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Abstract

The spread of malicious or accidental misinformation in social media, especially in time-

sensitive situations such as real-world emergencies can have harmful effects on individuals

and society. This thesis develops models for automated detection and verification of rumors

(unverified information) that propagate through Twitter. Detection of rumors about an event

is achieved through classifying and clustering assertions made about that event. Assertions

are classified through a speech-act classifier for Twitter developed for this thesis. The clas-

sifier utilizes a combination of semantic and syntactic features to identify assertions with

91% accuracy. To predict the veracity of rumors, we identify salient features of rumors

by examining three aspects of information spread: linguistic style used to express rumors,

characteristics of people involved in propagating information, and network propagation dy-

namics. The predicted veracity of a time series of these features extracted from a rumor

(a collection of tweets) is generated using Hidden Markov Models. The verification al-

gorithm was tested on 209 rumors representing 938,806 tweets collected from real-world

events including the 2013 Boston Marathon bombings, the 2014 Ferguson unrest and the

2014 Ebola epidemic, and many other rumors reported on popular websites that document

public rumors. The algorithm is able to predict the veracity of rumors with an accuracy of

75%. The ability to track rumors and predict their outcomes may have practical applica-

tions for news consumers, financial markets, journalists, and emergency services, and more

generally to help minimize the impact of false information on Twitter.
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Chapter 1

Introduction

The reports of my death have been

greatly exaggerated.

Mark Twain

In the last decade the Internet has become a major player as a source for news. A study

by the Pew Research Center has identified the Internet as the most important resource for

the news for people under the age of 30 in the US and the second most important overall

after television [11]. More recently, the emergence and rise in popularity of social media

and networking services such as Twitter, Facebook and Reddit have greatly affected the

news reporting and journalism landscapes. While social media is mostly used for everyday

chatter, it is also used to share news and other important information [38, 66]. Now more

than ever, people turn to social media as their source of news [54, 96, 52]; this is especially

true for breaking-news situations, where people crave rapid updates on developing events

in real time. As Kwak et al. (2010) have shown, over 85% of all trending topics1 on Twitter

are news [52]. Moreover, the ubiquity, accessibility, speed and ease-of-use of social media

have made them invaluable sources of first-hand information. Twitter for example has

proven to be very useful in emergency and disaster situations, particularly for response

and recovery [100]. However, the same factors that make social media a great resource

1Trending topics are those topics being discussed more than others on Twitter.
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for dissemination of breaking-news, combined with the relative lack of oversight of such

services, make social media fertile ground for the creation and spread of unsubstantiated

and unverified information about events happening in the world.

This unprecedented shift from traditional news media, where there is a clear distinction

between journalists and news consumers, to social media, where news is crowd-sourced and

anyone can be a reporter, has presented many challenges for various sectors of society, such

as journalists, emergency services and news consumers. Journalists now have to compete

with millions of people online for breaking-news. Often time this leads journalists to fail

to strike a balance between the need to be first and the need to be correct, resulting in

an increasing number of traditional news sources reporting unsubstantiated information in

the rush to be first [12, 13]. Emergency services have to deal with the consequences and

the fallout of rumors and witch-hunts on social media, and finally, news consumers have

the incredibly hard task of sifting through posts in order to separate substantiated and trust-

worthy posts from rumors and unjustified assumptions. A case in point of this phenomenon

is the social media’s response to the Boston Marathon bombings. As the events of the

bombings unfolded, people turned to social media services like Twitter and Reddit to learn

about the situation on the ground as it was happening. Many people tuned into police

scanners and posted transcripts of police conversations on these sites. As much as this was

a great resource for the people living in the greater Boston, enabling them to stay up-to-date

on the situation as it was unfolding, it led to several unfortunate instances of false rumors

being spread, and innocent people being implicated in witch-hunts [51, 56, 99]. Another

example of such phenomenon is the 2010 earthquake in Chile where rumors propagated in

social media created chaos and confusion amongst the news consumers [64].

What if there was a tool that could not only detect rumors as they spread on Twitter

but also predict the veracity of these rumors? This was the genesis of Hearsift and Rumor

Gauge, tools for detection and verification of rumors respectively and the focus of this

thesis.
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1.1 Terminology

This thesis focuses on rumors that spread on Twitter. As such, we need to define several

Twitter specific terms before we proceed any further. These terms will be used through out

this thesis.

1.1.1 Twitter

Twitter is a micro-blogging platform has become a major social media platform with hun-

dreds of millions of users. Twitter is a social network where users can publish and exchange

short messages of up to 140 characters long, also known as tweets. The ubiquity, acces-

sibility, speed and ease-of-use of Twitter have made it an invaluable communication tool.

People turn to Twitter for a variety of purposes, from everyday chatter to reading about

breaking news [38].

1.1.2 Retweet

A retweet is a repost or forward of a tweet by another user. It is indicated by the characters

RT.

1.1.3 Favorite

Favorites are used by users when they like a tweet. By favoriting a tweet a user can let the

original poster know that you liked their tweet. The total number of times a tweet has been

favorited is visible to everyone.

1.1.4 Verified User

A verified Twitter user is a user that Twitter has confirmed to be the real. Verification is

done by Twitter to establish authenticity of identities of key individuals and brands. The

verified status of a user is visible to everyone.
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1.1.5 Followers

The followers of a user are other people who receive the user’s tweets and updates. When

a user is followed by someone, it will show up in their followers list. The total number of

followers a user has is visible to everyone.

1.1.6 Followees

The followees of a user are other people who the user followers. The total number of

followees a user has is also visible to everyone.

1.1.7 Follower Graph

The graph of users on Twitter and their follower relationship. The nodes in the graph are

users and the directional edges represent follower relationship between users.

1.2 What is a Rumor?

Before we proceed with the explanation of our algorithms for rumor detection and verifi-

cation, we need to provide a clear definition of rumors. We define a rumor to an unverified

assertion that starts from one or more sources and spreads over time from node to node in

a network. On Twitter, a rumor is a collection of tweets, all asserting the same unverified

statement (however the tweets could be, and almost assuredly, are worded differently from

each other), propagating through the communications network (in this case Twitter), in a

multitude of cascades.

A rumor can end in three ways: it can be resolved as either true (factual), false (non-

factual) or remain unresolved. There are usually several rumors about the same topic, any

number of which can be true or false. The resolution of one or more rumors automatically

resolves all other rumors about the same topic. For example, take the number of perpetra-

tors in the Boston Marathon bombings; there could be several rumors about this topic:
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1. Only one person was responsible for this act.

2. This was the work of at least 2 or more people.

3. There are only 2 perpetrators.

4. It was at least a team of 5 that did this.

Once rumor number 3 was confirmed as true, it automatically resolved the other rumors

as well. (In this case, rumors 1 and 4 resolved to be false and rumor 2 resolved to be true.)

For the purposes of this thesis, we only consider rumors that spread on Twitter.

1.3 Approach and Contributions

This thesis develops models for detection and verification of rumors (i.e. unverified in-

formation) that propagate on Twitter. Detection of rumors about an event is achieved

through classifying and clustering assertions made about that event. Assertions are clas-

sified through a state-of-the-art speech-act classifier for Twitter developed for this thesis.

The classifier is a logistic regression that utilizes a combination of semantic and syntac-

tic features and can identify assertions with 91% accuracy. For verification, we identified

salient characteristics of rumors by examining three aspects of diffusion: linguistics, the

users involved, and the temporal propagation dynamics. We then identified key differences

in each of the three characteristics in the spread of true and false rumors. A time series of

these features extracted for a rumor can be classified as predictive of the veracity of that

rumor using Hidden Markov Models. The verification algorithm was trained and evaluated

on 209 rumors collected from real-world events: the 2013 Boston Marathon bombings, the

2014 Ferguson unrest and the 2014 Ebola pandemic, plus many other rumors reported on

Snopes.com and FactCheck.org (websites documenting rumors). The system can predict

the veracity of rumors with an accuracy of 75% before verification by trusted channels

(trustworthy major governmental or news organizations). The ability to track rumors and
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predict their outcomes can have immediate real-world relevance for news consumers, fi-

nancial markets, journalists, and emergency services, and help minimize the impact of

false information on Twitter.

Automatic detection and verification of rumors in Twitter are very difficult tasks. Anal-

ogous in many ways to speech recognition, they both require extracting weak signals from

very noisy environments. Additionally, it is near impossible to get perfect accuracy in both

domains. So in addition to accuracy, an insightful way of measuring the performance of

our system is to measure the bandwidth reduction of information afforded by our system.

This is a theme that we will come back to throughout this thesis. Bandwidth reduction is

an important measurement because it can help demonstrate the usefulness and utility of

our system in real-world situations. For example, a journalist trying to sort out false and

true information from millions of tweets about a real-world event (as was the case with the

Boston Marathon bombings), has a Sisyphean task. However, as will be shown in great

detail later in this thesis, our system can make the task much less daunting and more man-

ageable for our hypothetical journalist by greatly reducing the amount of information he or

she has to sort through.

1.3.1 System Overview

Figure 1-1 shows the general pipeline of our system. As can be seen, the system has two

major parts, Hearsift (rumor detection) and Rumor Gauge (rumor verification). The input

to Hearsift is the raw tweets about an event of interest, with the output being clusters of

tweets with each cluster containing tweets that have propagated through Twitter and that

make similar assertions about the event in question (e.g., in the case of the Boston Marathon

bombings, the tweets making the assertion that there is a third bomb at Harvard square

would all be clustered together). From here on these clusters will be called rumors. These

rumors are the input to the Rumor Gauge algorithm, the output of which are a veracity

curve for each rumor indicating the likelihood that the rumor is false or true over time (the

algorithm generated a veracity score at every time-step). It should be noted that the system
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presented here is modular, meaning that each of the two parts can be replaced by other

similar systems. For example, Hearsift can be replaced by other rumor detection systems,

without effecting the internal workings of Rumor Gauge and vice-versa.

Rumor 
Verification

Rumor 
Detection

Raw
Tweets

Rumors
Veracity

Prediction

Figure 1-1: The pipeline of the rumor detection and verification system. The inputs and

outputs are shown in yellow and the detection and verification subsystems in green. The

rumor detection subsystem is named Hearsift and the the rumor verification subsystem is

named Rumor Gauge.

1.4 Overview of Chapters

The rest of this document is organized as follows:

• Chapter 2 review related work.

• Chapter 3 describes the rumor detection subsystem and its evaluation in detail.

• Chapter 4 describes the rumor verification subsystem and its evaluation in detail.

• Chapter 5 discusses hypothetical real-world applications for the systems presented in

this thesis.

• Chapter 6 concludes with ongoing and future work and contributions.
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Chapter 2

Related Work

This thesis develops a system for detection and verification of rumors about real-world

events that propagate on Twitter. Related work includes work on the role of Twitter in real-

world emergencies, work from the field of natural language processing about capturing the

syntactic and semantic structure of language, work from the field of network science about

the diffusion and propagation of information in social networks, and the relatively new

work on veracity prediction on Twitter and other domains.

2.1 Role of Twitter in Real-World Emergencies

In addition to being a medium for conversation and idle chatter, Twitter is also used as

a source of new for many people [38, 1, 66]. A study by Kwak et al. [52] shows that

the majority of trending topics on Twitter are news related. Several bodies of work have

shown that Twitter can be used to detect and locate breaking news [86, 88], and to track

epidemics [55]. Moreover, the use of Twitter during real-world emergencies has also been

studied. These studies have shown the effectiveness of Twitter for reporting breaking news

and response and recovery efforts during floods [100, 101, 95], earthquake [47, 26], forest

fires [22], and hurricanes [37]. One particular study about wildfires in California [78]

outlines the great value Twitter has as a medium to report breaking news more rapidly than
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mainstream media outlets. Inspired by the close correlation between Twitter activity and

real-world events (especially in the case of earthquakes) a new term, Twicalli scale1, was

created by researchers for measuring the Twitter impact of real-world events.

2.2 Natural Language Processing

Since this thesis works with Twitter data, we will limit our literature review to relevant nat-

ural language processing techniques developed for the Twitter domain. There has been ex-

tensive work done on computational methods for analysing the linguistic content of tweets.

These works have almost entirely focused on the semantics (e.g., sentiment classification

[73]) and the syntactic (e.g., part-of-speech tagging [71]) aspects of tweets. Particularly,

sentiment analysis and classification of text has been well studied for Twitter. Most of the

work on Twitter sentiment classification either focus on different machine learning tech-

niques (e.g., [104] [104], [40] [40]), novel features (e.g., [21] [21], [49] [49], [85] [85]),

new data collection and labelling techniques (e.g., [34] [34]) or the application of senti-

ment classification to analyse the attitude of people about certain topics on Twitter (e.g.,

[24] [24], [7] [7]). These are just some examples of the extensive research already done on

Twitter sentiment classification and analysis.

Sentiment classification is one of the many language processing techniques that are

developed in this thesis, however, more sophisticated techniques such as speech-act clas-

sification and the quantification of formality and sophistication of the language used in

tweets are also developed in this thesis.

There has been extensive research done on speech act (also known as dialogue act)

classification in computational linguistics, e.g., [97, 31, 2, 39]. There are two major an-

notated corpora used for speech act annotation which all of the research listed use. The

Switchboard-DAMSL [42] or SWBD, and the Meeting Recorder Dialog Act [23] or MRDA.

SWBD provides an annotation scheme for labelling dialog or speech acts from phone con-

1http://mstrohm.wordpress.com/2010/01/15/ measuring-earthquakes-on-twitter-the-twicalli-scale
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versations. It also contains labelled speech act data collected from telephone conversations.

Similarly, the MRDA corpus provides an annotation scheme and labelled speech act data

for face-to-face meetings with multiple parties.

Unfortunately, these annotation schemes and annotated datasets (and some of the method-

ologies used to analyse them) do not map well to Twitter, given the noisy and unconven-

tional nature of the language used on the platform. As far as we know, there is no publicly

available dataset of labelled speech acts for Twitter. Moreover, the only published work on

Twitter speech act classification that we are aware of is the work of Zhang et al. on super-

vised [108] and semi-supervised [109] speech act classification. Our work in this paper is

closely related to their supervised speech act classifier. However, Zhang et al. limit their

features to a set of words, n-gram phrases and symbols. They do not take into account the

rich syntactic structure of the tweets in their classification as their use of syntax is limited to

punctuation and a few Twitter specific characters. In their paper, they claim that the noisy

nature of Twitter makes the use of syntactic sub-trees, as was done by Jeong et al. [39] in

their work on speech act recognition in Emails, impractical.

However, recent advances in Twitter parsers [48] and part-of-speech taggers [71] have

made it possible to extract the syntactic structure of tweets with relative ease, without

having to normalize the texts as was suggested by Kaufmann and Kalita [46]. In this thesis,

we utilized these new tools to create a set of novel syntactic and semantic features. These

features are used to train a supervised speech act classifier, using a manually annotated

dataset of a few thousand tweets. This combined set of semantic and syntactic features help

us achieve state-of-the-art performance for Twitter speech-act classification. This Twitter

speech-act classifier is the basis for the rumor detection system presented in this thesis.

As far as we know, there has been very work on measuring the sophistication and for-

mality of language used on Twitter. The most relevant research is work that attempt to

detect non-literal text (text that is not supposed to be taken at face value) such as sarcasm

[50], satire [9] and hostility (flames) [93] through a combination of semantic and sentiment

analytic techniques.
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2.3 Modelling Cascades in Networks

There has been extensive work done on modelling the spread of information in networks.

The research in this area has mainly focused on modelling various diffusion and cascade

structures [17, 35], the spread of “epidemics” [74, 68, 33, 55, 44], knowledge [17], behavior

[14] and propaganda [82]. Work has also been done on identifying influential players

in spreading information through a network [105, 4, 110, 3] and identifying sources of

information [91].

In a work more directly related to our research direction, Mendoza et al, have looked

at the difference in propagation behaviour of false rumors and true news on Twitter [64].

Additionally, Friggeri et al. [30] and Jin et al. [41] have analysed the cascade and propa-

gation structures of rumors on social networks. Specifically, Jin et al. analyzed the spread

of rumors surrounding the Ebola pandemic and found that rumors can spread just like true

news. In all of these cases the properties of the actual entity that is being spread–be it a

message, knowledge, or a virus– is never analysed or taken into consideration in the mod-

els. In contrast, our work will be looking at the content of the messages being spread in

addition to the propagation behaviour of these messages and any information that might be

available about the agents involved in the propagation.

2.4 Predicting the Veracity of Information

The field of veracity prediction on social media is a relatively new one. There have so

far been only a handful of works that address this problem. Most relevant are the works

of Castillo et al. [10] and Kwon et al. [53]. These works deal with propagation of ru-

mors and misinformation on Twitter. Castillo et al. study the propagation of rumors during

real-world emergencies while Kwon et al. study the propagation of urban legends (such as

bigfoot) on Twitter. The works of Castillo et al. and Kwon et al. propose a combination

of linguistics and propagation features that can be used to approximate credibility of in-

formation on Twitter. However, Kwon et al.’s work does not deal with rumors surrounding
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real-world events and Castillo et al.’s work only approximates users’ subjective perceptions

of credibility on Twitter (i.e. whether users believe the tweets they are reading); they do

not focus on objective credibility of messages.

There has also been research done on verification of information on domains other than

Twitter. Yang et al. [107] have done work similar to Castillo’s work on Sina Weibo, China’s

leading micro-blogging service. The Washington Post’s TruthTeller2 which attempts to fact

check political speech in real time utilizes various natural language processing techniques

to retrieve relevant information from text (or transcribed speech) and compares the infor-

mation against a database of known-fact.

2http://truthteller.washingtonpost.com/
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Chapter 3

Rumor Detection

The general pipeline of the rumor detection and verification system is shown in 1-1. As can

be seen in that figure, the system is composed of two main subsystems for rumor detection

and rumor verification. This chapter will describe in detail the rumor detection subsystem.

An overview of the rumor detection subsystem, henceforth referred to as Hearsift can be

seen in Figure 3-1. The input to Hearsift is a collection of tweets about an event specified

by the user through a boolean query (Boston AND Bombing in this illustration). Hearsift

consists of two major parts, an assertion detector and a hierarchical clustering module. Raw

tweets about an event feed directly into the assertion detector, which filters the tweets for

only those containing assertions. The output of the assertion detector feeds directly into

the hierarchical clustering module, the output of which is a collection of clusters. These

clusters contain messages that have propagated through Twitter in a multitude of cascades,

which we call a rumor. The first part of this chapter describes the assertion detection

module and the second part describes the hierarchical clustering module.

3.1 Assertion Detection

An assertion is an utterance that commits the speaker to the truth of the expressed proposi-

tion. Figure 3-2 shows two tweets about the Boston Marathon bombings. The tweet shown
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classification problem. We created a taxonomy of six speech acts for Twitter and propose

a set of semantic and syntactic features. We trained and tested a logistic regression clas-

sifier using a data set of manually labelled tweets. Our method achieved a state-of-the-art

performance with an average F1 score of more than 0.70. We also explored classifiers with

three different granularities (Twitter-wide, type-specific and topic-specific) in order to find

the right balance between generalization and over-fitting for our task. Figure 3-3 shows an

overview of the Twitter speech-act classifier.

Feature

Extraction

> Syntactic

> Semantic

Assertion

Expression

Question

Recommendation

Request

Other

7000 labelled tweets

Events

Entities

Long-standing Topics 

Logistic

Regression

Figure 3-3: The pipeline of the Twitter speech-act classifier which can classify six cate-

gories of speech-acts, including assertions which are used for rumor detection.

Note that in addition to allowing us to detect assertions for the purposes of rumor detec-

tion, this classifier can be used in other tasks to better understand the meaning and intention

behind tweets and uncover the rich interactions between the users of Twitter. Knowing the

speech acts behind a tweet can help improve analysis of tweets and give us a better un-

derstanding of the state of mind of the users. Additionally, speech acts can help improve

various language processing algorithms such as sentiment classification, topic modelling

and assertion tracking. For example, knowing that a tweet is ”expressing a feeling” can

help in sentiment analysis. Similarly, knowing that a tweet is ”making a statement” can

help in tracking the assertions being made about events and people. Finally, knowing the

distribution of speech acts of tweets about a particular topic can reveal a lot about the
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general attitude of users about that topic (e.g., are they confused and are asking a lot of

questions? Are they outraged and demanding action? Etc).

3.1.2 Problem Statement

Speech act recognition is a multi-class classification problem. As with any other supervised

classification problem, we need a large labelled dataset. In order to create such a dataset

first we need to create a taxonomy of speech acts for Twitter by identifying and defining

a set of commonly occurring speech acts. Next, we need to manually annotate a large

collection of tweets using our taxonomy. For our Twitter speech act classifier we assume

that there is only one speech act associated with each tweet. This is a valid assumption to

make as a starting point given the short nature of communications on Twitter (limited to

140 characters), though we recognize that tweets may sometimes contain multiple acts.

Our primary task is to use the expertly annotated dataset to analyse and select various

syntactic and semantic features derived from tweets that are predictive of their correspond-

ing speech acts. Using our labelled dataset and robust features we can train standard,

off-the-shelf classifiers (such as SVMs, Naive Bayes, etc) for our speech act recognition

task.

A Taxonomy of Twitter Speech Acts

Using Searle’s speech act taxonomy [89] as the basis and taking into account the taxonomy

used by Zhang et al. [108] for their supervised Twitter speech act classifier, we established

a list of six speech act categories that are commonly seen on Twitter. Below we provide the

definition and examples (Table 3.1) for each of these speech acts:

• Assertion: Similar to Searle’s assertive type, an assertion is a tweet that commits the

speaker to the truth of the expressed proposition. So an assertion can be assessed

by the ”truth value” of its proposition. As Searle puts it, ”The simplest test of an

assertive is this: you can literally characterize it (inter alia) as true or false.” [90].
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Examples of assertions include: insisting, stating, hypothesizing, etc.

• Recommendation: Based on Searle’s definition of advise which falls under his di-

rective speech act category (directives are acts with the point of getting the hearer to

do something). Tweets that recommend (or condemn) things (such as links) or give

advise about a situation fall under this category.

• Expression: Based on Searle’s expressive type, expressions are tweets that express

the speaker’s attitudes and emotions towards something. Examples include: cele-

brating, deploring, liking, thanking, etc.

• Question: As with recommendation, question falls under the directive type of Searle’s

speech acts. Tweets that are asking for information or confirmation lie under this cat-

egory.

• Request: Also a directive type, requests are tweets that attempt to get the hearer to

do or stop doing something.

• Miscellaneous: There are several speech act types from Searle’s taxonomy that we

did not include in our taxonomy. These types include commissives that commit the

speaker to some future action (such as promising, pledging, taking an oath, etc) and

declaratives that change the world according to the proposition that was declared

(such as firing, declaring war, baptising, etc). As with Zhang et al. [108], we could

find relatively few examples of these speech acts on Twitter, not enough to warrant

a separate category. Therefore we grouped all remaining speech act types into one

miscellaneous category.

Type and Topic Specific Classification

Given the diversity of topics talked about on Twitter [57, 111], we wanted to explore topic

and type dependent speech act classifiers. Previous research on various natural language
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Speech Act Example Tweet

Assertion authorities say that the 2 boston bomb suspects are brothers are legal

permanent residents of chechen origin - @nbcnews

Recommendation If you follow this man for updates and his opinions on #Ferguson I

recommend you unfollow him immediately.

Expression Mila Kunis and Ashton Kutcher are so adorable

Question Anybody hear if @gehrig38 is well enough to attend tonight? #red-

sox

Request rt @craigyh999: 3 days until i run the london marathon in aid of the

childrens hopsice @sschospices . please please sponsor me here

Miscellaneous We’ll continue to post information from #Ferguson throughout the

day on our live-blog

Table 3.1: Example tweets for each speech act type.

processing algorithms (such as sentiment classification), has shown topic, type and category

specific approaches to be superior to more general, one-size-fits-all methods [72, 69, 108].

We used Zhao et al.’s [111] definitions for topic and type. A topic is a subject discussed

in one or more tweets (e.g., Boston Marathon bombings, Red Sox, global warming, etc).

The type characterizes the nature of the topic. Zhao et al. have identified three topic types

on Twitter, these are:

• Entity-oriented topics: topics about entities such as celebrities (e.g., Ashton Kutcher),

brand names (e.g., Pepsi), sports teams (e.g., Red sox), etc.

• Event-oriented topics: topics about events in the world, most commonly about breaking-

news (e.g., Boston Marathon bombings).

• Long-standing topics: topics about subjects that are commonly discussed in every-

day talk, such as music, global warming, cooking, travelling, etc.

Although several different categorization schemes for topics types on Twitter have been

proposed by others [20, 94, 57], we decided to use Zhao et al.’s scheme because it included
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fewer types (only three) whilst still maintaining a logical division of topics on Twitter. It

was important for us to not have too fine-grained division of topics since for a supervised

classification task we need a sizeable amount of data per category.

3.1.3 Data Collection and Datasets

We selected two topics for each of the three topic types described in the last section for

a total of six topics (see Table 3.2 for list of topics). We collected a few thousand tweets

from the Twitter public API for each of these topics using topic-specific queries (e.g., #fer-

gusonriots, #redsox, etc). We then asked three undergraduate annotators to independently

annotate each of the tweets with one of the speech act categories described earlier.

We measured the inter-annotator agreement using Fleiss’ kappa, which calculates the

degree of agreement in classification over that which would be expected by chance [28].

The kappa score for the three annotators was 0.68, which means that there were disagree-

ments in classification for a good number of the tweets. This is to be expected since our

annotators were not expert linguists and because of the noisy and unconventional language

used on Twitter. Since the quality of annotation for a supervised classifier is of utmost im-

portance, we decided to only use tweets that were labelled the same by all three annotators,

which was around 62% of all tweets. Table 3.2 shows the numbers of tweets per topic that

all annotators agreed on.

Type Topic # Tweets

Entity Red Sox 1418

Ashton Kutcher 1223

Event Boston bombings 1517

Ferguson unrest 1306

Long-standing Cooking 1098

Travelling 1001

Total 7563

Table 3.2: Number of agreed-upon annotated tweets per topic.

The distribution of speech acts for each of the six topics and three types is shown in
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Figure 3-4: Distribution of speech acts for all six topics and three types.

Figure 3-4. There is much greater similarity between the distribution of speech acts of

topics of the same type (e.g, Ashton Kutcher and Red Sox) compared to topics of different

types. Though each topic type seems to have its own distinct distribution, Entity and Event

types have much closer resemblance to each other than Long-standing. Assertions and

expressions dominate in Entity and Event types with questions beings a distant third, while

in Long-standing, recommendations are much more dominant with assertions being less

so. This agrees with Zhao et al.’s [111] findings that tweets about Long-standings topics

tend to be more opinionated which would result in more recommendations and expressions

and fewer assertions.

The great variance across types and the small variance within types suggests that a type-

specific classifier might be the correct granularity for Twitter speech act classification (with

topic-specific being too narrow and Twitter-wide being too general). We will explore this

in greater detail in the next sections of this paper.
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Opinion Words

We used the ”Harvard General Inquirer” lexicon1 [98], which is a dataset used commonly in

sentiment classification tasks, to identify 2442 strong, negative and positive opinion words

(such as robust, terrible, untrustworthy, etc). The intuition here is that these opinion words

tend to signal certain speech acts such as expressions and recommendations. One binary

feature indicates whether any of these words appear in a tweet.

Vulgar Words

Similar to opinion words, vulgar words can either signal great emotions or an informality

mostly seen in expressions than any other kind of speech act (least seen in assertions). We

used an online collection of vulgar words2 to collect a total of 349 vulgar words. A binary

feature indicates the appearance or lack thereof of any of these words.

Emoticons

Emoticons have become ubiquitous in online communication and so cannot be ignored.

Like vulgar words, emoticons can also signal emotions or informality. We used an online

collection of text-based emoticons3 to collect a total of 362 emoticons. A binary feature

indicates the appearance or lack thereof of any of these emoticons.

Speech Act Verbs

There are certain verbs (such as ask, demand, promise, report, etc) that typically signal

certain speech acts. Wierzbicka [106] has compiled a total of 229 English speech act verbs

divided into 37 groups. Since this is a collection of verbs, it is crucially important to only

consider the verbs in a tweet and not any other word class (since some of these words

can appear in multiple part-of-speech categories). In order to do this, we used Owoputi et

1http://www.wjh.harvard.edu/ inquirer/
2http://www.noswearing.com/dictionary
3http://pc.net/emoticons/
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al.’s4 [71] Twitter part-of-speech tagger to identify all the verbs in a tweet, which were then

stemmed using Porter Stemming [77]. The stemmed verbs were then compared to the 229

speech act verbs (which were also stemmed using Porter Stemming). Thus, we have 229

binary features coding the appearance or lack thereof of each of these verbs.

N-grams

In addition to the verbs mentioned, there are certain phrases and non-verb words that can

signal certain speech acts. For example, the phrase ”I think” signals an expression, the

phrase ”could you please” signals a request and the phrase ”is it true” signals a question.

Similarly, the non-verb word ”should” can signal a recommendation and ”why” can signal

a question.

These words and phrases are called n-grams (an n-gram is a contiguous sequence of

n words). Given the relatively short sentences on Twitter, we decided to only consider

unigram, bigram and trigram phrases. We generated a list of all of the unigrams, bigrams

and trigrams that appear at least five times in our tweets for a total of 6738 n-grams (4068

unigrams, 1878 bigrams and 792 trigrams). Instead of manually examining and selecting n-

grams from the list, we decided to create an automatic process for the selection of n-grams

so that future extensions of this work can be implemented with greater ease.

The selection starts by removing all n-grams that contained topic-specific terms (such as

Boston, Red Sox, etc). Next we removed all n-grams which contained proper nouns (using

Owoputi et al.’s [71] part-of-speech tagger). This was an important step since we did not

want words or phrases that refer to specific named-entities (such as people, events, places,

etc). The next step in the process was the selection of n-grams that are most predictive

of the speech act of their corresponding tweets. This was achieved by the calculation of

the entropy of each n-gram with respect to the speech act distribution of the tweets that

contained them. Entropy is a measure of uncertainty; the more random a source the larger

the entropy. So if an n-gram is used evenly in tweets with different speech acts then it will

4http://www.ark.cs.cmu.edu/TweetNLP/
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of total tweets that would contain one of the n-grams for each entropy cut-off value. This

made it very difficult to find a good cut-off value for entropy since a high cut-off point

would result in too many n-gram features and a low cut-off point would result in too few

commonly seen n-grams.

In order to account for this, we normalized the entropy of each n-gram by the log of

the count of the tweets that contained that n-grams (see Equation (3.2)). This means that

the more an n-gram is used the lower its normalized entropy or HN would be. Figure 3-7b

shows the plot of HN . We decided that a good cut-off value for normalized entropy would

be 0.2 which would select 21% of the best (lowest HN ) n-grams that are collectively seen

in 64% of our tweets. The top 21% of n-grams is made up of 849 unigrams, 453 bigrams

and 113 trigrams for a total of 1415 n-grams. There is a binary feature for each of these

n-grams indicating their presence or lack thereof.

HN(X) =
H(X)

log(
∑

i xi)
(3.2)
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Figure 3-7: Percentage of tweets and n-grams for different (a) entropy and (b) normalized

entropy cut-off values.
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@ is followed by a Twitter user-name and is usually used to reply to someone. It is often

used with questions, recommendations, and requests (targeted towards someone). Finally,

RT is used to indicate a retweet (which is reposting a message). Assertions tend to be

retweeted more heavily than other speech acts. (For example a statement by authorities

about a breaking news usually is an assertion that gets retweeted a lot.) There are three

binary features indicating the presence of these symbols.

As Zhang et al. [108] found, the position of these characters is also important to con-

sider since Twitter-specific characters used in the initial position of a tweet is more predic-

tive than in other positions. This is the case since these characters have different semantics

depending on their position. Therefore, we have three additional binary features indicating

whether these symbols appear in the initial position.

Abbreviations

Abbreviations are seen with great frequency in online communication. The use of abbrevi-

ations (such as b4 for before, jk for just kidding and irl for in real life) can signal informal

speech which in turn can signal certain speech acts such as expression. We collected 944

such abbreviations from an online dictionary5 and Crystal’s book on language used on the

internet [18]. We have a binary future indicating the presence of any of the 944 abbrevia-

tions.

Dependency Sub-trees

As discussed earlier, we believe that much can be gained from the inclusion of sophisticated

syntactic features such as dependency sub-trees in our speech act classifier. The use of such

features has shown great promise in related tasks such as speech act classification in emails

[39] and document sentiment classification [63, 67]. We used Kong et al.’s [48] Twitter

dependency parser for English (called the TweeboParser) to generate dependency trees for

our tweets. Dependency trees capture the relationship between words in a sentence. Each

5http://www.netlingo.com/category/acronyms.php
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contain proper nouns or topic-specific words (like the bombings–the–marathon sub-tree)

and calculating the normalized entropy for each sub-tree. As with n-grams, we sorted the

sub-trees by their normalized entropy and plotted them with respect to how much data they

capture. This was done in order to pick a good cut-off for the normalized entropy that

selects predictive sub-trees but does not over-fit the data by selecting too many sub-trees.

Figure 3-10 shows this plot. Through examining the plot we decided that a good cut-off

value for normalized entropy would be 0.2 which would select 30% of the best sub-trees

that are collectively seen in 38% of our tweets. The top 30% of the sub-trees is made up of

1109 length-one sub-trees and 546 length-two sub-trees for a total of 1655 sub-trees. There

is a binary feature for each of these sub-trees indicating their appearance.
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Figure 3-10: Percentage of tweets and sub-trees for different normalized entropy cut-off

values.
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Part-of-speech

Finally, we used the part-of-speech tags generated by the dependency tree parser to identify

the use of adjectives and interjections (such as yikes, dang, etc). Interjections are mostly

used to convey emotion and thus can signal expressions. Similarly adjectives can signal

expressions or recommendations. We have two binary features indicating the usage of

these two parts-of-speech.

3.1.5 Supervised Speech Act Classifier

We used the Python Scikit-learn toolkit [75] to train four different classifiers on our 3313

binary features using the following methods: naive bayes (NB), decision tree (DT), logistic

regression (LR. Also known as max entropy) and linear support vector machine (SVM). Ad-

ditionally, given the highly uneven distribution of speech acts, it was particularly important

to compare the performance of our classifiers against a baseline (BL) classifier to assess

relative performance gains with our features. The baseline classifier always selects the

most likely speech act from the prior speech act distribution. We trained classifiers across

three granularities: Twitter-wide, Type-specific, and Topic-specific. All of our classifiers are

evaluated using 20-fold cross validation. We used a high number of folds since we have

limited training data, especially when training fine-grained topic-specific classifiers.

Twitter-wide classifier

Table 3.3 shows the performance of our five classifiers trained and evaluated on all of

the data. We report the F1 score for each class, which is the harmonic mean of recall and

precision for that class (see Equation (3.3)). The average F1 score we report is the weighted

average according to the size of each class. As shown in Table 3.3, all of the classifiers

significantly outperform the baseline classifier with logistic regression being the overall

best performing classifier with a weighted average F1 score of .70. With the exception

of the recommendation class, logistic regression beat the other classifiers across all other
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speech acts. Thus we picked logistic regression as our classier and the rest of the results

reported will be for LR only.

F1 =
2 · precision · recall

precision+ recall
(3.3)

As Ex Qu Rc Rq Mis Avg

BL 0. .59 0. 0. 0. 0. .24

DT .57 .68 .79 .32 0. .29 .58

NB .72 .76 .71 .40 0. .41 .66

SVM .71 .80 .86 .35 .13 .43 .69

LR .73 .80 .87 .30 .16 .45 .70

Table 3.3: F1 scores for each speech act category. The best scores for each category are

highlighted.

Type-specific classifier

Next, we trained and evaluated logistic regression classifiers for each of our three topic

types. Table 3.4 shows the performance of each classier. Overall entity and event clas-

sifiers outperform the long-standing topic classifier. This could be attributed to the prior

distribution of speech acts in the training data (as well its poor performance on the assertion

class). As shown in earlier parts of this paper, long-standing topics have a much more even

distribution of speech acts compared to entity and event topics that are mostly dominated

by assertions and expressions with questions in a distant third (see Figure 3-4).

Furthermore, it is interesting to note that there is not a single type-specific classifier

that performs best for all speech acts, with the entity-classifier doing best on the expression

and recommendation categories, event-classifier doing best on the assertion and request

categories, and the long-standing-classifier doing best on the miscellaneous category, with

all doing extremely well on the question category.
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As Ex Qu Rc Rq Mis Avg

BLent 0. .68 0. 0. 0. 0. .35

LRent .75 .94 .98 .53 0. .14 .79

BLevt .65 0. 0. 0. 0. 0. .31

LRevt .86 .80 .97 .24 .33 .20 .74

BLlst 0. .56 0. 0. 0. 0. .21

LRlst .51 .78 .98 .35 0. .42 .61

Avgall .71 .84 .98 .37 .11 .25 .71

Table 3.4: F1 scores for each speech act category for all three topic types and their average.

(ent=entity, evt=event, lst=long-standing.)

Topic-specific classifier

Finally, we trained and evaluated logistic regression classifiers for each of our six topics.

Table 3.5 shows the performance of each classifier.

3.1.6 Analysis

The topic-specific classifiers’ average performance was better than that of the type-specific

classifiers (.74 and .71 respectively) which was in turn marginally better than the perfor-

mance of the Twitter-wide classifier (.70). This is in spite of the fact that the Twitter-wide

classifier was trained on a dataset which was on average three times larger than the datasets

used for the type-specific classifiers, which were themselves about two times larger than

the datasets used for the topic-specific classifiers. This confirms our earlier hypothesis that

the more granular type and topic specific classifiers would be superior to a more general

Twitter-wide classifier. This also agrees with previous works on different natural language

processing algorithms that show topic and type specific approaches outperform more gen-

eral ones [72, 69, 108].

Even though the topic-specific classifiers have the best performance, their granularity

is too fine-grained. This means that every time we want speech acts classified for tweets

about a new topic, a new training set needs to be annotated and a new classifier trained.

This makes topic-specific classifiers somewhat impractical. We believe that type-specific
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As Ex Qu Rc Rq Mis Avg

BLash 0. .60 0. 0. 0. 0. .25

LRash .80 .90 .97 .52 0. .16 .77

BLrs 0. .62 0. 0. 0. 0. .27

LRrs .73 .95 .97 .62 0. .24 .81

Avgent .77 .93 .97 .57 0. .20 .79

BLbos .60 0. 0. 0. 0. 0. .25

LRbos .87 .82 .99 .53 0. .22 .76

BLfer .67 0. 0. 0. 0. 0. .34

LRfer .80 .86 .99 .37 .15 .14 .75

Avgevt .84 .84 .99 .45 .08 .18 .76

BLck 0. .56 0. 0. 0. 0. .21

LRck .58 .85 .99 .53 0. .39 .69

BLtr 0. .59 0. 0. 0. 0. .24

LRtr .59 .82 .98 .43 0. .42 .68

Avglst . 59 .84 .99 . 48 0. .41 .69

Avgall .73 .87 .98 .57 .03 .26 .74

Table 3.5: F1 scores for each speech act category for all six topics and their average.

(ash=Ashton Kutcher, rs=Red Sox, bos=Boston Marathon bombings, fer=Ferguson riots,

ck=cooking, tr=travelling.)

classifiers are the correct granularity. Not only do they outperform the Twitter-wide clas-

sifier, they also are limited to three classifiers and any new topic can be assigned to one of

the three.

Next, we wanted to measure the contributions of our semantic and syntactic features.

To achieve that, we trained two versions of our Twitter-wide logistic regression classifier,

one using only semantic features and the other using syntactic features. As shown in Table

3.6, the semantic and syntactic classifiers’ performance was fairly similar, both being on

average significantly worse than the combined classifier. It is interesting to note that nei-

ther the semantic nor the syntactic classifiers perform better on all the speech act categories.

The semantic classifier performs best on the assertion, recommendation and miscellaneous

categories while the syntactic classifier performs best on the expression and question cat-

egories. Also with the notable exception of the question category, the combined classifier

outperform the semantic and syntactic classifiers on all other categories, which strongly
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suggests that both feature categories contribute to the classification of speech acts. It is

also interesting to note that for the request category, both the semantic and the syntactic

classifiers had an F1 score of 0 (which corresponds to zero recall and precision), while the

combined classifier had a F1 score of .16.

As Ex Qu Rc Rq Mis Avg

Sem .71 .80 .62 .22 0. .23 .64

Syn .59 .81 .94 .12 0. 0. .62

All .73 .80 .87 .30 .16 .45 .70

Table 3.6: F1 scores for each speech act category for semantic and syntactic features.

We can not directly compare the performance of our classifier to the only other super-

vised Twitter speech act classifier by Zhang et al. [108], since we used different training

datasets and used a different taxonomy for Twitter speech acts (differing both in definition

and number). However, we can still make a qualitative comparison of the two classifiers,

especially since they were both trained on similarly sized datasets (a few thousand tweets

each). Our general (Twitter-wide) speech act classifier had a weighted average F1 score

of .70 compared to their weighted average score of .64. This is despite the fact that our

classification problem had six classes while theirs problem had five.

3.1.7 Detecting Assertions

For the purposes of rumor detection, the job of the Twitter speech-act classifier developed

is to detect assertions, since it is assertions that form the basis of our rumors. Given that we

are looking at rumors about real-world events, we use the event-specific classifier. Further-

more, since we only care about the assertion category, we can turn the speech-act classifier

into a binary classifier for identifying assertions by treating all other classes as one other

class. As shown in Table 3.4, the F1 score for classifying assertions using the event-specific

classifier is .86. In order to better understand the performance of the event-specific clas-

sifier for identifying assertions we look at the receiver operating characteristic (ROC), or

the ROC curve of the classifier. An ROC curve is a plot that illustrates the performance
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of a binary classifier system as its discrimination threshold is varied. The curve is created

by plotting the true positive rate (TPR) against the false positive rate (FPR) at various

threshold settings. The definitions for TPR and FPR are shown in Equation (3.4). In the

equation, TP stands for true positive, TN for true negative, FP for false positive, and FN

for false negative.

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(3.4)

Using the TPR and FPR we can plot the ROC curve of the assertion classifier. Figure

3-11 shows this ROC curve. According to the ROC curve, at a false positive rate of .28,

the true positive rate would be 1.0. This means that in order to get all the tweets containing

assertions correctly classified, we would have to tolerate 28% of non-assertion containing

tweets mistakenly classified as containing assertions. Depending on the application that

system is being used for one might be able to tolerate such a noise in order to capture

all assertion containing tweets. However, if the application requires much more precision,

then a different point on the operating curve can be picked. For example, at only 15% false

positive rate, the tool will correctly identify 90% of all tweets containing assertions. This

parameter is under the control of the user who can tune it to different values depending on

the application.

Going back to the theme of bandwidth reduction discussed in the introduction chapter

of this thesis, we would like to estimate the bandwidth reduction afforded by the asser-

tion classifier. Almost half of the tweets about real-world events do not contain assertions

(as shown in Figure 3-4), meaning that the bandwidth reduction afforded by the assertion

classifier is around 50%. Case in point, for the Boston Marathon bombings event, there

were around 20 million tweets about the event with about 10 million of those containing

assertions.
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Figure 3-11: The receiver operating characteristic (ROC) curve of the event-specific asser-

tion classifier.

3.2 Clustering of Assertions

The second module of Hearsift, shown in Figure 3-1, is clustering module. This module

takes as input the output of the assertion detector, which is tweets containing assertions.

The output of the clustering module is a collection of clusters, each containing tweets

with similar assertions. We call each collection of assertions that have propagated through

Twitter a rumor; therefore, the output of the clustering module is a collection of rumors.

Below, we describe the clustering method used for this purpose.

3.2.1 Hierarchical Clustering of Tweets

In order to cluster tweets containing assertions, we used Hierarchical Agglomerative Clus-

tering (HAC). Generally speaking, hierarchical clustering is a method of cluster analysis

which seeks to build a hierarchy of clusters. There are two strategies for hierarchical clus-

tering [60]:
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• Agglomerative: This is a ”bottom up” approach: each observation starts in its own

cluster, and pairs of clusters are merged as one moves up the hierarchy.

• Divisive: This is a ”top down” approach: all observations start in one cluster, and

splits are performed recursively as one moves down the hierarchy.

The complexity of agglomerative clustering is polynomial at O(n3), while the com-

plexity of divisive clustering is exponential at O(2n). Given the relatively large size of our

datasets, we decided to use agglomerative clustering, given its lower complexity.

Similarity Function

For agglomerative clustering, there needs to be a way to decide which clusters should be

combined. This is achieved through the use of a metric that measures the distance between

pairs of observations, or tweets in our case. The similarity function that we used for HAC

of tweets is TF-IDF combined with cosine similarity. TF-IDF, or Term FrequencyInverse

Document Frequency, is a method of converting text into numbers so that it can be repre-

sented meaningfully by a vector [80]. TF-IDF is the product of two statistics, TF or Term

Frequency and IDF or Inverse Document Frequency.

Term Frequency measures the number of times a term (word) occurs in a document.

Since each document will be of different size, we need to normalize the document based

on its size. We do this by dividing the Term Frequency by the total number of terms. TF

considers all terms as equally important, however, certain terms that occur too frequently

should have little effect (for example, the term ”the”). And conversely, terms that occur

less in a document can be more relevant. Therefore, in order to weigh down the effects of

the terms that occur too frequently and weigh up the effects of less frequently occurring

terms, an Inverse Document Frequency factor is incorporated which diminishes the weight

of terms that occur very frequently in the document set and increases the weight of terms

that occur rarely. Generally speaking, the Inverse Document Frequency is a measure of

how much information a word provides, that is, whether the term is common or rare across

all documents.
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The exact formula for calculating TF is shown in Equation (3.5). Here, t is the term

being processed, d is the document, and the function f(t,d) measure the raw frequency of t

in d.

TF (t, d) = 0.5 +
0.5× f(t, d)

max{f(w, d) : w ∈ d}
(3.5)

The formula for calculating IDF is shown in Equation (3.6). Here, N is the total number

of documents in the corpus, and | {d ∈ D : t ∈ d} | is the number of documents where the

term t appears.

IDF (t,D) = log
N

1 + | {d ∈ D : t ∈ d} |
(3.6)

Using the definitions of TF and IDF, the TF-IDF is then calculated as shown in Equation

(3.7).

TFIDF (t, d,D) = TF (t, d)× IDF (t,D) (3.7)

Using TF-IDF, we derive a vector for each tweet. The set of tweets in our collection

is then viewed as a set of vectors in a vector space with each term having its own axis.

We measure the similarity between two tweets using the formula shown in Equation (3.8).

Here, d1 · d2 is the dot product of two documents, and ||d1|| × ||d2|| is the product of the

magnitude of the two documents.

Similarity(d1, d2) =
d1 · d2

||d1|| × ||d2||
(3.8)

Hierarchical Agglomerative Clustering

Using the similarity function that was described, we can use hierarchical agglomerative

clustering (HAC) to cluster similar assertions together. The output of HAC can best be

described as a dendrogram. A dendrogram is a tree diagram that can be used to illustrate

the arrangement of the clusters produced by HAC. Figure 3-12 shows a sample dendrogram
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(with different partitions). This is a reduction by four orders of magnitude.
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Chapter 4

Rumor Verification

In addition to the rumor detection module described in the previous chapter, the other

major module of the rumor detection and verification system shown in 1-1 is the rumor

verification module. This chapter will describe in detail this system. An overview of the

rumor detection subsystem, henceforth referred to as Rumor Gauge can be seen in Figure

4-1.

The input to Rumor Gauge is a collection of rumors. A rumor about an event is a collec-

tion of tweets that have spread through Twitter, all making similar assertions about the event

in question. For example, a rumor that spread on Twitter about the Boston Marathon bomb-

ings was that there were bombs in Harvard square. There were thousands of tweets making

the same statement, each maybe worded differently. All of these tweets bundled together

would constitute a rumor. It should be noted that a rumor can end up being true or false.

The input to Rumor Gauge could be the output of the rumor detection system-Hearsift- ex-

plained in the previous chapter or it could be the output of any other event/rumor detection

system, including manual rumor identification systems (i.e., rumors identified manually

through inspection).

Rumor Gauge extracts time-series features about the linguistic content of the rumors,

the identity of the users involved in the propagation of the rumors and the propagation

dynamics of the rumors. These features are then passed to a Hidden Markov Model (HMM)
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[92, 84], we have identified salient characteristics of rumors by examining three aspects of

diffusion: linguistics, the users involved, and the temporal propagation dynamics. Each of

these aspects is composed of several features. These features are explained in detail later

in this chapter.

Since rumors are temporal in nature (i.e., the tweets that make up a rumor are tweeted

at different times), time series of these features are extracted. These temporal features are

extracted from 209 manually annotated rumors and used to train HMMs for true and false

rumors. It should be noted that features are extracted only from data before trusted veri-

fication. When a new rumor is detected and passed to Rumor Gauge, the same temporal

features are extracted at every time-step as the rumor spreads. At every time-step the tem-

poral features are passed the HMMs for true and false rumors. Each HMM measures the

fitness of the data to its model and returns a probability score. These probability scores are

then compared to predict the veracity of the rumor. As described earlier, the goal is to get

a correct veracity prediction for a rumor before trusted verification. Figure 4-2 shows an

overview of our method.

4.2 Data Collection and Datasets

Our model was trained and evaluated on 209 rumors collected from real-world events: the

2013 Boston Marathon bombings, the 2014 Ferguson unrest, and the 2014 Ebola epidemic,

plus many other rumors reported on Snopes.com and FactCheck.org (websites document-

ing rumors). These rumors were manually selected and annotated. Table 4.1 shows the

distribution of the rumors. Out of the 209 rumors, 113 (54%) were false and 96 (46%)

were true. Below we provide a brief description of each of the events or sources of the 209

rumors:

• 2014 Boston Marathon bombings: The 2013 Boston Marathon bombings were a

series of attacks and incidents which began on April 15, 2013, when two pressure

cooker bombs exploded during the Boston Marathon at 2:49 pm EDT, killing 3 peo-
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ple and injuring an estimated 264 others. The events after the bombing led to an MIT

police officer being killed, a manhunt for the suspects, and the lockdown of the city

of Boston and neighbouring towns. 1

• 2014 Ferguson unrest: The 2014 Ferguson unrest was a series of protest that be-

gan the day after Michael Brown was fatal shot by Darren Wilson, a policeman, on

August 9, 2014, in Ferguson, Missouri. 2

• 2014 Ebola epidemic: The 2014 Ebola epidemic is the first Ebola outbreak to each

epidemic proportions. It originated in several West African countries, causing signif-

icant mortality, with reported case fatality rates of up to 70%. Imported cases in the

United States and Spain led to secondary infections of medical workers but did not

spread further. 3

• Snopes.com: Snopes.com is a website that documents Internet rumors, urban legends,

and other stories of unknown or questionable origin. It is a well-known resource for

validating and debunking rumors. 4

• FactCheck.org: FactCheck.org is a website that documents inaccurate and misleading

claims. The website also documents and verifies online rumors in its Ask FactCheck

section. 5

The rumors selected from these events and sources were manually annotated. This

entailed not only identifying the rumors, but also creating boolean queries using terms

describing each rumor that could be used to select tweets that talked about that rumor.

For example, if the rumor in question was that ”there is a bomb at Harvard square”, the

query ”bomb AND Harvard” could be used to pick out tweets talking about that rumor.

Additionally, the trusted verification time of each rumor was also manually annotated.

1http://en.wikipedia.org/wiki/Boston Marathon bombings
2http://en.wikipedia.org/wiki/Ferguson unrest
3http://en.wikipedia.org/wiki/Ebola virus epidemic in West Africa
4www.snopes.com
5www.factcheck.org
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Source/Event False Rumors True Rumors Total

2013 Boston Marathon Bombings 16 6 22

2014 Ebola Pandemic 11 9 20

2014 Ferguson Unrest 10 7 17

Snopes.com & Factcheck.org 76 74 150

All 113 96 209

Table 4.1: Distribution of manually annotated rumors used for training and evaluating the

rumor verification system.

We used sites such as Wikipedia, Snopes.com, and FactCheck.org that aggregate and cite

trustworthy external sources (major governmental or news organization) for verification

of rumors. A rumor was annotated as true or false if at least three trustworthy sources

confirmed it as such. The earliest confirmation time was taken as the trusted verification

time of that rumor. From this point on in the document unless otherwise stated, a rumor

refers to the tweets that have propagated over Twitter until the trusted verification time. So

when we talk about the duration of a rumor we mean the time from its very first tweet to

the trusted verification time of that rumor.

The count distribution of the 209 rumors can be seen in Figure 4-3. It was made certain

that all of the rumors have at least 1000 tweets. Any rumor that was identified with less

than 1000 tweets was discarded. Table 4.2 shows the rounded average number of tweets for

each class of rumors, for each event. Note that false rumors on average have more tweets

than true rumors. This is mostly due to the fact that false rumors generally take longer to

be verified by trusted sources, compared to true rumors (we will explore this fact shortly).

Source/Event All Rumors False Rumors True Rumors

2013 Boston Marathon Bombings 9334 11002 4887

2014 Ebola Pandemic 2835 3136 2467

2014 Ferguson Unrest 3011 3274 2635

Snopes.com & Factcheck.org 2170 2421 1912

All 3056 3782 2203

Table 4.2: The rounded average number of tweets for each class of rumors, for each event.
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Figure 4-3: The count distribution of the 209 rumors used for training and evaluating Rumor

Gauge. The x-axis corresponds to the number of tweets (binned) and the y-axis is the

number of rumors that fall in the bins. Note that none of the rumors have less than 1000
tweets.
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The duration distribution of the 209 rumors can be seen in Figure 4-4. Table 4.3 shows

the average duration of rumors in hours for each class of rumors, for each event. Note

that false rumors on average are longer than true rumors. One reason for this could be that

proving a negative (i.e. verifying a false rumor) is a much harder and more time consuming

task than proving a positive (i.e. verifying a true rumor).

Source/Event All Rumors False Rumors True Rumors

2013 Boston Marathon Bombings 17.3 19.7 10.9

2014 Ebola Pandemic 87.1 131.8 32.4

2014 Ferguson Unrest 30.5 28.1 33.9

Snopes.com & Factcheck.org 53.9 71.6 30.0

All 51.3 66.7 29.2

Table 4.3: The average duration of rumors (in hours) for each class of rumors, for each

event.

4.3 Features

A rumor can be described as a temporal communication network, where each node corre-

sponds a communicating user, the edges correspond to communication between nodes and

the temporal aspect captures the propagation of messages through the network. The intu-

ition is that there is measurable differences between the temporal communication network

corresponding to false and true rumors. In order to capture these difference, we need to

identify characteristics of rumors. It makes sense that these characteristics would be re-

lated to either the nodes (i.e. users) in the network, the edges (i.e. messages) in the network

or the temporal behaviour of the network (i.e. propagation).

Using this insight, we identified salient characteristics of rumors by examining three as-

pects of diffusion: linguistics, the users involved, and the temporal propagation dynamics.

Using insights gained from related work in the related fields of meme-tracking [58, 81],

diffusion and virality in social networks [62, 30, 35], measuring influence in networks

[4, 110, 3], and information credibility estimation[10, 53], we composed a list of interest-

ing features for each of the three categories. Overall, we studied 15 linguistic, 12 user-based
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Figure 4-4: The duration distribution of the 209 rumors used for training and evaluating

Rumor Gauge. The x-axis corresponds to the duration in hours (binned) and the y-axis is

the number of rumors that fall in the bins. Note that false rumors have on average a longer

duration than true rumors.
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and 10 propagation features, for a total of 37 features. The contribution of each of these

feature to the prediction of veracity was studied and not all were found to be significant.

To measure the contribution of each feature, we rank them by the probability of the Wald

chisquare test [36]. The null hypothesis is that there is no significant association between

a feature and the outcome after taking into account the other features in the model. Small

p-values indicate statistical significance, meaning that the null hypothesis should be re-

jected, which suggests that there is non-zero association for that feature. After removing

all features that did not significantly contribute to the outcome of our models, we were left

with 4 linguistic, 6 user-based and 7 propagation features, for a total of 17 features. The

contributions of each feature will be explored in the ”Evaluation” section of this chapter.

Below, each of the 17 features from the three categories will be explained in detail.

4.3.1 Linguistic

The linguistic features capture the characteristics of the text of the tweets in a rumor. A

total of 4 linguistic features were found to significantly contribute to the outcome of our

models. In the descending order of contribution these features are: ratio of tweet contain-

ing negations, average formality & sophistication of the tweets, ratio of tweets containing

opinion & insight, and ratio of inferring & tentative tweets. We will now describe each of

these features in detail.

Ratio of Tweets Containing Negation

This feature measures the ratio of assertions containing negation over the total number of

assertions in a rumor. Figure 4-5 shows two example tweets from the same rumor, both

containing assertions. The tweet shown in Figure 4-5b however, contains a negation while

the tweet shown in Figure 4-5a does not.

Equation (4.1) shows how the negation ratio value is calculated. In that equation, NR

corresponds to the negation ratio, R to the rumor,
∑R

A to the total number of assertions

in the rumor R, and
∑R

N(A) to the total number of assertion in the rumor R that contain
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approach for identifying negations can not correctly detect that innocent is, from a semantic

standpoint, a negation of guilty. This is an area that can be explored further in future

extensions to this system.

Average Formality & Sophistication of Tweets

This feature measures the sophistication and formality (or rather the informality) of tweets

in a rumor. There are five indicators of formality & sophistication of a tweet, those are:

• Vulgarity: The presence of vulgar words in the tweet.

• Abbreviations: The presence of abbreviations (such as b4 for before, jk for just kid-

ding and irl for in real life) in the tweet.

• Emoticons: The presence of emoticons in the tweet.

• Average word complexity: Average length of words in the tweet.

• Sentence complexity: The grammatical complexity of the tweet.

The first three factors estimate the formality (or informality) of a tweet, while the last

two factors estimate the sophistication. Each tweet is checked against collections of vul-

gar words, abbreviations and emoticons. These collections were assembled using online

dictionaries8910 (and in the case of abbreviations, also Crystal’s book on language used on

the internet [18]). There are a total of 349 vulgar words, 362 emoticons, and 944 abbrevi-

ations. You can see example tweets containing vulgarity and emoticons in Figure 3-5 and

an example of a tweet containing abbreviations in Figure 3-8.

The average word complexity of a tweet is estimated by counting the number of char-

acters in each word in the tweet and dividing by the total number of words in that tweet.

Equation (4.2) shows how this is done. Here, WC(t) refers to the word complexity score

8http://www.noswearing.com/dictionary
9http://pc.net/emoticons/

10http://www.netlingo.com/category/acronyms.php
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of tweet t, NW (t) counts the number of words in the tweet t, and NC(w) counts the

number of characters in the word w. For example, the tweet, ”There is another bomb at

Harvard” has 6 words, containing 5, 2, 7, 4, 2, 7 characters respectively. The average word

complexity of the tweet is therefore: 5+2+7+4+2+7
6

= 4.5 .

WC(t) =

∑NW (t)
i=0 NC(wi)

NW (t)
(4.2)

The sentence complexity of a tweet is estimated by the depth of its dependency parse

tree. We used Kong et al.’s [48] Twitter dependency parser for English to generate depen-

dency trees. A sample dependency tree can be seen in Figure 3-9 in the last chapter. In that

example, the tweet,”our hearts go out to those effected by the marathon bombings”, has a

depth of 5.

Ratio of Tweets Containing Opinion & Insight

We collected a list of opinion and insight words from the Linguistic Inquiry and Word

Count (LIWC)11. The LIWC dictionary provides psychologically meaningful categories

for the words in its collection [76]. One of these categories is opinion & insight words.

This includes words like, know, consider, think, etc. Each tweet is checked against the

opinion & insight words from LIWC.

Ratio of Inferring & Tentative Tweets

Another category in the LIWC is the inferring tentative words. This includes words like,

perhaps, guess, may be, etc. Each tweet is checked against the inferring & tentative words

from LIWC.

11http://www.liwc.net/descriptiontable1.php
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4.3.2 User Identities

The user features capture the characteristics of the users involved in spreading a rumor. A

total of 6 user features were found to significantly contribute to the outcome of our mod-

els. In the descending order of contribution these features are: controversiality, originality,

credibility, influence, role, and engagement. We will now describe each of these features

in detail.

Controversiality

The controversiality of a user is measured by analysing the replies to the user’s tweets. The

replies to the last 1000 tweets of a user are collected. These replies are then run through

a sentiment classifier which classifies them as either positive, negative, or neutral. There

are numerous off-the-shelf Twitter sentiment analyser, however, for the purposes of this

thesis we developed an state-of-the-art Twitter sentiment classifier [103]. This classifier is

explained in detail in Appendix A.

The number of all positive and negative replies are counted and used to calculate a

controversiality score for the user. The formula for this is shown in equation (4.3). In that

equation, p is the total number of positive replies and n is the total number of negative

replies.

Controversiality = (p+ n)min( p

n
,n
p
)

(4.3)

Figure 4-6 illustrates how the controversiality score is distributed for different number

of positive and negative replies. Note that this is an example illustration so the number of

positive and negative replies don’t exceed 100, which is not necessarily the case for the

users in our dataset. As you can see in the figure, controversiality of a user is dependent

on two factors: the number of replies to the user, and the ratio of replies with different

sentiments. The higher the number and the closer to 1.0 the ratio, the higher the contro-

versiality score. This makes intuitive sense, since a controversial user would be someone
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original tweet. The greater this ratio, the more inventive and original a user is. Conversely,

a lower ratio indicates an unoriginal and parrot like behaviour by the user (i.e. just repeating

what others say).

Originality =
#Tweets

#Retweets
(4.4)

Credibility

The credibility of a user is measured by whether the user’s account has been verified by

Twitter or not. This feature can either have the value 1 or 0.

Credibility =











1 if verified

0 otherwise

(4.5)

Influence

Influence is measured simply by the number of followers of a user. Presumably, the more

followers a user has, the more influential he or she is.

Influence = #Followers (4.6)

Role

Role measures the ratio of followers and followees of a user, as shown in Equation (4.7).

A user with a high score is a broadcaster; conversely, a user with a low score is a receiver.

Role =
#Followers

#Followees
(4.7)
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Engagement

Engagement measures how active a user has been on Twitter ever since joining. Equation

(4.8) shows how this is calculated.

Engagement =
#Tweets+#Retweets+#Replies+#Favourites

AccountAge
(4.8)

4.3.3 Propagation Dynamics

The propagation features capture the temporal diffusion dynamics of a rumor. A total of 7

propagation features were found to significantly contribute to the outcome of our models. In

the descending order of contribution these features are: fraction of low-to-high diffusion,

fraction of nodes in largest connected component (LCC), average depth to breadth ratio,

ratio of new users, ratio of original tweets, fraction of tweets containing outside links, and

the fraction of isolated nodes. All of these features are derived from a rumor’s diffusion

graph. Before we describe these features in detail, we need to explain how to diffusion

graph was created.

Time-Inferred Diffusion

A rather straight-forward way to capture the diffusion of tweets is through analysing the

retweet path of those tweet. Since each tweet and retweet is labelled with a time-stamp,

one can track the temporal diffusion of messages on Twitter. However, the Twitter API

does not provide the true retweet path of a tweet. Figure 4-7 shows the retweet tree that the

Twitter API provides. As you can see, all retweets point to the original tweet. This does

not capture the true retweet tree since in many cases a user retweets another user’s retweet,

and not the original tweet. But as you can see in Figure 4-7, all credit is given to the user

that tweeted the original tweet, no matter who retweeted who.

Fortunately, we can infer the true retweet path of a tweet by using the Twitter’s follower
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Figure 4-7: The retweet tree of a tweet as provided by the Twitter API. Each node represents

a user and the x-axis is time. The bird on the top right represents an original tweet and the

arrows represent retweets.

graph. Figure 4-8 shows how this is achieved. The top panel in the figure shows the

retweet path provided by the Twitter’s API. The middle panel shows that the bottom user

is a follower of the middle user but not that of the top user (the user who tweeted the

original tweet). Finally, the third panel shows that using this information, and the fact that

the bottom user retweeted after the middle user, it can be inferred that the bottom person

retweeted must have retweeted the middle person and not the top person. This method of

reconstructing the true retweet graph is called time-inferred diffusion as is motivated by

work by Geol et al. [35].

Using this method, we can convert our hypothetical retweet tree shown in Figure 4-

7 to a more accurate representation of the true retweet tree, shown in Figure 4-9. Note

that a rumor is composed of many retweet trees. Figure 4-10 is a simplified illustration

of what the diffusion of a rumor might look like. Note that the diffusion is composed of

several time-inferred diffusion trees. Using these time-inferred diffusion trees, we can trace

a rumor’s diffusion through Twitter and extract informative features about the nature of the

rumor’s diffusion. Next, we will explain these features in detail.
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Fraction of Low-to-High Diffusion

Each edge in the propagation graph of a rumor (such as the one shown in Figure 4-9)

corresponds to a diffusion event. Each diffusion event takes place between two nodes.

Diffusion events are directional (in the direction of time), with the information diffusing

from one node to another over time. We shall call the node that pushes the information out

(i.e., influences), the sender and the node that receives the information (i.e., the one being

influenced), the receiver.

The fraction of low-to-high diffusion feature measures the fraction of diffusion events

where the diffusion was from a sender with lower influence to a receiver with higher influ-

ence (see Equation (4.9)). Influence of a user corresponds to the user’s number of followers

(as defined in section 4.3.2 of this thesis). To illustrate this further, Figure 4-11 shows an

enhanced version of the diffusion tree shown in Figure 4-9 where the size of the nodes

correspond to the influence of the users. Here, we can more clearly see the concept of low-

to-high diffusion. For example, the diffusion between the second and third nodes (from

left).

%Low-High Diffusion =
#Low-high diffusions

#All diffusion events
(4.9)

Figure 4-12 shows a real example of a low-to-high diffusion from the Boston Marathon

bombings. As you can see, the user on the left, with 19.8K followers, was retweeted by the

person on the right, with 178K followers (roughly one order of magnitude more influential

than the other user).

This feature is very informative as it captures the eye-witness phenomenon which is

prevalent during real-world events. It also highlights the role of Twitter as a source for

breaking-news through eye-witnesses on the ground. As we will explain later in this chap-

ter, this feature is most predictive of the veracity of rumors compared to any other feature

by itself.
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Ratio of New Users

This is a measure of the diversity of users engaged in the conversation about a rumor. Recall

that all of the features are temporal, meaning that each feature is calculated at every time-

step (e.g., every hour), resulting in a time-series for each feature. Note that without the

temporal aspect, this feature is meaningless. However, by measuring the number of new

users that enter the conversation about a rumor over time, this feature becomes meaningful.

Equation (4.12) shows hows this features is calculated.

%New Users(ti) =

∑

{users(ti) | users(ti) 6∈ users(t0...ti−1)}
∑

{users(ti)}
(4.12)

Ratio of Original Tweets

This is a simple measure of how captivating, engaging and original is the conversation

about a rumor. This is measured by the ratio of new tweets and replies (i.e. not retweets) in

the diffusion graph of a rumor. Equation (4.13) shows the exact formula used to calculate

this feature.

%Original Tweets =
#Tweets + #Replies

#Tweets + #Replies + #Retweets
(4.13)

Fraction of Tweets Containing Outside Links

Tweets can contain links to sources outside of Twitter. It is very common for tweets that

talk about real-world emergencies and events to have links to news organizations or other

social media. Figure 4-15 shows an example tweet about the Boston Marathon bombings

with a link to an outside source.

When studying rumors on Twitter, it makes intuitive sense to see whether tweets that are

making assertions contain links to other sources (i.e. if there are other sources corroborating

the claims). Though we do not currently track the diffusion of rumors outside of Twitter,

through this feature we can have a very rough approximation of the corroboration factor.

Equation (4.14) shows how this feature is calculated.
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at which people talk can be different, but that should not affect the outcome of the speech

recognition), we selected two models: Dynamic Time Warping (DTW), and Hidden Mark

Model (HMM). Next, we explain how these models work and how they were used in detail.

4.4.1 Dynamic Time Warping

Originally developed for speech recognition, dynamic time warping (DTW) is a time-series

alignment algorithm. DTW can find an optimal non-linear alignment between two time-

series [87]. The non-linear alignment makes this method time-invariant, allowing it to deal

with time deformations and different speeds associated with time-series. In other words, it

can match time-series that are similar in shape but out of phase, or stretched or elongated

in the time axis. Figure 4-17 shows a sketch of DTW applied to two curves. The non-linear

alignment aspect of DTW can be clearly seen in the figure.

Figure 4-17: An example sketch of dynamic time warping applied to two curves. The

non-linear alignment aspect of DTW can clearly be seen.

The input to the DTW algorithm is two time-series, and the algorithm, returns the min-
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imum distance between the series (amongst other things). We set the cost measure used by

the DTW to be the standard Manhattan Distance (i.e. L1 norm). The Manhattan distance

between two points is the sum of the absolute differences of their Cartesian coordinates

(see Equation (4.16) below).

||x||1 =
n

∑

i=1

|xi| (4.16)

We used DTW to measure the similarity between rumors. Since each rumor is com-

posed of 17 features, we need to average over the similarity between all 17 time-series in

the rumors. Equation (4.17) below shows how this is done. Here, S(Rc, Ri) is the sim-

ilarity between two rumors, Ri which is the input rumor, and Rc which is an annotated

rumor of class c (either false or true). The similarity is the average of one minus the nor-

malized distance, as measured by DTW, between each of the 17 time-series that make up

the rumors.

S(Rc, Ri) =

∑17
f=1(1−DTW (Rf

c , R
f
i ))

17
(4.17)

For the purposes of training a classifier, DTW can be used as the distance measure for a

Nearest Neighbors (NN) classifier [25]. Specifically, we used S(Rc, Ri) shown in Equation

(4.17) as the distance measure for a NN classifier. The similarity between an input rumor

and a class of rumors is shown in Equation (4.18). Here, S(Ri, C) is the similarity between

an input rumor, Ri and the class of rumors, C (note that there are two classes for C: false

and true). N is the equivalent of the number neighbours, K in a K-NN classifier. We set N

to be 10.

S(Ri, C) =
N
∑

j=1

S(Rc
j, Ri)

N
(4.18)

Using the S(Ri, C) function, the veracity of an input rumor, Ri can be calculated as

shown in Equation (4.19) below.
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V eracity =



























True if S(Ri, T rue) > S(Ri, False)

False if S(Ri, T rue) < S(Ri, False)

Indecisive Otherwise

(4.19)

Finally, since the output of the similarity function, S(Ri, C), is normalized, we can

approximate the confidence of the prediction using Equation (4.20) below. Note that this

is not a probabilistic confidence score and is not statistically rigorous, it is meant as an

approximation of the confidence of the prediction. The Hidden Markov Model explained

in the next section provides a much more rigours estimation of confidence.

Confidence =| Strue − Sfalse | (4.20)

4.4.2 Hidden Markov Model

DTW is limited by the fact that it assumes all the time-series are independent of each

other. However, this is an assumption that does not hold for our features, since many of

our features are in fact coupled. Moreover, the DTW model shown in the last section

assigns equal weight to all 17 features. This is also an incorrect assumption since certain

features are much more correlated with the veracity of rumors (this is explored in detail

in the ”Evaluation” section of this chapter). Hidden Markov Models address both of these

shortcomings in DTW.

Hidden Markov Models are generative and probabilistic. In an HMM, a sequence of

observable variable, X , is generated by a sequence of internal hidden states, Z, which can

not be directly observed. In an HMM, it is assumed that the transitions between the hid-

den states have the form of a Markov chain [79]. An HMM can be fully determined by

three parameters. A start probability vector, Π, a transition probability matrix, A, and the

emission probability of the observable variable (e.g., Gaussian, Poisson, etc), Θi, which is

conditioned on the current hidden state (i). HMM also allows for multiple observable vari-
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ables by using multivariate emission probability distributions (e.g., multivariate Gaussian

distribution).

Generally speaking, there are three problems for HMMs [79]:

1. Given the model parameters and observed data, estimate the optimal sequence of

hidden states.

2. Given the model parameters and observed data, calculate the likelihood of the data.

3. Given just the observed data, estimate the model parameters.

For our problem, we start with multivariate observations for false and true rumors. We

want to use HMMs to model the temporal dynamics of these multivariate observations.

The hidden states capture the different event that drive the dynamics of the time-series

(e.g., sudden influx trustworthy which will correspond to an increase in influential and

verified users). We experimented with different number of states and found that 20 states

was sufficient for our purposes.

We trained two HMMs, one on observed data from false rumors and one on observed

data on true rumors. The first problem we needed to solve was item number 3: given the

observed data, estimate the model parameters. This was done using the standard, iterative

Expectation-Maximization (EM) algorithm, known as the Baum-Welch algorithm [79]. The

emission probabilities,Θi, were set to be multivariate Gaussian. We used a full covariance

matrix (as opposed to a diagonal matrix), as to allow for correlation between different

features. A diagonal matrix on the other hand would have treated each of the features as

independent variables.

When we want to predict the veracity of a new rumor, we need to solve item number

2: given the model parameters and observed data, calculate the likelihood of the data. We

calculate the likelihood of the new observed data for the false and true HMMs. This is

achieved by using the standard Forward-Backward algorithm [79]. We then compare the

likelihood of the new data under the false HMM and true HMM. The veracity is predicted
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to be true if the likelihood under the true HMM is higher and vice-versa (see Equation

(4.21) below).

V eracity =



























True if P (Xnew | Πt, At,Θt) > P (Xnew | Πf , Af ,Θf )

False if P (Xnew | Πt, At,Θt) < P (Xnew | Πf , Af ,Θf )

Indecisive Otherwise

(4.21)

The confidence of the prediction can be estimated by dividing the greater likelihood

probability by the smaller likelihood probability. Since likelihoods are usually extremely

small, we move to logarithmic space to avoid possible floating point inaccuracies. In log-

arithmic space, the confidence is estimated by the absolute value of two log-likelihoods

subtracted from each other, as shown in Equation (4.22) below.

Confidence =| log(P (Xnew | Πt, At,Θt)− log(P (Xnew | Πf , Af ,Θf ) | (4.22)

In the next section, we will evaluate the performance of our models and features.

4.5 Evaluation

The evaluation paradigm used for Rumor Gauge is shown in 4-18. The figure shows a sam-

ple rumor diffusion in Twitter. The purple vertical lines correspond to the times at which

rumor was trusted verified. Recall that trusted verification is defined to be verification by

trusted channels (trustworthy major governmental or news organizations). It was made cer-

tain that all of the 209 rumors in our dataset were verified by at least three sources. We

used Wikipedia, Snopes.com, and FactCheck.org (websites that aggregate external sources)

to retrieve the trusted verification sources. All trusted verifications had timestamps which

we used to place the verifications in the context of the rumors’ diffusion.
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evaluation is achieved. At each step, a data point is held-out for testing while the other data

points (208 in the case of the rumors dataset) are used to train our models. The model is

tested on the held-out data point; this process is repeated for all the available data points

(209 times for our dataset).

Test

Train

Train

Train

Train

Test

Train

Train

Train

Train

Test

Train

Train

Train

Train

Test

Figure 4-19: An illustration of how jackknife evaluation works. In this example, there are

four data points. At each step, a data point is held-out for testing while the other three

points are used for training. This process is repeated for all the data points (four times in

this example).

4.5.1 Model Performance

The first evaluation task is to measure the overall performance of our models in comparison

with certain baselines. Recall that out of the 209 rumors, 113(54%) are false and 96(46%)

are true. Table 4.4 shows the performance of the DTW and HMM models compared to

four baselines. These baselines are: a majority classifier, a retweet classifier, an N-gram

classifier, and a classifier trained on features used by Castillo et al. [10], which we call

CAST. The majority classifier always predicts the veracity to be of the majority class (in

this case the false class). The retweet classifier predicts the veracity of rumors purely based

on the number of times they have been retweeted. The N-Gram classifier is trained on the

1000 most common unigrams, bigrams and trigrams in false and true rumors. The retweet

and N-Gram classifier represent simple linguistic and propagation features and the CAST

classifier is the veracity prediction model most related to our model. As it can be seen

in Table 4.4, both the DTW and HMM models greatly outperform the baseline models,
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with the HMM model performing the best with an overall accuracy of .75. Since HMM

is the best performing model, from this point on, unless otherwise noted, the model being

discussed is the HMM model.

Model All Rumors False Rumors True Rumors

Majority .54 1. .0
Retweet .56 .61 .50
N-Gram .59 .61 .58
CAST .64 .68 .60
DTW .71 .73 .69
HMM .75 .77 .73

Table 4.4: Accuracy of Rumor Gauge models and a few baselines.

Table 4.5 shows the performance of the HMM model for each of the three categories

of features. As you can see, the model trained on the propagation features outperforms the

linguistic and user models by a sizeable margin. In order to get a better understanding of

the performance of our models, we can look at their receiver operating characteristic (ROC)

curves. Recall that the principle on which ROC curves operate on is explained in detail in

Section 3.1.17 of this thesis. Figure 4-20 shows four ROCs curves, for the HMM model

trained on all the features, the propagation features, the user features and the linguistic

features.

Depending on the application, the user can pick different point on the ROC curve for the

model to operate on. For example, the user could be a financial markets expert who needs

to have a list of most of the true rumors spreading on Twitter about an event of interest, so

that he could use the information to make stock trades. This user could perhaps tolerate

some false rumors being mistakenly identified as true. The optimal operating point for this

user would be around 0.6 on the false-positive axis (x-axis), which corresponds to .97 on

the y-axis. At that point, the model would correctly identify 97% of the true rumors, but

also getting a sizeable (around 60%) of the false rumors mistakenly classified as true. On

the other hand, if the user was a journalist who had limited resources and wanted a list

of true rumors that he or she could trust, the journalist would perhaps pick a point on the
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curve with the false positive rate closer to zero. For example, the journalist could perhaps

pick the point x = .16, y = .70. At this point, the model would correctly identify 70% of

the true rumors, with only getting around 16% of the false rumors mistakenly classified as

true. These two examples are just to illustrate how one might use our system for real-world

applications. In the next chapter we will discuss in detail several hypothetical real world

applications for our system.

Feature Category All Rumors False Rumors True Rumors

Linguistic .64 .70 .58
User .65 .64 .66
Propagation .70 .72 .66

All .75 .77 .73

Table 4.5: Accuracy of Rumor Gauge using each of the three feature categories indepen-

dently.

4.5.2 Contribution of Features

In this section, we report the contribution of each of the 17 features used in our model.

Recall that these 17 features were selected from a list of 37 features. The 17 that were

selected all significantly contributed to the performance of our model. This was done by

ranking the features by the chisquare test, with the null hypothesis being that there is no

significant association between a feature and the outcome, after taking into account the

other features in the model. Note that this method only indicated the strength of evidence

that there is some association, not the magnitude of the association. Therefore, in order

to measure the magnitude of association between each of the 17 features and the outcome

of our model, we trained the model using each of the features independently. We then

measured the accuracy of the model and used that value as a proxy for the magnitude of

the contribution of each feature. Table 4.6 shows the contribution of each feature.

The relative contribution of the features is more clearly illustrated in Figure 4-21. It is

clear from this figure that the propagation features (shown in blue) do most of the heavy

lifting, with one particular feature, the fraction of low-to-high diffusion contributing a great
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Figure 4-20: ROC curves for the HMM model trained on different sets of features.
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Feature Contribution

Fraction of low-to-high diffusion .68
Average depth-to-breadth ratio .63
Fraction of nodes in LCC .63
Ratio of tweets containing negation .61
User controversiality .61
Ratio of new users .60
Ratio of original tweets .59
User credibility .58
User originality .58
Fraction of tweets with outside links .58
Average formality & sophistication .57
User influence .57
Ratio of Tweets containing tentatives .56
Ratio of tweets containing opinion .56
User engagement .56
User role .56
Fraction of isolated nodes .56

Table 4.6: The contribution of each of the 17 features to out model. Blue corresponds to

propagation features, purple to user features and orange to linguistic features.

deal to the model. However, we will show in the next section that the three categories each

contribute to the performance of the model at different times.

4.5.3 Accuracy vs Latency

Finally, we measured the accuracy of our model as a function of latency (i.e., time elapsed

since the beginning of a rumor). The goal of this evaluation is to assess how well our

system would function for time-sensitive tasks. Additionally, through this evaluation, we

can determine which category of features perform best at which times during the life of a

rumor. Since the 209 rumors have varying durations, we study latency as the percentage

of time passed from the beginning of a rumor to the trusted verification of that rumor. So

0% latency refers to the very beginning of the rumors, and at 100% latency is the time at

which they were verified by trusted sources, and 200% latency is when the time from the

beginning of rumors to their trusted verification equals the amount of time passed since the
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Figure 4-21: An illustration of the relative contribution of the 17 features used in our model.

These features are in the same order as in Table 4.6. Blue corresponds to propagation

features, purple to user features and orange to linguistic features.

trusted verification.

Figure 4-22 shows the accuracy versus latency for the model using all the features, the

propagation features, the user features and the linguistic features. The dashed red line in the

figure represents trusted verification of the rumors. As it can be seen, the model reaches

75% accuracy right before trusted verification. Several interesting observations can be

made from this figure. First, the model barely performs better than chance before 50%

latency. Second, the contribution of the different categories of features varies greatly over

time. Different categories of features kick-in and plateau at different times. For example,

the propagation features do not contribute much until around 65% latency. The initial

performance of the model seems to be fuelled mostly by the linguistic and user features,

which then plateau at around 55% latency, as the amount of information they can contribute

to the model saturates. Finally, the plot shows the overall performance of the model and

the performance of the model trained on propagation features only to be tightly correlated.

This is not surprising since in the last section we showed that the propagation features do

most of the heavy lifting in our model (see Figure 4-21 or Table 4.5). In chapter 5 of this
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thesis we will further discuss what the accuracy versus latency curve would mean and how

it could be utilized for potential real-world applications of our system.
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Figure 4-22: Accuracy of the model as a function of latency. All 209 rumors have been

aligned by using the percentage of duration instead of hours. The dashed red line represents

trusted verification of the rumors.

4.6 A Tale of Two Rumors

In this section we will describe in detail the performance of our model on two rumors, one

false and one true, from our dataset of 209 rumors. The first rumor, which turned out to be

true, is about the 2014 Ebola epidemic. The rumor is shown below:

Nigerian nurse suspected of having Ebola fled quarantine.
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This rumor first appeared on Twitter at 8:08 am, on August 13th of 2014. The rumor

quickly spread through Twitter, and it was reported to be true by several trusted sources

around 9 hours after the first tweet. Figure 4-23 shows the prediction of the model for this

rumor from the very start, through the trusted verification 9 hours later and an additional 10

hours after that. The y-axis shows the veracity prediction and confidence of the model. Any

value above 0 means the model is predicting the veracity to be true, with higher the value

the more confident the model. The background color also corresponds to the prediction

of the model, with green corresponding to true and red to false (and the saturation of the

background colors correspond to confidence, with higher saturation meaning higher con-

fidence). As you can see in the figure, several hours before trusted verification the model

was able to with some confidence correctly predict the veracity of the rumor. The curves in

this figure also show the same behavior seen in Figure 4-22, where the linguistic and user

features contribute in the beginning but then plateau soon after. Conversely,the propaga-

tion features do not contribute much to the model in the beginning and then take-off after a

while, doing the majority of the heavy lifting in the model.

The second rumor, which turned out to be false, is about the 2014 Ferguson unrest. The

rumor is shown below:

Officer Darren Wilson suffered fracture to his eye socket during Mike Brown

attack.

This rumor first appeared on Twitter at 8:01 am, on August 19th of 2014 and spread

through Twitter. It was reported to be false by several trusted sources around 18 days after

the first tweet. Figure 4-24 shows the prediction of the model for this rumor from the

very start, through the trusted verification 1.8 days later and an additional 1.7 days after

that. Similar as with the true rumor, the model was able to with relatively high confidence

correctly predict the veracity of the rumor, several hours before trusted verification. The

curves here also show similar behavior to what is seen in Figure 4-22.
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4.7 Anatomy of Rumors in Twitter

Through our work on Rumor Gauge we were able to identify salient characteristics of

rumors in Twitter by examining the language of rumors, the users involved in spreading

rumors and the propagation dynamics of rumors. Crucially, we were able to identify key

differences in each of the three characteris in the spread of false and ture rumors. In addition

to allowing us to create a state-of-the-art rumor verification system, these features also shed

some light on the anatomy of rumors in Twitter.

Many insights about the nature of rumors on Twitter can be gained from our work. Here

we will discuss several of more interesting ones. First of all, the diffusion of information

from users with low influence to users with high influence is a phenomenon which is seen

much more frequently when the information is true. The reason for this is perhaps because

the user with the high influence would not risk retweeting a less known user’s information

unless the person had very good reasons to believe the information is true. Second, the

formality and sophistication of the language used to describe false rumors seems to be

bimodal. The language on average tends to be either more formal and sophisticated or less

formal and sophisticated than other language used about an event (this bimodality is also

seen in language used in spams). Third, not surprisingly perhaps, false rumors are more

likely to be spread by users who are influential but controversial, while true rumors are

more likely spread by influential and credible users. Finally, from the very genesis of false

rumors, there tends to be people refuting the rumors, much more so than for false rumors.

Though unfortunately, their collective voice is usually muffled by the much louder voice of

the people spreading the rumor.
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Chapter 5

Real-World Applications of the System

The ability to track rumors and predict their outcomes can have real-world applications for

news consumers, financial markets, journalists and emergency services. In this chapter we

discuss hypothetical real-world applications for the rumor detection and verification system

developed in this thesis. Though there are many ways to utilize these tools for real-world

purposes, we will discuss three general utilities afforded by our system.

5.1 Bandwidth Reduction

The first utility afforded by our system is the bandwidth reduction of information. The term

bandwidth reduction is borrowed from the field of telecommunication, where it means the

reduction of the bandwidth needed to transmit a given amount of data in a given time.

In the context of our system, bandwidth reduction refers to the reduction in the amount

of information a user has to sift through in order to make sense of the information and

misinformation spreading about a real-world event.

For instance, a law enforcement employee trying to identify all the misinformation

(i.e. false rumors) spreading about a real-world emergency has to go through hundreds of

thousands, if not millions, of tweets in a very short amount of time (e.g., in the case of

the Boston Marathon bombings, there were more than 20 millions tweets about the event
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in less than 10 days). With the aid of our system, the amount of information the law

enforcement employee has to study is reduced by a large percent. This reduction happens

at three junctions: when the tweets not containing an assertion are filtered out, when the

tweets are clustered together to form rumors, and when the rumors are verified. Going back

to the case of the Boston Marathon bombings, the 20 millions tweets were reduced by about

50% at the first stage, then reduced by about four orders of magnitude in the second stage,

and finally reduced by about 40% in the last stage. The 40% reduction in the verification

step is inferred by the ROC curve shown in Figure 4-20, since at around 40% true positive

rate, the false positive rate is very close to zero. Figure 5-1 shows a logarithmically scaled

plot, illustrating the reduction of information afforded by each part of our system, for the

Boston Marathon bombings dataset. The total reduction is approximately 2×10−5.
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Figure 5-1: Logarithmically scaled plot of the bandwidth reduction afforded by the rumor

detection and verification system for the Boston Marathon bombings dataset.

5.2 Priority Queue

The second utility afforded by our system is assigning priority to rumors about an event so

that they could be ordered in a queue based on their priority. In a real-world situation, the
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rumors would be addressed based on their priority. The priorities assigned to rumors would

be based on their size, predicted veracity and the confidence of the prediction. Though

currently our system can not predict the future impact (i.e. reach) of a rumor, this would

be a very useful variable to also consider when assigning priority. Note that the priorities

would change and the queue would be reordered over time as these variables change.

For example, let’s take a journalist covering a real-world emergency. The journalist

plans to cover the true rumors that are spreading about the event before anyone else. She

also has limited time and resources and so can only investigate 5 rumors. The journalist

wants to maximize the chance that the 5 rumors she is covering, (a) are true, and (b) have

the biggest footprints (i.e. are most talked about). First, Hearsift would detect tens to

hundreds of rumors about the said event (each with different sizes). Next, Rumor Gauage

would predict the veracity of these rumors. Each veracity prediction would have a different

confidence. The true and false rumors are then ordered in different queues based on their

confidence and/or size. The journalist can then address the top 5 rumors in the ”true” queue.

5.3 Rumor Analytics Dashboard

Finally, our system can be used to create a rumor analytics dashboard. The dashboard

would allow users to investigate the anatomy of rumors by digging deeper into the charac-

teristics of their diffusion. In addition to detecting and predicting the veracity of rumors,

the rumor analytics dashboard would also allow the users to see the inner workings of

our system to understand how the system is verifying the rumors. For example, using the

dashboard, the users can see which of the features are driving the prediction of the model.

Moreover, the users would be able to see the actual data underneath the predictions (i.e.,

who are the controversial users that the system has detected, which tweets are lowering

the formality sophistication score, etc). By allowing users to see under the hood of our

system, we guide the user but leave the final decision of whether a rumor is true or false in

the hands of the user.
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The rumor analytics dashboard enables human-machine collaboration by utilizing what

our system and humans do best. Our system can analyse and detect patterns in large amount

of data, while humans can quickly adapt to new situations and tune the system accordingly.
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Chapter 6

Conclusions

This thesis described a system for automatic detection and verification of rumors about

real-world events on Twitter. Here we will summarize the contributions of this thesis and

explore possible future directions for extending this work.

6.1 Future Directions

There are many ways to extend the works presented in this thesis, several of which have

been mentioned through out this document. Here, we will discuss what we believe to be

the the four most fruitful directions for future work. These directions are:

• Rumor analytics dashboard.

• Extend system to other media platforms (social and traditional).

• Predict the impact of rumors.

• Strategies for dampening the effects of rumors.

The idea behind the rumor analytics dashboard was discussed in the last chapter. The

rumor analytics dashboard is the most immediately useful and achievable extension to this
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work as it does not require any new analytic work, just the creation of user-friendly inter-

face.

Next, we would like to extend our system to cover other media platforms. As the title

implies, all the work presented in this thesis is focused on rumors in Twitter. However,

similar techniques and algorithms could potentially be applied to other online and publicly

available media platforms, be it social (e.g., Reddit, Facebook, etc) or traditional (e.g.,

BBC, CNN, etc). Though some of the features described for this work are Twitter-specific,

many of the features are platform-agnostic and can readily be extracted and processed

from different platforms. We have already done some preliminary work on Reddit and the

results, though too early to share, look promising.

In addition to detecting and predicting rumors, it will be very useful to predict the

impact the rumors would have on individuals and society. There are many ways one can

define impact; for example, the total reach of a rumor (i.e., how many people are exposed

to the rumor) can be an estimate of impact. By predicting the impact of rumors, one can

better assign priorities to rumors to be addressed (this is discussed in depth in Section 5.2 of

this thesis). This is especially relevant for emergency services who might want to respond

to false rumors that might have a large negative impact.

Finally, a system that can detect rumors and predict their veracity and maybe impact

is indeed a very valuable and useful tool. However, in some cases the users of the system

might want to dampen the effects of rumors, especially ones that are predicted to be false

and impactful. This again would be something that would have the most relevance to the

emergency services dealing with real-world emergencies as they are the ones that have to

deal with the consequences and the fallout of rumors on social media. For example, in

the case of Boston Marathon bombing, there were several unfortunate instances of inno-

cent people being implicated in witch-hunts [51, 56, 99], one of which became the Boston

Marathon bombing’s largest rumor. This rumor was that a missing Brown University stu-

dent, named Sunil Tripathi, was one of the suspects the police were looking for. This led to

a great amount of confusion and heartache for the family of the accused. By having strate-
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gies to dampen the effects of such rumors, our system can move from the role of a passive

observe of rumors to one that can actively reduce the amount of harm done by the rumors.

Strategies for dampening rumors could be something as simple as requesting influential

users to publicly rebuke the rumors, or it could be something much more sophisticated and

surgical.

6.2 Contributions

The work described in this thesis describes how to create a system for detection and ver-

ification of rumors on Twitter. The key scientific contribution of this is the identification

of salient characteristics of rumors on Twitter and using that to develop a computational

model of rumors.

We created models for detection and verification of rumors that propagate on Twitter.

The rumor detection system, called Hearsift, operates by classifying and clustering asser-

tions made about an event. These assertions are classified through a state-of-the-art speech-

act classifier for Twitter developed for this thesis. The classifier utilizes a combination of

semantic and syntactic features and can identify assertions with 91% accuracy.

For the rumor verification system, called Rumor Gauge, we identified salient character-

istics of rumors by examining three aspects of diffusion: linguistic, the users involved, and

the temporal propagation dynamics. We then identified key differences in each of the three

characteristics in the spread of true and false rumors. A time series of these features ex-

tracted for a rumor can be classified as predictive of the veracity of that rumor using Hidden

Markov Models. Rumor Gauge was tested on 209 rumors from several real-world events.

The system predicted the veracity of 75% of the rumors correctly, before verification by

trusted channels (trustworthy major governmental or news organizations).

The ability to detect and verify rumors through Hearsift and Rumor Gauge respectively,

can have immediate real-world relevance for news consumers, financial markets, journal-

ists, and emergency services.
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6.3 Concluding Remarks

Hearsift and Rumor Gauge have immediate real-world relevance for various sectors of

society. However, the work presented in this thesis has been almost entirely analytical.

Though from a sceintific and analytic point of view this work has been very fulfilling, we

have not yet developed a complete tool to be used by interested parties. Given the strong

performance of our system, and its potential to help individuals and society during real-

world emergencies, we think it is essential to design, develop and user-test a tool based on

this work.

Furthermore, we believe the features and techniques described in this thesis have the

potential to influence other works focused on Twitter and other social media platforms.

Finally, though we had full access to Twitter’s historical data, except for a few features

used in the rumor verification system, most of the work described in this thesis can be

replicated using the Twitter public API.
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Appendix A

Enhanced Twitter Sentiment

Classification Using Contextual

Information

A.1 Introduction

The rise in popularity and ubiquity of Twitter have made sentiment analysis of tweets an

important and much covered area of research. However, the 140 character limit imposed on

tweets make it hard to use standard linguistic methods for sentiment classification. On the

other hand, what tweets lack in structure they make up with sheer volume and rich meta-

data. This metadata includes geolocation, temporal and author information. We hypothe-

size that sentiment is dependent on all these contextual factors. Different locations, times

and authors have different emotional valences. In this paper, we explored this hypothesis by

utilizing distant supervision to collects millions of labelled tweets from different locations,

times and authors. We used this data to analyse the variation of tweet sentiments across

different authors, times and locations. Once we explored and understood the relationship

between these variables and sentiment, we used a Bayesian approach to combine these

variables with more standard linguistic features such as n-grams to create a state-of-the-art
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Twitter sentiment classifier.

One area of research that has attracted great attention in the last few years is that of

sentiment classification of tweets. Through sentiment classification and analysis, one can

get a picture of people’s attitudes about particular topics on Twitter. This can be used

for measuring people’s attitudes towards brands, political candidates, and social issues.

There have been several works that do sentiment classification on Twitter using standard

sentiment classification techniques, with variations of n-gram and bag of words being the

most common. There have been attempts at using more advanced syntactic features as is

done in sentiment classification for other domains [83, 67], however the 140 character limit

imposed on tweets makes this hard to do as each article in the Twitter training set consists

of sentences of no more than several words, many of them with irregular form [85].

On the other hand, what tweets lack in structure they make up with sheer volume and

rich metadata. This metadata includes geolocation, temporal and author information. We

hypothesize that sentiment is dependent on all these contextual factors. Different locations,

times and authors have different emotional valences. For instance, people are generally

happier on weekends, more depressed at the end of summer holidays, and happier in certain

hours of the day and certain states in the United States. Moreover, people have different

baseline emotional valences from one another. These claims are supported for example by

the annual Gallup poll that ranks states from most happy to least happy [32], or the work by

Csikszentmihalyi and Hunter [19] that showed reported happiness varies significantly by

day of week and time of day. We believe these factors manifest themselves in sentiments

expressed in tweets and that by accounting for these factors, we can improve sentiment

classification on Twitter.

In this work, we explored this hypothesis by utilizing distant supervision [83, 34] to

collect millions of labelled tweets from different locations (within the USA), times of day,

days of week, months and authors. We used this data to analyse the variation of tweet

sentiments across the aforementioned categories. We then used a Bayesian approach to

incorporate the relationship between these factors and tweet sentiments into standard n-
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gram based Twitter sentiment classification.

A.2 Approach

The main hypothesis behind this work is that the average sentiment of messages on Twitter

is different in different contexts. Specifically, tweets in different spatial, temporal and

authorial contexts have on average different sentiments. Basically, these factors (many of

which are environmental) have an affect on the emotional states of people which in turn

have an effect on the sentiments people express on Twitter and elsewhere. In this paper, we

used this contextual information to better predict the sentiment of tweets.

Luckily, tweets are tagged with very rich metadata, including location, timestamp, and

author information. By analysing labelled data collected from these different contexts, we

calculated prior probabilities of negative and positive sentiments for each of the contextual

categories shown below:

• The states in the USA (50 total).

• Hour of the day (HoD) (24 total).

• Day of week (DoW) (7 total).

• Month (12 total).

• Authors (57710 total).

This means that for every item in each of these categories, we calculated a probability of

sentiment being positive or negative based on historical tweets. For example, if seven out of

ten historical tweets made on Friday where positive then the prior probability of sentiment

being positive for tweets sent out on Friday is 0.7 and the prior probability of sentiment

being negative is 0.3. We then trained a Bayesian sentiment classifier using a combination

of these prior probabilities and standard n-gram models. The model is described in great

detail in the ”Baseline Model” and ”Contextual Model” sections of this paper.
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In order to do a comprehensive analysis of sentiment of tweets across aforementioned

contextual categories, a large amount of labelled data was required. We needed thousands

of tweets for every item in each of the categories (e.g. thousands of tweets per hour of day,

or state in the US). Therefore creating a corpus using human annotated data would have

been impractical. Instead we turned to distant supervision techniques to obtain our corpus.

Distant supervision allows us to have noisy but large amount of annotated tweets.

There are different methods of obtaining labelled data using distant supervision [83,

34, 5, 21], we used emoticons to label tweets as positive or negative, an approach that was

introduced by Read [83] and used in multiple works [34, 21]. We collected millions of

English language tweets from different times, dates, authors and US states. We used a total

of six emoticons, three mapping to positive and three mapping to negative sentiment (table

A.1). We identified more than 120 positive and negative ASCII emoticons and unicode

emojis1 but we decided to only use the six more common emoticons in order to avoid

possible selection biases. For example, people who use obscure emoticons and emojis

might have a different base sentiment from those who do not. Using the six most commonly

used emoticons limits this bias. Since there are no ”neutral” emoticons, our dataset is

limited to tweets with positive or negative sentiments. Accordingly, in this work we are

only concerned with analysing and classifying the polarity of tweets (negative vs. positive)

and not their subjectivity (neutral vs. non-neutral). Blow we will explain our data collection

and corpus in greater detail.

Positive Emoticons Negative Emoticons

:) :(

:-) :-(

: ) : (

Table A.1: List of emoticons.

1Japanese pictographs similar to ASCII emoticons
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A.3 Data Collection and Datasets

We collected two datasets, one massive and labelled through distant supervision, the other

small and labelled by humans. The massive dataset was used to calculate the prior proba-

bilities for each of our contextual categories. Both datasets were used to train and test our

sentiment classifier. The human labelled dataset was used as a sanity check to make sure

the dataset labelled using emoticons classifier was not too noisy and that the human and

emoticon labels matched for a majority of tweets.

A.3.1 Emoticon-based Labelled Dataset

We collected a total of 18 million, geo-tagged, English language tweets over three years,

from January 1st, 2012 to January 1st, 2015, evenly divided across all 36 months, using

Historical PowerTrack for Twitter2 provided by GNIP3. We created geolocation bounding

boxes4 for each of the 50 states which were used to collect our dataset. All 18 millions

tweets originated from one of the 50 states and are tagged as such. Moreover, all tweets

contained one of the six emoticons in table A.1 and were labelled as either positive or

negative based on the emoticon. Out of the 18 million tweets, 11.2 million (62%) were

labelled as positive and 6.8 million (38%) were labelled as negative. The 18 million tweets

came from 7, 657, 158 distinct users.

A.3.2 Human Labelled Dataset

We randomly selected 3000 tweets from our large dataset and had all their emoticons

stripped. We then had these tweets labelled as positive or negative by three human annota-

tors. We measured the inter-annotator agreement using Fleiss’ kappa, which calculates the

degree of agreement in classification over that which would be expected by chance [28].

The kappa score for the three annotators was 0.82, which means that there were disagree-

2Historical PowerTrack for Twitter provides complete access to the full archive of Twitter public data.
3https://gnip.com/
4The bounding boxes were created using http://boundingbox.klokantech.com/
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ments in sentiment for a small portion of the tweets. However, the number of tweets that

were labelled the same by at least two of the three human annotator was 2908 out of of

the 3000 tweets (96%). Of these 2908 tweets, 60% were labelled as positive and 40% as

negative.

We then measured the agreement between the human labels and emoticon-based labels,

using only tweets that were labelled the same by at least two of the three human annotator

(the majority label was used as the label for the tweet). Table A.2 shows the confusion

matrix between human and emoticon-based annotations. As you can see, 85% of all labels

matched ( 1597+822
1597+882+281+148

= .85).

Human-Positive Human-Negative

Emot-Positive 1597 281
Emot-Negative 148 882

Table A.2: Confusion matrix between human-labelled and emoticon-labelled tweets.

These results are very promising and show that using emoticon-based distant supervi-

sion to label the sentiment of tweets is an acceptable method. Though there is some noise

introduced to the dataset (as evident by the 15% of tweets whose human labels did not

match their emoticon labels), the sheer volume of labelled data that this method makes

accessible, far outweighs the relatively small amount of noise introduced.

A.3.3 Data Preparation

Since the data is labelled using emoticons, we stripped all emoticons from the training data.

This ensures that emoticons are not used as a feature in our sentiment classifier. A large

portion of tweets contain links to other websites. These links are mostly not meaningful

semantically and thus can not help in sentiment classification. Therefore, all links in tweets

were replaced with the token ”URL”. Similarly, all mentions of usernames (which are

denoted by the @ symbol) were replaced with the token ”USERNAME”, since they also

can not help in sentiment classification. Tweets also contain very informal language and as

such, characters in words are often repeated for emphasis (e.g., the word good is used with
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an arbitrary number of o’s in many tweets). Any character that was repeated more than

two times was removed (e.g., goooood was replaced with good). Finally, all words in the

tweets were stemmed using Porter Stemming [77].

A.4 Baseline Model

For our baseline sentiment classification model, we used our massive dataset to train a

negative and positive n-gram language model from the negative and positive tweets. An

n-gram language model is a compact probabilistic model that adequately explains the ob-

served linguistic data. N-gram models assign probabilities to word sequences w1 . . . wℓ.

N-gram language modelling [15, 43, 61] is an effective technique that treats words as sam-

ples drawn from a distribution conditioned on other words that occur in the corpus, usually

the immediately preceding n − 1 words enabling them to capture the strong local depen-

dencies between words. The probability of a sequence of ℓ words, written compactly as wℓ
1

is Pr(wℓ
1) and can be factored exactly as

Pr(wℓ
1) = Pr(w1)

ℓ
∏

i=2

Pr(wi|w
i−1
1 ) (A.1)

However, parameter estimation in this full model is intractable, as the number of possi-

ble word combinations grows exponentially with sequence length. N-gram models address

this with the approximation P̃r(wi|w
i−1
i−n+1) ≈ Pr(wi|w

i−1
1 ) using only the preceding n− 1

words for context. A bigram model (n = 2) uses the preceding word for context, while a

unigram model (n = 1) does not use any context.

As our baseline model, we built purely linguistic bigram models in Python, utilizing

some components from NLTK [6]. These models used a vocabulary that was filtered to

remove words occurring 5 or fewer times. Probability distributions were calculated us-

ing Witten-Bell smoothing [43]. Rather than assigning word wi the maximum likelihood

123



probability estimate pi =
ci
N

, where ci is the number of observations of word wi and N is

the total number of observed tokens, Witten-Bell smoothing discounts the probability of

observed words to p∗i = ci
N+T

where T is the total number of observed word types. The

remaining Z words in the vocabulary that are unobserved (i.e. where ci = 0) are given

p∗i = T
Z(N+T )

. In addition to Witten-Bell smoothing, the bigram models also used “back-

off” smoothing[45], in which an n-gram model falls back on an (n − 1)-gram model for

words that were unobserved in the n-gram context.

In order to classify the sentiment of a new tweet, it is evaluated in both the negative

and positive bigram models. Each model returns a probability of fit for the tweet. These

probabilities are then used to classify the tweet. (If the probability returned by negative

model is greater then the probability returned by the positive model, the tweet is classified

as negative and vice versa.) This method is very flexible, we can even define a neutral class

for when the probabilities returned by the models are close to each other, if we so choose.

However, in this paper we classify all tweets as either negative or positive. Another way to

look at our models is through a Bayesian lens, as shown in equation A.2 below:

Pr(θs | W ) =
Pr(W | θs) Pr(θs)

Pr(W )
(A.2)

Where θs stands for θsentiment and can be θpositive or θnegative, corresponding to the

hypothesis that the sentiment of the tweet is positive or negative respectively. W is the

sequence of ℓ words, written as wℓ
1 that make up the tweet, making Pr(W ) the probability

of such sequence. Since we are using a bigram model, the probability of the sequence of

words wℓ
1 is thus the same as shown in equation A.1. Therefore equation A.2 can be written

as:

Pr(θs | W ) =

∏ℓ

i=2 Pr(wi | wi−1, θs) Pr(θs)
∏ℓ

i=2 Pr(wiwi−1)
(A.3)
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As we are dealing with very small numbers, we can rewrite equation A.3 as the sum of

log probabilities in order to avoid possible floating point inaccuracies, as shown in equation

A.4.

log(Pr(θs |W )) =
ℓ

∑

i=2

log(Pr(wi | wi−1, θs))

+ log(Pr(θs))−
ℓ

∑

i=2

log(Pr(wi | wi−1))

(A.4)

This is our purely linguistic Bayesian model which serves as our baseline model.

A.5 Contextual Model

The Bayesian approach allows us to easily integrate the contextual information into our

models. Pr(θs) in equation A.4 is the prior probability of a tweet having the sentiment s

(negative or positive). The prior probability (Pr(θs)) can be calculated using the contextual

information of the tweets. Therefore, Pr(θs) in equation A.4 is replaced by Pr(θs|C), which

is the probability of the hypothesis (negative or positive) given the contextual information.

Pr(θs|C) is the posterior probability of the following Bayesian equation:

Pr(θs | C) =
Pr(C | θs) Pr(θs)

Pr(C)
(A.5)

Where C is the set of contextual variables: {State,HoD,Dow,Month,Author}. Pr(θs|C)

captures the probability that a tweet is positive or negative, given the state, hour of day, day

of week, month and author of the tweet. Equation A.4 can therefore be rewritten to include

the contextual information:
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log(Pr(θs |W,C)) =
ℓ

∑

i=2

log(Pr(wi | wi−1, θs))

+ log(Pr(C | θs)) + log(Pr(θs))

− log(Pr(C))−
ℓ

∑

i=2

log(Pr(wi | wi−1))

(A.6)

In equation A.6 we are treating the linguistic and the contextual information as con-

ditionally independent. We know this to be false since at the very least the author of a

tweet would have an impact on the words used in the tweet. It is safe to assume that the

same is most likely true of the spatial and temporal variables. For example, people in dif-

ferent states might have different vocabularies, or seasons might have different effects on

the emotional state of people in different states (e.g., people in warmer states might prefer

winter months and vice versa). However, without making this approximation, parameter

estimation for the full model would be intractable, therefore we assume all linguistic and

contextual information to be conditionally independent.

Equation A.6 is our extended Bayesian model for integrating contextual information

with more standard, word-based sentiment classification. In the next section we will explain

how the contextual prior probabilities were calculated.

A.6 Sentiment in Context

We considered five contextual categories: one spatial, three temporal and one authorial.

Here is the list of the five categories:

• The states in the USA (50 total) (spatial).

• Hour of the day (HoD) (24 total) (temporal).

• Day of week (DoW) (7 total) (temporal).
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• Month (12 total) (temporal).

• Authors (57710 total) (authorial).

We used our massive emoticon labelled dataset to calculate the average sentiment for all

of these five categories. A tweet was given a score of −1 if it was labelled as negative and a

score 1 if it was labelled as positive, so an average sentiment of 0 for a contextual category

would mean that tweets in that category were evenly labelled as positive and negative.

A.6.1 Spatial

All of the 18 million tweets in our dataset originate from the USA and are geo-tagged.

Naturally, the tweets are not evenly distributed across the 50 states given the large variation

between the population of each state. Figure A-1 shows the percentage of tweets per state,

sorted from smallest to largest. Not surprisingly, California has the most number of tweets

(2, 590, 179), and Wyoming has the least number of tweets (11, 719).

Even the state with the lowest percentage of tweets has more than ten thousand tweets,

which is enough to calculate a statistically significant average sentiment for that state. The

sentiment for all states averaged across the tweets from the three years is shown in figure

A-2. Note that an average sentiment of 1.0 means that all tweets were labelled as positive,

−1.0 means that all tweets were labelled as negative and 0.0 means that there was an even

distribution of positive and negative tweets. The average sentiment of all the states lean

more towards the positive side. This is expected given that 62% of the tweets in our dataset

were labelled as positive.

It is interesting to note that even with the noisy dataset, our ranking of US states based

on their Twitter sentiment correlates with the ranking of US states based on well-being

index calculated by Oswald and Wu [70] in their work on measuring well-being and life

satisfaction across America. Their data is from the behavioral risk factor survey score

(BRFSS), which is a survey of life satisfaction across the United States from 1.3 million

citizens. Figure A-3 shows this correlation (r = 0.44, p < 0.005).
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Figure A-3: Ranking of US states based on Twitter sentiment vs. ranking of states based

on their well-being index. r = 0.44, p < 0.005.

A.6.2 Temporal

We looked at three temporal variables: time of day, day of week and month. All tweets

are tagged with timestamp data, which we used to extract these three variables. Since all

timestamps in the Twitter historical archives (and public API) are in the UTC time zone,

we first converted the timestamp to the local time of the location where the tweet was sent

from. We then calculated the sentiment for each day of week (figure A-4), hour (figure

A-5) and month (figure A-6), averaged across all 18 million tweets over three years. The

18 millions tweets were divided evenly between each month, with 1.5 million tweets per

month. The tweets were also more or less evenly divided between each day of week, with

each day having somewhere between 14% and 15% of the tweets. Similarly, the tweets

were almost evenly divided between each hour, with each having somewhere between 3%

and 5% of the tweets.

Some of these results make intuitive sense. For example, the closer the day of week

is to Friday and Saturday, the more positive the sentiment, with a drop on Sunday. As

129



with spatial, the average sentiment of all the hours, days and months lean more towards the

positive side.
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Figure A-4: Average sentiment of different days of the week in the USA, averaged across

three years, from 2012 to 2014.

A.6.3 Authorial

The last contextual variable we looked at was authorial. People have different baseline

attitudes, some are optimistic and positive, some are pessimistic and negative, and some

are in between. This difference in personalities can manifest itself in the sentiment of

tweets. We attempted to capture this difference by looking at the history of tweets made by

users. The 18 million labelled tweets in our dataset come from 7, 657, 158 authors.

In order to calculate a statistically significant average sentiment for each author, we

need our sample size to not be too small. However, a large number of the users in our

dataset only tweeted once or twice during the three years. Figure A-7 shows the number of

users in bins of 50 tweets. (So the first bin corresponds to the number of users that have less

than 50 tweets throughout the three year.) The number of users in the first few bins were so
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Figure A-5: Average sentiment of different hours of the day in the USA, averaged across

three years, from 2012 to 2014.

Jan FebMar Apr May Jun Jul AugSep Oct NovDec
Month

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

Se
nt
im
en
t

Figure A-6: Average sentiment of different months in the USA, averaged across three years,

from 2012 to 2014.

131



large that the graph needed to be logarithmic in order to be legible. We decided to calculate

the prior sentiment for users with at least 50 tweets. This corresponded to less than 1 of

the users (57, 710 out of 7, 657, 158 total users). Note that these users are the most prolific

authors in our dataset, as they account for 39% of all tweets in our dataset. The users with

less than 50 posts had their prior set to 0.0, not favouring positive or negative sentiment

(this way it does not have an impact on the Bayesian model, allowing other contextual

variables to set the prior).

As it is not feasible to show the prior average sentiment of all 57, 710 users, we created

20 even sentiment bins, from −1, 0 to 1.0. We then plotted the number of users whose

average sentiment falls into these bins (figure A-8). Similar to other variables, the positive

end of the graph is much heavier than the negative end.
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Figure A-7: Number of users (logarithmic) in bins of 50 tweets. The first bin corresponds

to number of users that have less than 50 tweets throughout the three years and so on.
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Figure A-8: Number of users (with at least 50 tweets) per sentiment bins of 0.05, averaged

across three years, from 2012 to 2014.

A.7 Results

We used 5-fold cross validation to train and evaluate our baseline and contextual models,

ensuring that the tweets in the training folds were not used in the calculation of any of

the priors or in the training of the bigram models. Table A.3 shows the accuracy of our

models. The contextual model outperformed the baseline model using any of the contextual

variables by themselves, with state being the best performing and day of week the worst.

The model that utilized all the contextual variables saw a 10% relative and 8% absolute

improvement over the baseline bigram model.

Because of the great increase in the volume of data, distant supervised sentiment clas-

sifiers for Twitter tend to generally outperform more standard classifiers using human-

labelled datasets. Therefore, it makes sense to compare the performance of our classifier

to other distant supervised classifiers. Our contextual classifier outperformed the previous

state-of-the-art distant supervised Twitter sentiment classifier by Go et al [34] by more than

3% (absolute).
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Model Accuracy

Baseline-Majority 0.620
Baseline-Bigram 0.785
Contextual-DoW 0.798
Contextual-Month 0.801
Contextual-Hour 0.821
Contextual-Author 0.829
Contextual-State 0.849
Contextual-All 0.862

Table A.3: Classifier accuracy, sorted from worst to best.

Even though our contextual classifier was able to outperform the previous state-of-the-

art, distant supervised sentiment classifier, it should be noted that it did so with the help

of geo-tags. However, only about one to two percent of tweets in the wild are geo-tagged.

Therefore, we trained and evaluated our contextual model using all the variables except

for state. The accuracy of this model was 0.843, which is still slightly better than the

performance of the previous state-of-the-art classifier. Fortunately, all tweets are tagged

with timestamps and author information, so all the other four contextual variables used in

our model can be used for classifying the sentiment of any tweet.

Note that the prior probabilities that we calculated need to be recalculated and updated

every once in a while to account for changes in the world. For example, a state might

become more affluent, causing its citizens to become on average happier. This change could

potentially have an effect on the average sentiment expressed by the citizens of that state on

Twitter, which would make our priors obsolete. Also, as mentioned earlier, our extended

model assumes the contextual (and linguistic) variables are conditionally independent. This

is an assumption that is most likely false but is a valid approximation. In the future, we

would like to address the conditional dependence of the prior probabilities.
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