
WORD LEARNING IN A MULTIMODAL ENVIRONMENTDeb Roy and Alex PentlandMIT Media Lab20 Ames Street, Rm. E15-388Cambridge, MA 01239(dkroy,sandy)@media.mit.eduABSTRACTWe are creating human machine interfaces which let peo-ple communicate with machines using natural modalitiesincluding speech and gesture. A problem with current mul-timodal interfaces is that users are forced to learn the setof words and gestures which the interface understands. Wereport on a trainable interface which lets the user teach thesystem words of their choice through natural multimodalinteractions. 1. PROBLEMMost current human-machine interfaces which use naturalmodalities such as speech and gesture force the user to learnwhich words and gestures the system understands beforethe system can be used (see [9], [10], or [4]; a notable excep-tion is [2]). For example, an interface designer who wishesto use speech input must choose the vocabulary which thesystem will understand. If the user strays from this vocab-ulary, the system will not respond correctly. The semanticsof the words must also be de�ned by the interface designerbut may also not match the expectations of the user [1].In practice it is extremely di�cult to predict what vo-cabulary a person will use in even the most restricted do-mains [1]. As Zipf's law would predict, people's choice ofwords varies widely making it nearly impossible for the in-terface designer to determine which words an individualuser will choose. To compound the problem of predict-ing vocabulary selection, the semantics of words also varyacross users. In some of their experiments, Furnas et. al.found that users will sometimes use the same word to referto di�erent concepts even within highly limited domains [1].These �ndings suggest that the vocabulary and associatedsemantics used in an interface should not be hard wired bythe interface designer.2. TRAINABLE INTERFACESOur approach to this problem is to build trainable interfaceswhich let the user teach the interface which words and ges-tures she wants to use and what the words and gesturesmean. In this paper we focus on the problem of building atrainable speech recognizer which lets the user de�ne boththe acoustic models and semantics of words they wish touse. We note that our approach to trainable interfaces canalso be used for gestures and other non-speech modalities.

We have built a system which learns words from naturalinteractions with the user. Users teach the system words bypointing to objects and naming them. The system learnsacoustic models of words, and infers the semantics of thewords by observing the context in which they were heard.For our initial experiments we are using a simple blocksworld. The user can refer to blocks using speech and diecticgesture and teach the system words referring to shapes andcolors.In order to learn the semantics of words a logical infer-ence problem must be solved. For example the user mightpoint to the same object and say both \red" and \ball".Over time the system must learn that the word \red" refersto the color attribute of objects and not shape. In addi-tion, the system must deal with noisy acoustic input, sothe logical inference must be solved in a statistical frame-work which can account for noise. A statistical frameworkis also useful since it can better cope with errors in trainingdata.3. EMBODIMENT OF THE INTERFACEWe have embodied the interface as an animated charactercalled Toco the Toucan shown in Figure 1. He can movehis head to look at any location in 3-D space. His eyescan blink and squint, his beak can open, close and smile,and his eyebrows can be raised, lowered, and tilted. Tocois currently situated in a world populated with blocks withdi�erent colors and shapes.Toco's face and body language may be used as an outputdisplay to convey the system's internal state. For examplehis direction of gaze gives the person immediate feedback ofwhere Toco thinks the user is pointing. Subtle facial cuessuch as widening of eyes and raised eyebrows are used tosignal when Toco is alert and attending to the user. Con-�dence levels for speech or gesture recognition can also bedisplayed by showing confusion in Toco's face, or a knowingnod for a clearly understood command.For output speech generation, we are using a commer-cial concatenative phonetic speech synthesizer. The syn-thesizer is driven using phoneme strings which have beenlearned from listening to users' speech as described later inthis paper.



Figure 1: A screen shot of Toco the Toucan looking at awhite cube in the virtual environment4. A MULTIMODAL SENSORYENVIRONMENTWe have created an environment to facilitate developmentof multimodal adaptive interfaces based on the smart deskenvironment [5]. In its current con�guration, the user sitsat a desk facing a 70" color projection screen which displaysToco and virtual objects. Toco can sense three types of in-put: the user's gestures, the user's speech, and informationabout the objects which currently exist in Toco's virtualenvironment.4.1. Gesture TrackingA vision-based gesture tracking system uses two color videocameras to sense the person's hand gestures. One camerais mounted directly overhead and the second provides anorthogonal view from the right side. A Gaussian mixturemodel of skin color is used to locate and track the user'shand at 30 Hz. The 3-D hand position is estimated bycombining estimates from both cameras. For details of thegesture tracking system see [8].4.2. Speech Analysis using Real-time Phoneme Recog-nitionAudio is sampled at 16-bit 16 kHz from a head mounted mi-crophone and processed using the Relative Spectral (RASTA)algorithm [3]. The RASTA coe�cients are computed on20ms windows of audio (recomputed every 10ms) and fedinto a recurrent neural network (RNN) similar to the sys-tem described in [6] to produce a 40-dimensional phonemeprobability estimate (39 phonemes and silence) at a rate of100Hz. The RNN has been trained using back propagationin time on the TIMIT database. A �nite state machineis used to detect and segment speech events (de�ned to bespoken utterances surrounded by silence) using the silenceestimate from the RNN [8].The RNN outputs are treated as emission probabilitieswithin a Hidden Markov Model (HMM) framework. Du-

ration models and bigram phoneme transition probabilitiesfor a all-phoneme loop HMM have been computed from theTIMIT training data set. The system currently recognizesphonemes with 68% accuracy on the standard speaker in-dependent TIMIT recognition task. Given a speech event,Viterbi search can be used within the HMM framework to�nd the most likely phoneme sequence.We now de�ne a distance metric for comparing a speechevent to a reference phoneme string. This distance metricis used for clustering speech events (see Section 5.1). Thereference phoneme string may be thought of as a HMM.We can compute a con�dence measure that an event wasgenerated by the HMM following methods developed forkeyword spotting con�dence measures [7] as follows.First we compute the log probability of an event e usinga forced Viterbi alignment with phoneme transitions deter-mined by the reference phoneme string. We denote this aslog(p(reference j e)).Next we compute the log probability of the event e usinga Viterbi search with a phoneme loop model with phonemebigram transition probabilities estimated from the originalTIMIT data. We denote this as log(p(phonemeloop j e)).Finally, we can de�ne the normalized distance betweenthe event and the reference string to be:d(ref; e) = log(p(ref j e))� log(p(phonemeloop j e)) (1)We have found that this measure works well for bothkeyword spotting (Toco only responds to users after hearinghis name) and for clustering acoustic data (see Section 5.1).4.3. Synthetic Sensing of Virtual ObjectsThe third type of input in the multimodal environment letsToco directly \sense" attributes of virtual objects which aredisplayed in Toco's graphical world (for example the blocksin Figure 1). Each object is represented by a set of attributevectors which encode characteristics of the object. For ex-ample the white cube in the top right corner of Figure 1 isrepresented as:Object {r,g,b = 1.0 , 1.0 , 1.0shape = 0, 0, 1, 0} We use the following notation to represent an elementof an attribute vector set:aij(k); i = 1; 2 : : : n; j = 1; 2 : : :mi (2)where aij is the jth element of the ith attribute vector rep-resenting the kth object, there are n vectors in an attributeset, and the ith vector has mi elements. Thus for examplethe attribute vector set for the white cube described abovehas n = 2, m1 = 3, m2 = 4 and a23 = 1. The shape vec-tor discretely encodes shapes in a four-bit binary vector 1(cone, sphere, cube, cylinder). The purpose for represent-ing objects as attribute vectors is to facilitate learning of1We are currently changing the representation to encode con-tinuous valued attributes so that more complex attribute spacesmay be modeled.



word meanings in terms of these attribute primitives. If allperceptually salient attributes of the objects are encoded inthe attributes, Toco will be able to discover the meaning ofwords grounded in these perceptual primitives.5. LEARNING AND RESPONDING TOSPOKEN WORDS5.1. Learning WordsWords must be learned at two levels: their acoustic models,and their association with object attribute vectors. Ges-ture input from the user provides contextual informationfor learning attribute associations.Toco's memory consists of a set of phoneme string clus-ters. Each cluster is comprised of a set of one or morephoneme strings, and an association weight vector:wij(l); i = 1; 2 : : : n; j = 1; 2 : : : mi (3)where wij(l) is the jth element of the ith weight vector of thelth word cluster, and n and mi are as de�ned in Equation 2.We set the weight vectors of cluster l to the mutualinformation between the observation of word cluster l andeach attribute vector:wij(l) = log�p(aij j Vl)p(aij) � (4)where Vl signi�es that a phoneme string from cluster l washeard. The probabilities of both conditioned and uncon-ditioned attribute vector values are updated using the at-tributes of the objects which the user points to while speak-ing training words. Since the elements of the attributes arebinary variables, we are able to use simple smoothed rela-tive frequencies to estimate the probabilities in Equation 4[2]. When Toco �rst starts running, he has no clusters inmemory. When the user �rst points to an object and ut-ters a word, Toco will create a cluster and initialize it withthe phoneme string extracted from the user's speech. Theassociation weight vector for this cluster is then set usingEquation 4. Subsequent training examples (i.e. where theuser is pointing to an object as she says a word) are in-corporated into Toco's associative memory by the followingsteps.First we need to de�ne the distance from a speech eventto a word cluster. We denote the gth phoneme string ofcluster Vl as slg. The distance from cluster Vl to event e isde�ned as the distance between the event and the closestphoneme string within the cluster:dcluster(Vl; e) = ming d(slg; e) (5)where d() is de�ned in Equation 1.Using Equation 5 the index of the cluster closest to thespeech event is found:lbest = arg minl d(Vl; e) (6)and the distance from the event e to the closest cluster is:dist = dcluster(Vlbest ; e) (7)

Figure 2: Examples of words learned from the blocks worldtask. The squares show association weight values. The sizeof the square indicates its magnitude; white color indicatesa positive value and black indicates a negative value. Theleft three weight columns correspond to color (R-G-B) andthe remaining four columns correspond to shape (cube-ball-cone-cylinder). Each row of weights represents a phonemestring cluster with the associated phoneme strings listedon the right. From the top, the words shown are \ball",\cylinder", \red", \green" and \blue". There are currentlysome systematic segmentation problems which cause clip-ping of word beginnings and endings. We plan to modifythe segmentation algorithm parameters to correct this.At this point the algorithm compares dist to a pre-de�ned split/merge threshold. If dist is greater than thethreshold, a new cluster is formed and initialized with thephoneme string extracted from the event e. If dist is lessthan the threshold, the phoneme string extracted from theevent e is added to the cluster Vlbest , e�ectively merging theacoustic model of the new event with the existing acousticmodels of the cluster. After the clusters are updated (byeither a merge or split), the weights of the phoneme stringclusters are updated according to Equation 4.Figure 2 shows some of the phoneme string clusterswhich were learned using this method over the course ofa two minute interaction with a user.5.2. Responding to WordsToco can respond to words based on the phoneme stringclusters which have been formed from previous interactionswith the user. When the user says a word without pointingto the object, Toco �nds the closest cluster to the speechevent using Equation 6. We refer to this as the activatedphoneme string cluster. The distance to this activated clus-ter is calculated using Equation 7. This distance is thencompared to a �xed response threshold which determineswhether Toco will respond to the event. If the distance isgreater than the threshold, Toco treats the event as un-known and takes no action.If the distance is less than the threshold, Toco �nds theobject in view which has highest association with the acti-vated cluster (see below) and responds by looking towardsthat object and vocalizing.5.2.1. Selecting an Object During Word ResponseThe object is selected by computing the association strengthbetween each object and the activated cluster and selectingthe object with the highest association. The associationbetween an object k and cluster Vl is computed as:



ylk = maxi Pmij=1 aij(k)wij(l)mi ; i = 1 : : : n (8)The max operator in Equation 8 implements a compe-tition among attribute vectors within the vector set. Thedot product of association weights for the cluster and theassociated attribute vector is computed for each vector inthe set and normalized by mi, the dimensionality of theith attribute vector. The association of the cluster to theobject is set to the highest normalized vector association.5.2.2. Generating a Spoken ResponseTo produce a vocalization the system inverts the processencoded in Equation 8 and �nds the phoneme string clus-ter most strongly associated with the selected object, usingthe attribute vector which produces the highest dimension-normalized score in the forward application of Equation 8.A spoken response is generated by choosing a represen-tative phoneme string from the selected cluster and sendingit to the phoneme synthesizer. This method of spoken re-sponse provides a feedback mechanism for Toco's semanticassociations. Inconsistencies in Toco's semantic network areexposed when he tries to echo the user's speech but says anincorrect word. When such an error occurs, the user willimmediately know that Toco has not yet learned the propermeaning of the word. When robust acoustic and semanticmodels have been learned, Toco consistently \parrots" theuser's speech. In the blocks world task empirical tests showthat approximately 15 to 20 training words are required toteach 4 colors, and 30 to 40 training words are required toteach 8 colors and shapes.5.3. An Application: Vocabulary TranslationAn application of the current system is in translating wordsbetween di�erent languages. We have added a mode to thesystem in which Toco recognizes words using one set ofacoustic and semantic weights, and generates output us-ing a second set. If Toco is taught words in two di�erentlanguages, he can then respond to words spoken in one lan-guage with synthetic speech in a second language. Themapping between words is de�ned by the semantic associ-ations of the words in each language which are groundedin the common object attributes. A related application ofthis idea is as a communication aid for disabled users withdysarthric (unintelligible) speech. If the user can produceconsistent vocalizations, the system can be taught to trans-late them into clear synthetic speech.6. SUMMARY AND FUTURE WORKWe have presented results of our initial experiments on wordlearning in a multimodal environment. Our system demon-strates an interface which learns words and their domain-limited semantics through natural multimodal interactionswith people. Toco can learn acoustic words and their mean-ings by continuously updating association weight vectorswhich estimate the mutual information between acousticwords and attribute vectors which represent perceptuallysalient aspects of virtual objects in Toco's world. Toco is
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