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Abstract

A recent trend in the cognitive sciences is the
development of models of language acquisition in which
word meaning is grounded in the learner’s perceptions
and actions. Such physical descriptions of meaning are
inadequate for many verbs, however, because of the
ambiguous nature of intentional action. We describe a
model that addresses such ambiguities by explicitly
representing the role of intention recognition in word
learning. By augmenting this model with phrase
boundary information, we show improvement in learning
compared to the original syntax-free model. Greater
relative improvement is found in learning verbs than
nouns. Evaluations are performed using data collected in
a virtual environment. Results highlight the importance
of representing intentions in cognitive models and suggest
a greater role for the representation of intentions in
applied areas of Artificial Intelligence.

Introduction

Computational models of word meaning have historically
been rooted in the tradition of structural linguistics. In such
models, the meaning of a word is defined strictly by its
relations to other words or word-like symbols (e.g., Miller et
al., 1990; Landauer et al., 1995, Lenat, 1995). A limitation
of these models is their inability to explain how words are
used to refer to non-linguistic referents (Harnad, 1990). A
recent trend in the cognitive sciences is to address these
limitations by modeling word meaning in terms of the non-
linguistic context, or situation, surrounding language use
(for a review see Roy (2005); Roy & Reiter, 2005). The
work described here extends these efforts by presenting a
situated model of word learning in which the intentions of
an agent are explicitly modeled.

Recent efforts to model language acquisition have
focused on models that ground the meaning of words in a
learner’s perceptions and actions. Such models ground the
meaning of nouns in directly observable phenomena, such
as object color and shape (e.g., Roy & Pentland, 2002).
Models that focus on the meaning of verbs have also been
introduced that ground meaning in motor control structures
(Feldman & Narayanan, 2004) and perceived movements of
objects (Siskind, 2001). A limitation of all these models,
and a motivation for our current work, is that they are
unable to account for the role that intentions play in word
meaning.

Many of the most common verbs defy description in
purely perceptual terms. For example, two different words,
such as the words chase and flee, can be equally described
by the same perceptual characteristics, while a single word,
such as open, can describe any number of distinct activities
that each bare different physical descriptions (e.g., opening
with a key vs. opening with a pass code). In both cases, the
semantics of the verbs are tied not to physical descriptions
of the activity, but to the intentions of the agent who
performs them. Although the role that intentions play has
long been stressed in the empirical literature on word
learning (e.g., Tomasello, 2001), in work on computational
modeling, these issues remain largely unexplored.

In this work we describe a computational model that
highlights the role of intention recognition in word learning
(Fleischman and Roy, 2005). Similar to children, this
situated model learns nouns faster than verbs (Gentner,
1982). We then describe an extension of this model that,
like humans, exploits phrase structure information in the
utterance to lessen noun/verb asymmetry (Gleitman, 1990).
The model operates on data collected using a virtual
environment; a methodology for computational modeling
that allows subjects to interact in complex tasks while
facilitating the encoding of situational context. Although by
no means exhaustive in its account, these results
demonstrate the feasibility and necessity of computationally
modeling intentions in word learning

Model Overview

In Fleischman and Roy (2005), a model was developed
and tested in a virtual environment based on a
multiplayer videogame. In this environment, a game
was designed in which a human player must navigate
their way through a cavernous world, collecting specific
objects, in order to escape. Subjects were paired such
that one, the expert, would control the virtual character,
while the other, the novice, guided her through the world
via spoken instructions. While the expert could say
anything in order to tell the novice where to go and what
to do, the novice was instructed not to speak, but only to
follow the commands of the expert. Both the movements
and speech were recorded (Fig. la) and input into the
model, which operates in two phases: intention
recognition and linguistic mapping.
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a) Parallel sequences of speech and actions are recorded from subjects as the expert guides the novice through a

virtual environment. b) An intentional tree is inferred over the novice’s sequence of observed actions using a probabilistic

context free grammar of behaviors.
semantic frame.

Each node in the tree is a different level of intentional action and is encoded by a
c¢) The vertical path from a leaf node in the tree (i.e. observed action) to the root (i.e. highest order
intentional action) contains multiple possible levels of intention to which an utterance may refer.

Linguistic mapping uses

d) Expectation Maximization to estimate the conditional probabilities of words given roles to resolve this ambiguity.

Intention Recognition

Intention recognition is the ability to infer the reasons
underlying an agent’s behavior based on a sequence of their
observed actions. A great deal of work has focused on the
role of intentions in dialogue systems (e.g., Grosz & Sidner,
1986; Ferguson & Allen, 1998; Carbury, 2000). Unlike this
previous work, we follow work in plan recognition
(Pynadath, 1999) and event recognition (Ivanov & Bobick,
2000) and represent intentions using a probabilistic context
free grammar (PCFG) of behaviors. Representing behaviors
as a grammar enables us to treat intention recognition as a
parsing problem over observed sequences of movements, in
much the same way that a PCFG of syntax enables parsing
of words in a sentence (e.g., Stolcke, 1994).

The idea of a grammar of behavior goes back at least to
Miller et al. (1960). In our formalization, a grammar
consists of intention rules that describe how an agent’s high
level intentional actions (e.g., find axe) can lead to
sequences of lower level intentional actions (e.g. open door,
go through door, open chest) (Fig. 1b inset). Analogous to
syntactic parse trees, a behavior grammar produces intention
trees by parsing observed movements. Each element in an
intention rule (and thus, each node in an intention tree)
encodes a semantic frame that contains the participants of
the action and their thematic roles (actor, patient, object,
etc.) (Fig. 1b inset). In this initial work, the intention rules
are created by hand — currently we are exploring automatic
learning of such rules.

As the model observes sequences of a subject’s
movements in the virtual environment, an intention tree is

inferred by the system. This tree acts as the conceptual
scaffolding in which natural language utterances are
grounded. In these experiments, the temporal alignment
between a spoken utterance and the observed movement to
which it corresponds is hand annotated (a focus of future
work is the relaxation of this assumption). Given this
annotation, there remains an ambiguity for any given
observation as to which level within the tree an associated
utterance refers. This ambiguity regarding the level of
description (Gleitman, 1990) is represented by the multiple
nodes that exist along the vertical path from the root of the
intention tree to the leaf node temporally aligned to the
target utterance (Fig. 1c). This ambiguity is resolved in the
linguistic mapping procedure (described below) by
determining which node along the vertical path a given
utterance is most likely to refer.

Linguistic Mapping

Having observed a sequence of movements, the output of
intention recognition is an intention tree that represents the
model’s best guess of the higher order intentions that
generated that sequence. The goal of the linguistic mapping
phase is to find the links between the words an agent says
and the tree that describes what an agent does.

As described above, each node in an inferred intention
tree consists of a semantic frame. In the linguistic mapping
phase, associations are learned between words in utterances
and the elements in these frames (i.e. roles, such as
AGENT, or role fillers, such as DOOR). These mappings
are represented by the conditional probabilities of words



given frame eclements [i.e. p(word|element)]. By
formalizing mappings in this way, we can equate the
problem of learning word meanings to one of finding the
maximum likelihood estimate of a conditional probability
distribution.

Similar to statistical approaches to language translation
(Brown et al., 1993), we apply the Expectation
Maximization (EM) algorithm to estimate these mappings.
EM is a well studied algorithm that attempts to find a
locally optimal conditional probability distribution for a
dataset by iterating between an Estimation (E) step and a
Maximization (M) step.

To understand the use of EM, let us first assume that we
know which node in the vertical path is associated with an
utterance (i.e., no ambiguity of descriptive level). In the E
step, an initial conditional probability distribution is used to
collect expected counts of how often a word in an utterance
appears with a frame element in its paired semantic frame
(Figure 1d). In the M step, these expected counts are used
to calculate a new conditional probability distribution. By
making a one-to-many assumption -- that each word in an
utterance is generated by only one frame element in the
parallel frame (but that each frame element can generate
multiple words) -- the iterative algorithm is guaranteed to
converge to the maximum likelihood estimation of the
conditional distribution. Following Brown et al. (1993), we
add a NULL role to each semantic frame which acts as a
“garbage collector,” accounting for common words that
don’t conceptually map to objects or actions (e.g., “the,”
“now,” “ok,” etc.).

The above procedure describes an ideal situation in which
one knows which semantic frame from the associated
vertical path should be paired with a given utterance. As
described above, this is not the case for language learners
who, even knowing the intention behind an action, are faced
with an ambiguity as to what level of description an
utterance was meant to refer (Figure 1c). To address this
ambiguity, an outer processing loop is introduced that
iterates over all possible pairings of utterances and semantic
frames along the vertical path. For each pairing, a
conditional probability distribution is estimated using EM.
After all pairings have been examined, their estimated
distributions are merged, each weighted by their likelihood.
This procedure (Figure. 2) continues until a cross-validation
stopping criterion is reached. The utterance/frame pair with
the highest likelihood yields the most probable resolution of
the ambiguity.

Representing linguistic mappings as conditional
probabilities not only allows us to apply efficient algorithms
to the task of word learning, but also leads to a Bayesian
formulation of language understanding. In this formulation,
understanding an utterance is equivalent to finding the most
likely meaning (i.e. semantic frame) given that utterance:

p(meaning | utterance) =
plutterance | meaning) * p(meaning) Q)

This equation makes understanding utterances particularly
easy to model using the two phase model of word learning
presented here because of the natural analogues that exist

between calculating the posterior probability and the
linguistic mapping phase, and between calculating the prior
probability and the intention recognition phase.
Specifically, the posterior p(utterance|meaning) can be
approximated by the probability of the most likely
alignment of words in an utterance to elements in a frame
(using the probability distribution estimated by EM).
Further, the prior p(meaning) can be approximated by the
probability of the most likely inferred intentional tree (i.e.
the probability given by the by the PCFG parser).

1. Set uniform likelihoods for all utterance/frame
pairings

2. For each pair, run standard EM

3. Merge output distributions of EM (weighting each
by the likelihood of the pairing)

4. Use merged distribution to recalculate likelihoods
of all utterance/frame pairings

5. Go to Step 2

Figure 2. Intentional Expectation Maximization algorithm

Incorporating Syntactic Information

The linguistic mapping phase as described thus far treats
utterances as unstructured bags of words. Findings in
development psychology suggest that children are able to
take advantage of structural cues in utterances in order to
aid in early word learning (e.g., Snedeker and Gleitman,
2004). We now describe an extension of Fleischman and
Roy (2005), in which the linguistic mapping phase is
extended to leverage knowledge of syntactic phrases
boundaries.

The first step in exploiting phrase boundary information is
to be able to find phrase boundaries in the input. Phrase
boundaries within utterances are found using a highly
accurate automatic phrase chunker (Daume and Marcu,
2005) that uses local lexical features and is trained on a
large corpus of annotated text. We make no claims as to the
appropriateness of the phrase chunker as a model for
linguistic development. Rather, the chunker is treated only
as a tool by which the effects of phrase boundary
information on word learning may be studied. Since we
seek to examine the effect of minimal syntactic information
on language learning, only phrase boundary locations are
used by the model. Thus, although they may be also useful
for word learning, no detailed parse trees, embedded clause
structures, or other syntactic information (e.g. noun phrase
vs. prepositional phrase categorization) is provided to our
model. Figure 3 gives an example of the phrase boundaries
found by the phrase chunker for a sample utterance.

In addition to finding phrase boundaries in the input
utterances, the form of the semantic frames generated during
intention recognition have been slightly modified. We
introduce the notion of a semantic chunk and define it as the
set which contains both a semantic role and its
corresponding role filler (see Figure 3). To leverage the
boundary information provided by this chunking, the
original linguistic mapping algorithm is modified by nesting
another layer into the original two-layer EM learning
procedure. This new nested layer aligns phrases to semantic



chunks and replaces the use of standard EM in Figure 2 Step
2, with a new phrasal EM procedure described in Figure 4.
The new model comprises three nested layers of EM that
operate as follows: (1) Utterances are aligned to frames (to
account for ambiguities of descriptive level); (2) Phrases
from within the utterances are aligned to semantic chunks
from within the frames, and (3) Words from within the
phrases are aligned to frame elements from within the
semantic chunks. Probability distributions estimated at the
lowest layers [p(word|element)] are propagated up to the
higher layers where they are merged and used to calculate
the likelihoods of the proposed alignments between both
phrases and semantic chunks, and finally between utterances
and frames. Although adding this phrasal layer adds
algorithmic complexity, because the number of phrase to
chunk alignments is relatively small, the overall number of
expected counts that the algorithm must examine in
estimating the conditional probability distributions is
dramaticallv reduced (see Discussion for more details)

Syntactic Info In Linguistic Mapping

“through” “the” “door

eVent\ path"""
MOVE DOOR

Figure 3. Syntactic phrase boundaries are used in the Phrasal
Expectation Maximization Algorithm to reduce the hypothesis
space of possible alignments between words and semantic
frame elements.

Model Evaluation

Data Collection

In order to evaluate the model, we developed a virtual
environment based on the multi-user videogame
Neverwinter Nights. ' The subjects in the data collection
were university students (8 male, 4 female). Subjects
were staggered such that the novice controlling the
virtual character in one trial became the expert issuing
commands in the next. The game was instrumented so
that all the experts’ speech and all of the novices’
actions were recorded during play. Figure la shows
screen shots of a game with the associated sequences of
data: the expert’s speech and novice’s actions.

The expert’s speech is automatically segmented into
utterances based on pause structure and then manually
transcribed. The novice’s action sequences are parsed using
a hand built behavior grammar to infer tree representations

! http://nwn.bioware.com

of the novice’s intentions (Fig. 1b). In the current
experiments, the entire sequence of actions composing a
game trial is parsed at once and linguistic mapping is
performed using the most likely tree from that parse.

In hand building the behavior grammar, two sets of rules
were created: one to describe agents’ possible paths of
movement and one to describe non-locomotion actions. The
movement rules were built semi-automatically, by
enumerating all possible paths between target rooms in the
game. The action rules were designed based on the rules of
the game in order to match the actions that players must take
to win (e.g. opening doors, taking objects, interacting with
non-player characters, etc.). Rules were built and refined in
an iterative manner, in order to insure that all subject trials
could be parsed. Because of limited data, generalization of
the rules to held-out data was not examined. Probabilities
were set using the frequency of occurrence of the rules on
the training data. A major focus of future work will be the
automation of this process, which would merge the inter-
related problems of language acquisition and task learning.
Having collected the utterances and parsed the actions, the
two streams are processed by the learning model such that
the semantic roles from the novice’s intention tree are
mapped to the words in the expert’s utterances. By iterating
through all possible mappings, the algorithm converges to a
probability distribution that maximizes the likelihood of the
data (Fig. 1c-d).

1. Set initial distribution using conditional probabilities
from intentional EM

2. Generate all possible phrase/chunk pairs

3. For each pair, run standard EM

4. Merge output distributions of standard EM (weighting
each by the likelihood of the pairing)

5. Use merged distribution to recalculate likelihoods of all
utterance/frame pairings

6. Goto step 2

Figure 4. Phrasal Expectation Maximization algorithm

Experiments

To evaluate the effect of syntactic information on word
learning in the model, the linguistic mapping algorithms
were trained using utterances both with and without
annotated phrase boundary information. For both
conditions, the model was trained on the first four trials of
game play for all subject pairs and tested on the final trial.
This yielded 1040 training, and 240 testing utterances. For
each pair, the number of iterations, beam search, and other
parameters are optimized using cross-validation.

For each utterance in the test data, the likelihood that it
was generated by each possible frame is calculated. We
select the maximum likelihood frame as the system’s
hypothesized meaning for the test utterance, and examine
how often the system maps each word of that utterance to
the correct semantic role. Word mapping accuracies are
separated by word class (nouns and verbs) and compared.

Further, we examine the ability of the system to
accurately predict the correct level of description to which
test utterances refer. We compare the system trained with



syntactic information against the system trained without in
two conditions: both when it is and is not trained given the
correct utterance/semantic frame (i.e., both with and without
descriptive level ambiguities resolved by hand).

Results and Discussion

Figure 5 shows the word accuracy performance on nouns
and verbs for the system trained both with and without
phrase boundary information. As described in Fleischman
and Roy (2005), the model learns nouns better than it learns
verbs. Further, the figure indicates that syntactic phrase
boundary information improves learning of verbs more than
nouns. Figure 6 shows the ability of the system to predict
the correct level of description to which a novel test
utterance refers. The system performs equally well with or
without syntactic information given the correct
utterance/frame pairs during training. However, when
ambiguities of descriptive level are not resolved by hand,
the system’s ability to predict the correct level of description
becomes dramatically impoverished if access to syntactic
information is not provided.

Figure 5 shows that the language learning model takes
advantage of phrase chunking. Although word learning
improves across the board, the model shows a larger
increase in performance for learning verbs than nouns. This
result concurs with findings in developmental psychology
which suggest that syntactic information, such as the
number and order of phrases and the thematic markers they
contain, serve as cues to the language learner when
acquiring verbs (Snedeker and Gleitman, 2004). Our model
shows improved learning even though it is not designed to
take advantage of structural cues of this complexity. Rather,
the syntactic information is exploited by the model only in
its ability to reduce the number of possible mappings that
must be considered during training.

As described above, when estimating the conditional
probability distribution, the EM algorithm must take
expected counts over all possible word to frame element
alignments for a given utterance/frame pair (Fig. 1d). The
usefulness of the phrase boundary information is in its
ability to reduce the number of possible alignments that
must be examined when calculating these expected counts.
For example, in Figure 1d the EM algorithm applied to the
given utterance/frame pair must take expected counts over
4*=256 different possible word-to-element alignments (the
number of elements in the semantic frame raised to the
number of words in the utterance). However, using phrasal
EM (see Figure 3), only 2° phrase-to-chunk alignments are
generated (the number of semantic chunks in the frame
raised to the number of phrases in the utterance), each one
necessitating EM to take expected counts over only 2'+2’
word-to-element alignments. Thus, phrase chunking
reduces the potential number of alignments from 256 to 40,
leading to more effective use of limited data.

This reduction follows from the fact that phrase
boundaries do not allow mappings in which words from a
particular phrase are aligned to frame elements from
different semantic chunks (e.g., it can never be the case that
“through” aligns to an element in [PATH DOOR], while

“door” aligns to an element in [EVENT MOVE]). By
pruning out such superfluous alignments, the algorithm is
able to converge to a less noisy estimate for the conditional
probability distribution.
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Figure 5. Incorporating syntactic phrase information in the
model improves performance on learning verbs more than on
nouns.
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Figure 6. Performance of the system predicting the correct
level of description to which a novel test utterance refers.

This reduction in noise explains why word learning
increases in general, but does not explain why verbs in
particular benefit so much from syntactic information. In
the original model without phrase chunking (Fleischman
and Roy, 2005) we showed that one cause of the verb/noun
learning asymmetry in our model was the fact that, while
each node of an intentional tree (i.e. semantic frame) has a
different action role, often the object roles in differept levels
are the same. This same reasoning explains the verb/noun
asymmetry in the current model.

For example, in Figure Ic, the actions associated with the
nodes (e.g., finding, opening, getting) occur only once along
the vertical path from root to leaf. However, the objects
associated with those nodes (e.g., axe) occur multiple times
along that same vertical path. This means that even if the
model misinterprets what level of intention an utterance
describes, because object roles are repeated at multiple
levels, the model is still able to map nouns to correct
referents. However, because action roles are more specific
to their level of description, if the model misinterprets the
level, linguistic mapping for the verb may fail.



This explanation for the slower learning of verbs than
nouns in the original model can now be used to understand
how syntactic information increases performance on verbs
more than nouns. The improved conditional probability
distributions estimated using the phrasal EM algorithm
allow the system to more accurately determine the correct
level of description to which novel utterances refer. As
shown in Figure 6, training with phrase boundary
information enables the system to determine the level of
description with nearly the same accuracy as systems that
were given the correct level of description during training.
Thus, the syntactic phrase information enables the system to
perform nearly as well as systems for which no ambiguity
was present during training at all. Because the system can
determine levels of description more accurately, the
ambiguity that caused the slower learning of verbs than
nouns in the original model is reduced and verbs are
acquired with more ease.

Conclusion

We have described a model of situated word learning in
which the use of intention recognition leads to noun/verb
acquisition asymmetries analogous to those found in human
learners. We showed how augmenting this model with
simple phrase structure information dramatically increases
performance on verb learning,. The increased performance
of the system follows from the use of phrasal information to
reduce the number of possible word meanings that the
model must examine during learning.

The model that we describe demonstrates the importance
of representing intentions in computational models of word
learning. The use of formal grammars of behavior can also
be beneficial in practical Artificial Intelligence applications.
Fleischman and Hovy (2006) describe a Natural Language
Interface (NLI) for a virtual training environment in which
intention recognition is used to increase robustness to noisy
speech recognition. Gorniak and Roy (2005) use plan
recognition to resolve co-reference in video games.

Our current work focuses on addressing some of the
simplifying assumptions made in the current model. In
particular, we are examining how behavior grammar-like
representations can be automatically learned from low level
features. As a first step in this direction, Fleischman et al.
(2006) examines how hierarchical patterns of movement can
be learned from large amounts of home video recordings.
Currently, we are extending this work, by applying similar
techniques in the domain of broadcast television to support
applications such as video search and event classification.
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