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Abstract

How do infants segment continuous streams of speech to discover words of their language?
Current theories emphasize the role of acoustic evidence in discovering word boundaries
(Cutler 1991; Brent 1999; de Marcken 1996; Friederici & Wessels 1993; see also Bolinger &
Gertsman 1957). To test an alternate hypothesis, we recorded natural infant-directed speech
from caregivers engaged in play with their pre-linguistic infants centered around common
objects. We also recorded the visual context in which the speech occurred by capturing
images of these objects. We analyzed the data using two computational models, one of which
processed only acoustic recordings, and a second model which integrated acoustic and visual
input. The models were implemented using standard speech and vision processing techniques
enabling the models to process sensory data. We show that using visual context in
conjunction with spoken input dramatically improves learning  when compared with using
acoustic evidence alone. These results demonstrate the power of inter-modal learning and
suggest that infants may use evidence from visual and other non-acoustic context to aid in
speech segmentation and spoken word discovery.

Introduction
Around their first birthday, infants first begin to use word 1 which refer to salient

aspects of their environment including objects, actions, and people. They learn these
words by attending to the sights, sounds, and other sensations. The acquisition process is
complex. Infants must successfully segment spoken input into units which correspond to
the words of their language. They must also identify semantic categories which
correspond to the meanings of these words. Remarkably, infants are capable of all these
processes despite continuous variations of natural phenomena and the noisy input
provided by their perceptual systems.

This paper presents a computational model of early word learning which addresses
three interrelated problems: (1) Segmentation of fluent speech without a lexicon in order
to discover spoken words, (2) Categorization of context corresponding the referents of
words, and (3) Establishment of correspondence between spoken words and contextual

                                                
1 The term “word” is used throughout this paper in accordance with Webster's Dictionary: “A speech

sound or combination of sounds having meaning and used as a basic unit of language and human
communication.”



categories. These three problems are treated as different facets of one underlying
problem: to discover structure across spoken and visual inpu 2.

This model has been implemented using standard speech and vision processing
techniques. It is able to learn from microphone and camera input (Roy 1999; Roy 2000).
We used the model to evaluate the benefit of inter-modal structure for the problem of
speech segmentation and word discovery. To gauge the relative usefulness of integrating
visual context, we also implemented a uni-modal system which discovered words based
on only acoustic analysis (i.e. without access to visual input). Our evaluations
demonstrate that dramatic gains in performance are attained when inter-modal
information is leveraged.  These results suggest that infants would also benefit from
attending to multimodal input during even the earliest phases of speech segmentation and
spoken word discovery. This work differs from previous computational models of
language learning (eg. Gorin 1995; Feldman et. al. 1996;  Siskind 1996) in that both
linguistic and contextual input are derived from physical sensors rather than relying on
human generated symbolic abstractions.

CELL: A Model of Learning from Audio-Visual Input
We have developed a model of cross-channel early lexical learning (CELL),

summarized in Figure 1. This model discovered words by searching for segments of
speech which reliably predicted the presence of visually co-occurring shapes. Input
consisted of spoken utterances paired with images of objects. This approximated the
input that an infant might receive when listening to a caregiver while visually attending to
objects in the environment.

A speech processor converted spoken utterances into sequences of phoneme
probabilities. We built in the ability to categorize speech into phonemic categories since
similar abilities have been found in pre-linguistic infants after exposure to their native
language (Kuhl et al. 1992; Werker & Tees 1983). At a rate of 100Hz, this processor
computed the probability that the past 20 milliseconds of speech belonged to each of 39
English phoneme categories or silence. The phoneme estimation was achieved by training
an artificial recurrent neural network similar to (Robinson 1994). The network was
trained with a database of phonetically transcribed speech recordings of adult native
English speakers (Seneff & Zue 1996). Utterance boundaries were automatically located
by detecting stretches of speech separated by silence.

A visual processor was developed to extract statistical representations of shapes
from images of objects. The visual processor used `second order statistics’ to represent
object appearance, as suggested by theories of early visual processing (Julesz 1971).  In a
first step, edge pixels of the viewed object were located. For each pair of edge points, the
normalized distance between points and the relative angle between the two edge points
were computed. All distances and angles were accumulated in a two-dimensional
histogram representation of the shape (the `second order statistics’).  Three-dimensional
shapes were represented with a collection of two-dimensional shape histograms, each
derived from a particular view of the object. To gather visual data for evaluation
experiments, a robotic device was constructed to gather images of objects automatically
(Figure 2). The robot took images of stationary objects from various vantage points. Each

                                                
2 In this paper we only discuss learning from audio-visual input. The underlying model is able to

learn from any combination of input modes, i.e. the model is not dependent on speech or vision. See (Roy
1999) for more details.



object was represented by 15 shape histograms derived from images taken from 15
arbitrary poses of the robot. The chi-squared divergence statistic was used to compare
shape histograms, a measure that has been shown to work well for object comparison
(Schiele & Crowley 1996).  Sets of images were compared by summing the chi-square
divergences of the four best matches between individual histograms.

Figure 1: The CELL model. Camera images of objects are converted to statistical
representations of shapes. Spoken utterances captured by a microphone are mapped onto
sequences of phoneme probabilities. The short term memory (STM) buffers phonetic
representations of recent spoken utterances paired with representations of co-occurring
shapes. A short-term recurrence filter searches the STM for repeated sub-sequences of
speech which occur in matching visual contexts. The resulting pairs of speech segments
and shapes are placed in a long term memory (LTM). A filter based on mutual
information searches the LTM for speech-shape pairs which usually occur together, and
rarely occur apart within the LTM. These pairings are retained in the LTM, and rejected
pairings are periodically discarded by a garbage collection process.

Phonemic representations of multi-word utterances and co-occurring visual
representations were temporarily stored in a short term memory (STM). The STM had a
capacity of five utterances, corresponding to approximately 20 words of infant-directed
speech.  As input was fed into the model, each new [utterance,shape] entry replaced the
oldest entry in the STM. A short-term recurrence filter searched the contents of the STM
for recurrent speech segments which occurred in matching visual contexts. The STM
focused initial attention to input which occurred closely in time. By limiting analysis to a
small window of input, computational resources for search and memory for unanalyzed
sensory input are minimized as is required for cognitively plausibility.

To determine matches, an acoustic distance metric was developed (Roy 1999) to
compare each pair of potential speech segments drawn from the utterances stored in
STM. This metric estimated the likelihood that the segment pair in question were
variations of similar underlying phoneme sequences and thus represented the same word.
The chi-squared divergence metric described earlier was used to compare the visual
components associated with each STM utterance. If both the acoustic and visual distance



were small, the segment and shape were copied into the LTM. Each entry in the LTM
represented a hypothesized prototype of a speech segment and its visual referent.

Figure 2: A robot was built to capture images of objects from multiple vantage points.
The schematic on the right shows the five degrees of freedom of the imaging system
including a turntable for rotating objects. As can be seen from the photograph on the left,
the system was designed as a synthetic character to experiment with notions of embodied
human-computer interfaces (see Roy, 1999; Roy et al. 1997).

Infant-directed speech usually refers to the infant’s immediate context (Snow
1977). When speaking to an infant, caregivers rarely refer to objects or events which are
in another location or which happened in the past. Guided by this fact, a long-term
mutual information filter assessed the consistency with which speech-shape pairs co-
occurred in the LTM. The mutual information (MI) between two random variables
measures the amount of uncertainty removed regarding the value of one variable given
the value of the other (Cover & Thomas 1991). Mutual information was used to measure
the amount of uncertainty removed about the presence of a specific shape in the learner’s
visual context given the observation of a specific speech segment. Since MI is a
symmetric measure, the converse was also true: it measured the uncertainty removed
about the co-occurrence of a particular speech segment given a visual context. Speech-
shape pairs with high MI were retained, and periodically a garbage collection process
removed hypotheses from LTM which did not encode associations with high MI.

RECUR: A Model of Learning from Acoustic Input
For comparative purposes, we developed a second model, RECUR, which

segmented speech using only acoustic information (Figure 3). The acoustic processing in
RECUR was identical to that in CELL allowing us to compare them with the same
evaluation data.

 RECUR discovered words by searching for recurrent sequences of speech sounds.
The underlying idea of the model, common in current theories of speech segmentation
(Brent 1999; de Marcken 1996), is that the learner views language as constructed by an
underlying process which concatenates words to generate utterances. By noticing sub-
sequences of speech which often recur, the learner can detect common words and begin
to segment fluent speech at word boundaries.



Figure 3: The RECUR model. Acoustic waveforms recorded by a microphone are
converted to phoneme probabilities. Utterances are buffered by a short term memory
(STM) and provide input to a recurrence filter which searches for repeated sequences of
speech within the STM. The result is a set of speech segments which are stored in the
long term memory (LTM). A second recurrence filter searches for entries in LTM which
are repeated often across long spans of time. Such repetitions are evidence that the
segment represents a word of the target language and is retained in LTM. A garbage
collection process periodically removes segments from LTM which fail to pass through
the long-term recurrence filter.

Infants are unlikely to search for all possible matches of speech segments across all
spoken utterances which they have heard. Such recurrence analysis would require huge
amounts of memory for verbatim speech, and would demand impractical computational
resources. As suggested by theories of human memory (Miller 1956), our model eases the
resource requirements by first searching for recurrent phonemic sequences in a short term
window of input. The model performed an exhaustive search for repeated segments in the
STM each time a new utterance was added. Recurrent speech sequences were extracted
from the STM and copied into LTM. A second recurrence detector compared all LTM
segments to one another using the same acoustic distance metric used on the STM.
Segments in the LTM which were phonemically similar to many other speech segments
in LTM were retained as reliable word candidates. Periodically, unlikely hypotheses
which did not match other entries in the LTM were removed by a garbage collection
process.

Evaluation
We evaluated the models by collecting speech and images similar to what an infant

might observe during natural play with caregivers. Each model was then effectively “put
in the infant’s place” to test whether it would learn words similar to what an infant might
be expected to learn. A study involving six caregivers and their prelinguistic infants was
conducted to gather a corpus of infant-directed speech. The participants were asked to
engage in play centered around seven types of objects. The speech was then coupled with
sets of images of these objects and used as input for the model.



All six participants were female and responded to a classified advertisement placed
in a local newspaper. The infants (five males, one female) ranged in age from 8-11
months. Participants were asked to interact naturally with their infants while playing with
a set of age-appropriate objects. We chose seven classes of objects commonly named in
early infant speech (Huttenlocher & Smiley 1994): balls, toy dogs, shoes, keys, toy
horses, toy cars, and toy trucks. A total of 42 objects, six objects from each class, were
obtained.

Each caregiver participated in six sessions of play with their infants over a two day
period. For each of the six sessions, participants were provided with a set of seven
objects, one from each of the seven object classes. The order in which object sets were
provided was randomized across participants. The objects were placed in a box marked
``in-box" at the start of each session. Participants were asked to take out one object at a
time, play with it, and then return it to an ``out-box". They were not told to teach their
infants words. Participants were free to choose the order in which objects were selected
for play, and the duration of play with each object.

The speech recording of each session was automatically segmented into utterances.
The robotic armature was used to gather a set of images of each object from various
angles, approximating what the infant saw during play sessions. A set of 209 images were
captured of each object from varying perspectives resulting in a database of 8,778
images. For each utterance, we randomly selected 15 images of the object which was in
play when the utterance was recorded. These 15 images were paired with the utterance
and presented as input to the models. The models were run separately on the speech
recordings of each caregiver. For each caregiver, the model generated a set of output
speech segments (RECUR), or speech-shape pairs (CELL). By testing both models with
identical spoken input, we were able to determine the value, if any, in additionally
providing visual context.

For each speech segment identified by the model, we evaluated two measures of
accuracy. Measure 1 assessed segmentation accuracy: Did the segment start and end at
English word boundaries? Measure 2 assessed word discovery: Did the speech segment
correspond to a single English word? We considered words with attached articles and
inflections as acceptable by Measure 2. We also allowed initial and final consonant errors
for Measure 2, but not Measure 1.

Measure 1, segmentation accuracy, posed an extremely difficult challenge when
dealing with acoustic data. For RECUR, 7 ± 5 % of segment boundaries corresponded to
boundaries of English words. In contrast, 28 ± 6 % of segment boundaries extracted by
CELL were chosen at actual words boundaries. For Measure 2, word discovery, almost
three out of four speech segments (72 ± 8 %) acquired by CELL were single, complete
English words. In contrast, performance for RECUR dropped to 31 ± 8 %.

The output of CELL was measured for semantic accuracy (Measure 3): How often
did an output speech segment pass Measure 2 and also get paired with a semantically
appropriate visual prototype? Since RECUR did not process visual data, this measure
could not be meaningfully applied to its output. CELL achieved 57 ± 10 % on this
measure. This result shows that the visual semantics derived from context was connected
to appropriate words in a significant number of cases (random guessing of the meaning of
a speech segment would yield a maximum of 14%). Recall from earlier that we had set
out to address three problems of early word learning: word discovery, contextual
categorization, and establishing word-context correspondences. CELL achieves each in a



unified framework. Speech segments corresponding to prototypes of spoken words are
extracted from continuous speech. Visual prototypes corresponding to words are
identified and associated, in many cases, with appropriate spoken words.

Conclusion
CELL was able to learn spoken words and their visual groundings from multimodal

sensory data. Comparisons with the acoustic-only RECUR model demonstrate the benefit
of incorporating cross-modal information into the word discovery process. The inter-
modal structure lead to a 2.3-fold increase in word discovery accuracy compared with
analyzing structure within the acoustic channel alone. For speech segmentation, the
improvement was even larger, four-fold. These result have implications for understanding
language acquisition in infants. Rather than segment speech as a preparatory step towards
acquiring sound-to-meaning mappings, a more efficient strategy could be to combine the
segmentation process with the mapping process at the earliest stages of language
learning. The additional structure from the contextual channels may accelerate the overall
process of early lexical acquisition.

We often think of learning as consisting of discrete stages. In the case of learning
early words, two natural alternatives come to mind. On one hand, perhaps infants learn
early concepts and then look for spoken labels to fit these concepts. On the other hand,
they might first learn salient speech sequences and then look for their referents. Our
model and experiments verify that a more closely knit process in which the two “stages”
in fact occur together is advantageous for the learner. By taking this approach, the learner
is able to leverage information captured in the structure between streams of input.
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