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ABSTRACT

A spoken language generation system has been developed that
learns to describe objects in computer-generated visual scenes.
The system is trained by a ‘show-and-tell’ procedure in which vi-
sual scenes are paired with natural language descriptions. A set of
learning algorithms acquire probabilistic structures which encode
the visual semantics of phrase structure, word classes, and individ-
ual words. Using these structures, a planning algorithm integrates
syntactic, semantic, and contextual constraints to generate natu-
ral and unambiguous descriptions of objects in novel scenes. The
learning system is able to generalize from training data to generate
expressions which never occurred during training. The output of
the generation system is synthesized using word-based concatena-
tive synthesis by drawing from the original training speech corpus.
In evaluations of semantic comprehension by human judges, the
performance of automatically generated spoken descriptions was
comparable to human generated descriptions.

1. INTRODUCTION

A growing number of applications such as automatic sports com-
mentators and talking maps require the translation of perceptual
or sensory data into natural language descriptions. Most current
approaches to this problem rely on manually created rules which
encode domain specific knowledge. These rules are used for all
aspects of the generation process including lexical and sentence
frame selection. We present a trainable system called DESCRIBER
which learns to generate descriptions of visual scenes by example
(a more detailed description of this system is forthcoming [1]).
This effort is motivated by our long term goal of developing spo-
ken language processing systems which ground semantics in ma-
chine perception and action (for example, [2]).

We consider the problem of generating spoken descriptions
of visual scenes to be a form of language grounding. Grounding
refers, in part, to the process of connecting language to referents
in the language user’s environment. In contrast to methods which
rely on symbolic representations of semantics, grounded repre-
sentations bind words (and sequences of words) directly to non-
symbolic perceptual features. Crucially, bottom-up sub-symbolic
structures must be available to influence symbolic processing [3].

Natural language semantics in DESCRIBER are visually grounded.
Input to the system consists of visual scenes paired with natu-
rally spoken descriptions and their transcriptions. A set of statisti-
cal learning algorithms extract syntactic and semantic structures
which link spoken utterances to visual scenes. These acquired
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res are used by a generation algorithm to produce spoken
tions of novel visual scenes. Concatenative synthesis is
convert output of the generation subsystem into speech. In

ions of semantic comprehension by human judges, the per-
ce of automatically generated spoken descriptions is found
omparable to human-generated descriptions.
e problem of generating referring expressions has been ad-
in many previous computational systems (cf. [4, 5]). Most
e generation systems may be contrasted with our work in
in ways. First, our emphasis is on learning all necessary

tic structures from training data. Jordan and Walker [6] also
achine learning to train a system to generate nominal de-
ns of objects. This system learns to choose which logical
ation of four attributes to use in describing objects. In com-
, the scope of what is learned by DESCRIBER includes
e selection, syntactic structures and the visual semantics of
A second difference is that we take the notion of grounding
ics in sub-symbolic representations to be a critical aspect
ng natural language to visual scenes. The Visual Translator
(VITRA) [7] grounds language generation in visual input
ic scenes from automobile traffic and soccer games). In
t to our work, VITRA is not designed as a learning system.
orting it to a new domain would presumably be a arduous
or intensive task. Our goal is to build a domain independent
e learning system.

2. THE LEARNING TASK

A typical scene processed by DESCRIBER. The arrow
es the target object that must be verbally described.

e description task is based on images of the kind shown in
1. The computer generated image contains a set of ten non-
ping rectangles. The height, width, x-y position, and red-
lue (RGB) color of each rectangle is continuously varying
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and chosen from a uniform random distribution. We addressed the
following learning problem: Given a set of images, each with a
target object and a natural language description of the target, learn
to generate syntactically correct, semantically accurate, and con-
textually appropriate descriptions of objects embedded in novel
multi-object scenes.

One basic problem is to establish the semantics of individual
words. To bootstrap the acquisition of word associations, utter-
ances are treated as “bags of words”. Each word in an utterance
may potentially be a label for any subset of co-occurring visual
properties of the target. Thus the language learner must select rel-
evant properties, that is, choose the subset of potential features
which should be bound to a word. A second problem is to clus-
ter words into word classes based on semantic and syntactic con-
straints. Word classes are a necessary first step in acquiring rules
of word order. For example, before a language learner can learn
the English rule that adjectives precede nouns, some primitive no-
tion of adjective and noun word classes needs to be in place. A
third problem is learning word order. We address the problems of
learning adjective ordering (“the large blue square” vs. “the blue
large square”) and phrase ordering for generating relative spatial
clauses. In the latter, the semantics of phrase order needs to be
learned (i.e., the difference in meaning between “the ball next to
the block” vs. “the block next to the ball”).

Once word semantics and syntax have been learned, the sys-
tem has at its disposal a grounded language model which enables
it to map novel visual scenes to natural language descriptions. The
language generation problem is treated as a search problem in a
probabilistic framework in which syntactic, semantic, and contex-
tual constraints are integrated.

3. LANGUAGE ACQUISITION

The ‘perceptual system’ of DESCRIBER consists of a set of fea-
ture extractors which operate on synthetic images. Each rectangle
is described by a vector of 8 real-valued visual features: red, green,
and blue color components, height-to-width ratio, area, x-position,
y-position, and the ratio of the smaller dimension to the larger di-
mension. The training data consists of visual feature vectors of all
objects in a scene paired with transcriptions of expressions refer-
ring to targets. Learning consists of six stages:

Stage 1: Word Class Formation
In order to generate syntactically correct phrases such as ‘large

red square’ as opposed to ‘red large square’ or ‘square red’, word
classes that integrate syntactic and semantic structure must be learned.
Two methods of clustering words into syntactically equivalent classes
were investigated. The first relies on distributional analysis of
word co-occurrence patterns. The basic idea is that words which
co-occur in a description are unlikely to belong to the same word
class since they are probably labeling different properties of the
target object. The second method clusters words which co-occur
in similar visual contexts. This method uses shared visual ground-
ing as a basis for word classification. We have found that a hybrid
method which combines both methods leads to superior word clus-
tering.

Stage 2: Feature Selection for Words and Word Classes
A subset of visual features is automatically selected and as-

sociated with each word. This is done by a search algorithm that
finds the subset of visual features for which the distribution of fea-
ture values conditioned on the presence of the word is maximally
divergent from the unconditioned feature distribution. Features are

assume
gence
and un
propria
classes
in that

Sta
Fo

of featu
co-occu
is only
class in

Sta
A

(based
Sta
A

model
Trainin
are use
terance
scribin
by a la
‘The la
gle’. S
with la
of’ is c
bigram
P (wt+

ated wi
An

noun p
Three s
lations
line co
feature
The thi
nects th
in Stag
these s

Sta
Mu

estimat
noun p
nodes o

3.1. A

To train
approx
transcr
utteran
learnin
has a th
ure 2),
possibl
which
learned
imal di
been o
phrase
d to be normally distributed. The Kullback-Leibler diver-
is used as a divergence metric between word-conditioned
conditioned distributions. This method reliably selects ap-
te features from the eight dimensional feature space. Word
inherit the conjunction of all features assigned to all words
class.
ge 3: Grounding Adjective/Noun Semantics
r each word (token type), a multidimensional Gaussian model
re distributions is computed using all observations which
r with that word. The Gaussian distribution for each word
specified over the subset of features assigned to that word’s
Stage 2.

ge 4: Learning Noun Phrase Word Order
class-based bigram statistical language model is estimated
on frequency) to model the syntax of noun phrases.
ge 5: Grounding the Semantics of Spatial Terms
probabilistic parser uses the noun phrase bigram language
from Stage 4 to identify noun phrases in the training corpus.
g utterances which are found to contain two noun phrases
d as input for this stage and Stage 6. Multi-noun-phrase ut-
s in our training corpus usually comprise a noun phrase de-
g the target object, followed by a spatial relation, followed
ndmark noun phrase. A typical utterance of this type is,
rge square slightly to the left of the vertical pink rectan-

table phrases are tokenized by iteratively finding word pairs
rge bigram word pair probabilities. For example, ‘to the left
onverted to the token ‘to the left of’. Forward and reverse
s are used for this tokenization step (i.e., P (wt|wt+1) and
1|wt)). Tokenization enables visual semantics to be associ-
th whole phrases.
y words in the training utterance which are not tagged as
hrases by the parser are treated as candidate spatial terms.
patial primitives are introduced to represent inter-object re-

. The first feature is the angle (relative to the horizon) of the
nnecting the centers of area of an object pair. The second
is the shortest distance between the edges of the objects.

rd spatial feature measures the angle of the line which con-
e two most proximal points of the objects. The procedures
es 2 and 3 are re-used to ground spatial words in terms of
patial features.
ge 6: Learning Multi-Phrase Syntax
lti-noun-phrase training utterances are used as a basis for
ing a phrase-based bigram language model. The class-based,
hrase language models acquired in Stage 4 are embedded in
f the language model learned in this stage.

cquisition Results with a Pilot Training Corpus

DESCRIBER, two human participants verbally described
imately 700 images. Each spoken description was manually
ibed, resulting in a training corpus of images paired with
ce transcriptions. Figures 2-4 illustrate the results of the
g algorithm using this training corpus. The language model
ree-layer structure. At the highest level of abstraction (Fig-
phrase order is modeled as a Markov model which specifies
e sequences of noun phrases and connector words, most of
are spatial terms. In addition to spatial terms, the system
that ‘touching’ refers to configurations in which the prox-

stance between object is 0. Transition probabilities have
mitted from the figure for clarity. Two of the nodes in the
grammar designate noun phrases (labeled TARGET OBJECT



and LANDMARK OBJECT). These nodes encapsulate copies of
the phrase grammar shown in Figure 3. Note that at the phrase
combination level (Figure 4), the semantics of relative noun phrase
order are encoded by the distinction of target and landmark phrases.
In other words, the system represents the fact that the first noun
phrase describes the target and the second describes the landmark.
This distinction is learned in Stage 6 (details of how this is learned
are detailed in [1]).

START

TARGET_OBJECT

above

to_the_right_of

below

to_the_left_of

touching

directly

LANDMARK_OBJECT

and

END

Fig. 2. A grammar for combining object descriptions using relative
spatial terms.

Each word class in Figure 3 are a result of learning Stage 1.
As in Figure 2, transition probabilities are not shown in Figure 3
due to space restrictions.

Each word in the noun phrase language model is linked to an
associated visual model. The grounding models for one word class
are shown as an example in Figure 4. The words ‘dark’, ‘light’ and
‘white’ were clustered into a word class in Stage 1. The blue and
green color components were selected as most salient for this class
in Stage 2. The ellipses in the figure depict iso-probability con-
tours of the word-conditional Gaussian models in the blue-green
feature space learned for each word in Stage 3. The model for
‘dark’ specifies low values of both blue and green components,
whereas ‘light’ and ‘white’ specify high values. ’White’ is mapped
to a subset of ‘light’ for which the green color component is espe-
cially saturated.

4. LANGUAGE GENERATION

A planning system uses the grounded grammar to generate se-
mantically unambiguous, syntactically well formed, contextual-
ized text descriptions of objects in novel scenes. A concatenative
speech synthesis procedure is used to automatically convert the
text string to speech using the input training corpus. The final out-
put of the system are spoken descriptions of target objects in the
voice of the human teacher. The planner works as follows:

Stage 1: Generate Noun Phrases
Using the noun phrase model as a stochastic generator, the

most likely word sequence is generated to describe the target ob-
ject, and each non-target object in the scene. Each word cluster
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. Noun phrase structure acquired by DESCRIBER.
nodes labelled “TARGET OBJECT” and “LAND-

OBJECT” in Figure 2 encapsulate copies of this
re.
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Visual grounding of words for a sample word class. Each
in Figure 3 expands into a similar set of visual models de-
terms of a set of visual features selected in learning Stage

s a probability distribution function for each word within
ter. The Viterbi algorithm is used to find the most probable

rough the graph (Figure 3) given a target object’s visual fea-
he best path directly specifies a natural language referring
ion.
ge 2: Compute Ambiguity of Target Object Noun Phrase
ambiguity score is computed based on how well the phrase
ed in Stage 1 describes non-target objects in the scene. If
sest competing object is not well described by the phrase,
e planner terminates, otherwise it proceeds to Stage 3.
ge 3: Generate Relative Spatial Clause



A landmark object is automatically selected which can be used
to unambiguously identify the target. Stage 1 is used to generate a
noun phrase for the landmark. The phrase-based language model
is used to combine the target and landmark noun phrases.

Sample output is shown in Figure 5 for four novel scenes which
were not part of the training corpus. In each scene, the target ob-
ject is indicated with an arrow. Note that the descriptions take into
account the relative context of each target object. In the lower two
scenes, Stage 1 failed to produce an unambiguous noun phrase, so
DESCRIBER generated a complex utterance containing a relative
landmark. These descriptions represent DESCRIBER’s attempt to
strike a balance between syntactic, semantic, and contextual con-
straints.
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The dark purple rectangle touching
the light purple rectangle.

Fig. 5. Sample output generated by DESCRIBER for target objects
indicated by arrows in the images. Relative spatial clauses are
automatically generated to reduce ambiguity when needed (bottom
two scenes).

5. EVALUATION

We evaluated spoken descriptions from the original human-generated
training corpus and from the output of the generation system. Three
human judges evaluated 200 human-generated and 200 machine-
generated referring expressions. For each expression, judges were
asked to select the best matching rectangle. Table 1 shows the
evaluation results.

On average, the original human-generated descriptions were
correctly understood 89.8% of the time. This result reflects the in-
herent difficultly of the task. An analysis of the errors reveals that a
difference in intended versus inferred referents sometimes hinged
on subtle differences in the speaker and listener’s conception of a
word. For example the use of the terms “pink”, “dark pink”, “pur-
ple”, “light purple”, and “red” often lead to comprehension errors.
In some cases it appears that the speaker did not consider a second
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. Results of an evaluation of human and machine generated
tions (chance performance is 10%).
Judge Human-generated Machine-generated

(% correct) (% correct)
A 90.0 81.5
B 91.2 83.0
C 88.2 79.5
Average 89.8 81.3

in the scene which matched the description he produced.
e average listener performance on the machine-generated
tions was 81.3%, i.e., a difference of only 8.5% compared
esults with the human-generated set. An analysis of errors
that the same causes of errors found with the human set
re at play with the machine data. In addition, we found that
tem acquired an incorrect grounded model of the spatial
o-the-left-of” which lead to several generation errors. This
ily be resolved by providing additional training examples

demonstrate proper use of the phrase.

6. CONCLUSIONS

e presented an system which learns to describe objects in
scenes using show-and-tell training. The learning method
tes distributional (syntactic) and semantic cues to create
propriate word classes. A hierarchical statistical language
is acquired in terms of these word classes which enables
guage planner to generate natural language descriptions in
e to novel visual input. Currently we are migrating the

ructures and algorithms of DESCRIBER to a language un-
ding system which processes real-world visual input. This
rthers our long term efforts to develop systems which bridge
bolic world of language processing to the non-symbolic
f visual representations.
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