 6-5. As the density of false negatives increases, the time required per segment should

asymptotically approach the assumed “constant” time for creating a segment, since seek

time should decrease toward zero. On the other hand, as the segment density decreases, the

time required per segment should be primarily due to “seek” time. As the false negative

density approaches zero, the time required per segment should tend towards infinity. This

would be consistent with a simple power law model of the form f(x) = ax−k, k > 0. Of

course, with fewer segments the total task time should actually complete fairly quickly.

Figures 6-6(a) and 6-6(b) illustrate a power law relationship for the data from annotator

a1, and show that it better fits the data than the linear trends in figure 6-5. More on power

99



laws can be found in [48] and [32].

Modeling Manual Segmentation Times in TotalRecall

The power law model for identifying false negatives considers the count density of false

negatives with respect to the amount of audio the human annotator must consider. If the

model is correct, it should also work for a purely manual segmentation, in which the amount

of remaining audio is actually the full audio duration.

One way to view manual segmentation is that the speech detector simply missed all speech

in an assignment, and the human annotator is identifying false negatives. However, this is

not exactly correct, because if the speech detector does not find speech in an assignment,

it implies that there is very little speech and the expected speech density is low. On the

other hand, if the speech detector is never applied to an assignment, the assignment speech

density is completely unknown. In any case, the proposed power law model depends only

on the duration of audio to consider, and the number of false negatives. If the model is

robust, it should also model the manual segmentation task time.

Manual segmentation was performed by annotator a1 on several single channel audio blocks

that contained speech, and the time spent for each block was recorded. The time per

segment is plotted aginst the false negative count density, and is shown in figure 6-6(a).

The same data is plotted on a log-log plot in figure 6-6(b). The pink square data points

show the data for this task, plotted along with the blue diamond data from the previous

section for annotator a1. Note the higher count density for the manual segmentation task

– this is because the automatic segmenter had not been applied and thus there was a

significant amount of speech to be processed. The power law model fits the data for both

the semi-automatic task and the purely manual task.

6.3.4 Relative Error Costs

The previous sections analyzed the human annotation task in detail to help understand the

transcription effort for the Human Speechome Project. A significant result of this analysis
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(a) Annotator time per segment relative to found segments per minute of audio time

(b) Log-log plot of the same data

Figure 6-6: Annotator time per false negative, as a function of the density of false negatives.
Density is measured as the number of found segments per minute of remaining audio time.
This includes segmentations that were done purely manually in TotalRecall. A power law
relationship fits both manual segmentation and partially automated segmentation. Data is
from annotator a1.
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is that the system can be tuned to maximize the productivity of the human annotator. In

particular, by quantifying the cost of false positive and false negative errors, the automatic

speech detector can be tuned to minimize the human task time.

The annotation time required to handle false positive errors in an assignment correlates

directly with the cumulative duration of false positives in an assignment. Figure 6-4 illus-

trates this relationship. Assuming a somewhat conservative factor of 1.75, and an empirical

average false positive duration of about 800 ms, each false positive is expected to contribute

about 1400 ms of annotator time to the transcription task.

While the model of the time required for false negative errors is more complex, simply using

the average time spent per false negative segment is a good starting point. This is about 26

seconds, for both a1 and a2. This implies that false negatives require about 26/1.4 ≈ 18

times more effort than false positives.

Predicting the Task Times

The linear model of the time introduced by false positives, and the power law model for

false negatives opens the possibility of predicting the additional transcription time intro-

duced by speech detection errors. However, neither model is immediately predictive because

the relationships depend on the speech density and the number of false positives or false

negatives, all of which are determined only after human review. Figure 6-2(a) does provide

some predictive power for false negatives, because it depends on the amount of remaining

audio after speech detection.

Still, it may be possible to estimate the expected amount false positive speech and missed

speech by combining the the segmenter output and the false positive and false negative rates

of the speech detector. From this, the expected false positive duration can be computed to

predict the amount of time the annotator must spend marking false positives. Likewise, the

expected number of false negatives can be guessed by dividing the expected false negative

time by the average false negative duration. This would allow the power law model to be
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applied. In fact, applying the power law model in this way does yield similar time factors

for annotator time per false negative.

Discussion

The goal of analyzing the additional task time introduced by errors is not to develop pre-

dictive models, but to understand the tradeoff between error types. Relative to identifying

false positives, finding missed speech takes significantly more time – about 18 times more

annotator time than false positives. Given that the algorithm may be tuned to be more

aggressive and produce fewer false negatives at the expense of additional false positives,

knowing the relative amount of effort between error types is important.

The time spent searching for missed speech relative to the actual number of found segments

also does not seem favorable in many cases (eg. trials 5, 6 and 21 in table 6.4). However,

there are cases such as trial 14 where there were a significant number of missed segments,

so safe mode transcription is important to ensure that the classifier is performing well and

to catch cases like trial 14 when they do occur.

However, the time spent searching for missed segments may be better spent transcribing,

and perhaps random spot checks for missed speech by an administrator may be sufficient.

Alternatively, an interface designed to optimize missed speech detection could be developed

that would work on larger chunks of audio, perhaps all audio in a day, rather than only

on the audio for the transcriber’s current assignment. This would have the added benefit

of minimizing time spent switching between applications. Appropriately organizing the

workflow should not only reduce the total task time, but also simplify the management of

the task as more annotators start working with the data.

6.4 Optimizing the Total System Performance

Chapter 4 introduced performance metrics for evaluating the automatic speech detector.

These metrics demonstrated that the automatic speech detector has a low false negative
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rate, but a much higher false positive rate. However, it was unknown whether this was

desirable, because the impact of false positives and false negatives on the human annotator’s

workload was not understood. Now that the relative error costs have been quantified, the

total system performance can be optimized.

6.4.1 Performance Predictions and Observed Performance

If the performance metrics from Chapter 4 are to be of any use, they should provide some

prediction of the speech detector system performance in practice. This justifies optimizing

the performance metrics in order to optimize the actual transcription task. The practical

system performance is determined by the feedback provided by the human annotator both

in TotalRecall and BlitZcribe. Segments marked as non-speech in BlitZcribe and missed

speech found in safe mode are used to calculate the observed system performance. The

observed system performance for various trials is summarized in table 6.6, and correlates

with the expected error determined by the error metrics. The final row shows the expected

performance drawn from the human-machine performance comparisons of tables 4.5, 4.6

and 4.7. A separate average observed performance without trial 10 is given, since trial 10

seems to be an outlier with poor precision and recall. Interestingly, this trial had very low

speech density. An investigation of the source audio revealed that the child was playing

with a noisy toy – and much of the speech was the child making quiet vocalizations. Figure

6-7 shows the source audio, and the speech segments. Segments 2 and 4 were identified

automatically, while 1, 3 and 5 were identified by hand. Even for a human annotator, it is

difficult to tell there is speech from the spectrogram.

Table 6.6 demonstrates that the error metrics do correlate with the actual observed per-

formance. However, there are a few points worth mentioning about both the observational

error and the performance metrics. The observed performance only considers errors at the

segment level, so if a segment is too long, but does contain some speech, it will not con-

tribute any false positives. On the other hand, if a segment contains speech, but is clipped

at the boundaries, it does not contribute any false negatives. This simple error metric only

looks at false negatives which occur as a result of completely missed segments, which are
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Average
Trial Precision Recall FPr

5 .598 .965 .397
7 .897 .951 .121
8 .932 .956 .040
9 .954 .929 .043
10 .727 .464 .028
11 .890 .968 .135
14 .975 .758 .014
21 .927 .983 .090
22 .930 .961 .068
23 .818 .902 .075
24 .880 .939 .170

Average .866 .889 .107
Average

.880 .931 .115
w/o trial 10

Expected
.786 .916 .212

performance

Table 6.6: Observed performance vs expected performance. The observed performance is
determined by the number of false positive and false negative segments found by a human
annotator. A separate average without trial 10 is also provided since it was an outlier
condition. The expected performance is culled from the average machine performance tables
4.5, 4.6 and 4.7. This table shows that the performance metrics provide a good prediction
of the observed segmenter performance, as reported by human annotators.
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Figure 6-7: Trial 10 spectrogram. Segments 2 and 4 were automatically identified, the rest
were identified manually.

segments that the human annotator created in TotalRecall. Like the performance metrics,

the observational error rates are calculated based on the time spans of segments, and not the

segment counts. Because the observed error does not treat clipping, it should overestimate

the recall. By not treating segments which are too long, it should underestimate the FPr.

This is reflected by the data in the table.

6.4.2 Segmenter Parameter Selection

The smoother and segmenter component operates on the output of the frame classifier. A

good frame classifier is critical to the final segmenter performance, but the smoother and

segmenter can be tuned to produce a tradeoff between error types.

One approach to tuning parameters is a simple search over parameter space. For each setting

of parameters, the performance is evaluated against a set of human segmentations. These

are the four human segmentation trials from the original machine performance evaluations

in section 4.3.2, as well as an additional segmentation trial (trial 0). The result of these
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evaluations are speech detection performance curves, both for each trial individually and

for the average performance. Figures 6-8 and 6-9 show performance plots for TPr relative

to FPr and precision relative to recall, illustrating the performance tradeoffs that can be

obtained with different parameter settings. These smooth curves interpolate between the

actual performance points at each parameter setting; the actual points are left out for

clarity. In each of these curves, the solid dot represents the performance for the parameter

setting used by the speech detector for this thesis.

Section 6.3.4 determined a correspondence, in terms of human effort, between false positives

and false negatives. False negatives were found to be a factor of 18 times more labor intensive

than false positives. That means that marking 18 false positives should take about as much

human annotator time as marking a single false negative. For a given FPr and FNr, the

human effort expended on errors can be quantified by

effort = FPr + k FNr

where k is the cost ratio of false negatives to false positives, estimated to be 18. This

equation can be used to tune the segmenter to produce segmentations that minimize the

human effort required for transcription. Of course, the basic transcription difficulty remains,

but the additional work of identifying and marking errors can be minimized. Equation 6.4.2

can be plotted at various settings of FPr and FNr, for various choices of k. Taking the

speech detector performance curves in figure 6-8, and computing the expected effort at each

segmenter parameter setting and five different settings of k, yields the plots in figures 6-10,

6-11, and 6-12. The actual effort curves plotted have been squashed with a square root, and

scaled to fit on the plot, so only the shape and minimum points should be considered. In

fact, the actual effort required for performance points on the left side of the plots would be

much more than what is displayed. Each effort curve shows the point of minimum effort as

a filled-in black circle. The six curves in figures 6-10, 6-11 and 6-12 are for the five unique

trials (trials 0-4) and a sixth average curve. The vertical dotted line in each plot is at the

FPr of the actual speech detector used, to show where it intersects the five effort curves

and the actual performance curve. Notice that, in general, the minimum expected effort for
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Figure 6-8: Segmenter TPr vs. FPr. In each, the filled black dot indicates the parameter
setting used by the speech detector in this thesis. Moving to the right on the performance
curve increases the false positive rate, simultaneously increasing the true positive rate.
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Figure 6-9: Segmenter precision vs. recall. In each, the filled black dot indicates the
parameter setting used by the classifier. Parameter settings which increase recall tend to
reduce precision.
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the maximum k = 16 is at the rightmost point on the performance curve. For trial 3, it is

very close to the rightmost point though not quite at the edge. The actual speech detector

used, indicated by the vertical dotted lines, may be close to the right tradeoff between false

positive and false negative rates, but is still too conservative and could be improved by

picking parameters with a higher FPr. Choosing more aggressive parameters is done by

finding the parameter settings for a particular performance point.

The segmenter algorithm uses the classifications and confidences returned by the frame-

level classifier. However, since the frame-level classifier is based on a decision tree, the

confidence values do not vary smoothly and are less meaningful than for other classifiers.

The effect of this is that varying the segmenter parameters, which pay attention to both

classifications and confidence values, does not smoothly change the segmenter behavior,

but instead produces more discrete “jumps” in performance. This accounts for the limited

performance range of the segmenter. A segmenter with a wider, more tunable performance

range might be obtained by modifying the frame-level classifier to produce better confidence

estimates. Section 4.2 pointed out some of these issues as well as references on ways to

address this problem.

To repeat a point made earlier, finding false negatives may not be the best use of a hu-

man transcriber’s time. Obviously, if the transcription task does not include finding false

negatives, then the factor k decreases toward zero. However, one must also remember the

scientific goal, which would suffer due to missed speech. Thus, false negatives may still be

considered a more expensive error than false positives.

6.5 Discussion

This chapter presented a number of evaluations of the system. First, human performance

was evaluated on the transcription task using various tools, including the new tools for

the system. This helped validate the approach, and demonstrated that it is at least 2.5 to

6 times faster than other systems. The evaluation then focused on specific aspects of the

semi-automatic transcription process, in order to better understand the human performance
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Figure 6-10: Expected human effort at various segmenter performance points. The per-
formance curve is shown, along with five curves representing the expected human effort
assuming false negatives require 1x, 2x, 4x, 8x, and 16x more effort than false positives.
The filled in black circle indicates the point on the curve of minimum effort. The vertical
dotted line is at the FPr of the actual speech detector used in this thesis.
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Figure 6-11: Expected human effort at various segmenter performance points, part 2.
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Figure 6-12: Expected human effort at various segmenter performance points, part 3.
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factors. First, a simple linear model was developed that related the transcription time to the

amount of detected speech from the automatic processes. This provides a way of estimating

how much annotator effort will be needed to transcribe the speech for the Human Speechome

Project. The analysis then focused on two primary error types resulting from the automatic

speech detector – false positives and false negatives. A model for the time required to handle

each error type was developed, in order to estimate the relative costs of each. Processing

false negatives seemed to exhibit an interesting power law, while false positives followed a

linear model. While the purpose of this analysis was not to find a predictive model, the task

time could potentially be roughly predicted if certain properties of the speech segmenter were

known, such as the false positive and false negative rate. The relative cost of false positives

to false negatives was used to tune the automatic segmenter. The automatic segmenter was

evaluated using the performance metrics developed in Chapter 4. In order to be sure the

performance metrics actually reflected the performance experienced by a human annotator,

the “predicted” performance was compared to the observed performance. By viewing the

amount of human effort in terms of the automatic speech detector performance, the two

halves of the system become tightly linked. Putting all the pieces of the analysis together,

the automatic system can be tuned in a principled way, and informed decisions for future

work can be made.
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Chapter 7

Conclusions and Future Work

This thesis presented a new system for speech transcription that combines human annotation

with machine processing. The system enables rapid transcription of a massive, multitrack

audio/video corpus collected for a longitudinal study of human language acquisition. Speech

transcription is not only relevant to the language acquisition community, it is also critical to

the entertainment and medical transcription industries. Speech transcripts are also proving

to be extremely useful for video search applications. In general, massive multimedia datasets

depend on comprehensive, useful annotations such as speech transcripts to enable efficient

browsing, search and analysis. These are the semantic units that a human can use for

expressing a search query, or for interpreting the information in a dataset more easily.

However, many annotation tasks still require human intervention or oversight to produce.

Thus, as datasets grow due to advances in collection and storage technologies, so does the

amount of human labor needed to work with them.

7.1 Thesis Summary

The system described in this thesis is a semi-automatic system for speech transcription,

built primarily as part of the Human Speechome Project. The Human Speechome Project

is a new study of human language acquisition, obtaining the most comprehensive ever
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record of all auditory and visual events in the life of a child, from birth to age three. These

dense recordings capture a significant portion of the child’s experience, including not only

linguistic but also contextual information. Speech transcripts are needed as a first step to

analysis, which can later be combined with other information for more elaborate studies.

For example, each occurrence of a word in the corpus may be aligned with the corresponding

video to study word usage in context.

While tools for speech transcription do exist, it would take a prohibitive amount of human

annotator time and effort to transcribe the thousands of hours of speech in the HSP corpus.

Instead, the system first applies automatic methods to find and segment speech in the

multi-track audio data, and then presents these speech segments to a human transcriber

for transcription. By using automatic processes to perform the tedious task of locating and

segmenting speech, the human annotator can focus on transcription, a task currently out of

reach of even the best speech recognizers. In addition, human judgment and understanding

are needed to transcribe much of the speech in the HSP corpus, since a significant portion

includes baby babble and early word usage. Not only does the automatic processing reduce

the total amount of data a human must work with, it also simplifies the annotation tools.

This reduces the cognitive load on the annotator and makes transcription more efficient.

Because the system is prone to errors, it is important to understand the impact these errors

have on transcription. By analyzing and modeling the transcription task, appropriate design

choices can be made. In particular, the automatic component can be tuned to maximize

the productivity of the human annotator. The motivating philosophy is that, through a

harmonious collaboration of human and machine, the resulting system will be more effective

than either by itself.

7.2 Future Work

There are many exciting directions to pursue as part of this work, too many to discuss in

detail, but a summary will give a sense of some possibilities. A project which is actually
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quite far along, though not treated here, is that of speaker identification. As part of auto-

matically detecting and segmenting speech, determining the speaker identity can be done

automatically. Gish and Schmidt [21] provide an overview of speaker identification, which

has many similarities to speech detection. Once speaker identification is fully implemented,

it may be desirable to further split speech segments by speaker. Currently, TotalRecall

allows an annotator to view and change the annotation produced by the speaker identi-

fier, but this has not been integrated into BlitZcribe. Incorporating speaker identity into

BlitZcribe will likely slow the transcription process somewhat, but the benefit will be richer

metadata. As BlitZcribe has demonstrated, if the additional functionality is incorporated

in a streamlined, simple way, it may not require much additional annotator effort to mark

and correct speaker identification errors.

Another component which has been developed, but not yet integrated into BlitZcribe, is a

method for playing audio more rapidly without distorting the pitch. Applying the SOLAFS

algorithm [56] [24] to speed up the audio by a reasonable factor would allow the annotator to

hear the speech in a shorter amount of time, which should translate to faster transcription

times. Of course, if sped up too much, it may be harder to understand, so finding the right

factor is important. It is even conceivable that slowing the audio could improve transcription

times, since it may reduce the number of times the transcriber needs to repeat a segment.

Another interesting suggestion for optimizing the audio for the annotation task is to use

stereo playback. This may help spatially locate different speakers, and should be possible

since the locations of the microphones in the house are known.

There are some interesting machine learning and signal processing challenges specific to

auditory processing raised by the Human Speechome Project. First, the speech detection

algorithm could potentially be improved by taking better account of the inter-frame dynam-

ics. As a temporal process, there is a strong dependence between a feature vector at time

t and time t+ 1. A spectrogram clearly reveals the structure of different sounds, including

speech, in both the frequency and time domains. Better modeling of this structure may lead

to better sound classifiers. Another interesting property of sound is the fact that it is addi-

tive – two sounds occurring at the same time mix together. Humans are adept at separating
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a sound back into its components, or paying attention to a single sound of interest, yet the

current discriminative classifiers are not designed to handle these mixtures. Techniques for

handling sound mixtures [18] and auditory source separation [25] may help build a better

speech detector and other sound classifiers. One observation about the training process that

has led to better frame classifier models is that the training data is not completely trust-

worthy – indeed, there are many “label errors”, when the audio is considered at the frame

level. Label errors occur when a segment of speech in the training set contains audio frames

that are identical to silence or noise. For example, there may be silences in the middle, or

at the ends of a speech segment. In training, all frames will be labeled as speech, which

makes the training task more difficult. Initial experiments identifying and relabeling these

frames yielded promising improvements in the frame-level classifier. Mislabeled training

data is further discussed in [9] and [2].

Another exciting direction for research is how the audio and video modalities, as well as

other contextual information, such as the time of day, room location, etc., might combine

to identify activities, objects, and events of interest. Current work on the video data is

focused on person tracking and determining gaze direction. This, combined with speech

detection, might form a basis for associating words with objects, or even discovering the

words themselves.

7.3 Implications and Contributions

At the time of this writing, more than two years of data has been collected for the Human

Speechome Project. Recording from fourteen microphones for an average of ten hours per

day, for about 350 days per year for two years amounts to an estimated 100,000 hours of

recorded audio. At an average of four to five hours of speech per day, the data will contain

about 3000 hours of speech to transcribe.

To get a sense for the size of this transcription task, consider the following. If all the

multitrack audio collected over the course of two years could be collapsed into a single

audio track, there would be about seven thousand hours of audio to transcribe. Using
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CLAN and Transcriber, this would take anywhere between 42,000 and 67,000 hours of

human transcriber effort. At the current transcriber hourly rate of about $10 per hour, this

approaches or exceeds one half of a million dollars. If the task is split among ten transcribers,

this should take around three years to complete, optimistically assuming transcribers work

at average efficiency for an eight hour day. It is not even worth considering directly applying

CLAN or Transcriber to the 100,000 hours of audio collected in the two year period.

Unlike CLAN and Transcriber, the semi-automatic system is designed to easily support

dense, multitrack audio. Using this system in safe mode, it should take about 16,000 hours

of labor, and cost about $160,000. This should take ten transcribers less than a year to

complete. If the system is used in fast mode, the numbers decrease further, requiring just

under 10,000 hours for 3000 hours of speech. This means the cost of transcription may be

brought down to under $100,000, and will take ten transcribers about half a year. With

the new system, transcription will complete faster and at a fraction of the cost than with

either of two popular, existing tools.

While fast mode transcription is the fastest, is it the right solution for the Human Speechome

Project? Because some speech may be missed by the automatic speech detector, fast mode

will reduce the coverage of the speech transcriptions, as compared with safe mode or manual

approaches. However, there is already a certain amount of child relevant speech that is

naturally missed as part of collecting the HSP corpus. For example, the corpus does not

capture speech activity when the child is outside, or the family is on vacation. A current

estimate is that about 70% of all child relevant activity is recorded. So while this is the

most comprehensive child language acquisition corpus to date, it won’t capture everything.

Therefore, the current speech detector, with a false negative rate of about 7%, will reduce

the total speech coverage by about 5%. For the cost and time savings between safe mode

and fast mode, this amount of additional missed speech may be tolerated. The nature of

such dense, longitudinal studies is that by capturing a comprehensive dataset, one may be

able to afford not annotating some of the data in the corpus.

The speech transcription system described here has been motivated by the needs of the

Human Speechome Project. However, the tools and methodology should also be useful to
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others transcribing speech. Because manual transcription is so time consuming, both smaller

and larger projects will benefit from faster transcription. Looking ahead, we hope that this

system will encourage other large-scale studies akin to the Human Speechome Project.

Whether one wants to study how humans learn from and interact with their environment,

or build machines that mimic these abilities, collecting and analyzing rich datasets will play

an important role. In concert with new data collection and storage technologies, better tools

for annotating and analyzing large scale datasets will surely create exciting new research

opportunities.
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