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Abstract

Recent psycholinguistic experiments show that acoustic
and syntactic aspects of online speech processing areinfluenced
by visual context through cross-modal influences. During inter-
pretation of speech, visual context seems to steer speech pro-
cessing and vice versa. We present a real-time multimodal sys-
tem motivated by these findings that performs early integration
of visua contextua information to recognize the most likely
word sequences in spoken language utterances. The system
first acquires a grammar and a visually grounded lexicon from
a “show-and-tell” procedure where the training input consists
of camera images consisting of sets of objects paired with ver-
bal object descriptions. Given a new scene, the system gener-
ates a dynamic visually-grounded language model and drives a
dynamic model of visual attention to steer speech recognition
search paths towards more likely word sequences.

1. Introduction

Recent psycholinguistic experiments[1] have shown that acous-
tic and syntactic aspects of online spoken language comprehen-
sion are influenced by visua context. During interpretation of
speech, partialy recognized utterances seem to incrementally
steer the hearer’s visual attention [2] and vice versa, visual con-
text steers speech-processing [3]. We consider here the prob-
lem in which spoken language is used to make reference to ob-
jects in a physical environment. This problem highlights the
importance of applying contextual knowledge from the environ-
ment to anticipate words and phrases that the spoken utterance
islikely to contain.

We describe an on-line, real-time, multimodal processing
system that performs speech recognition using visualy steered
dynamic language models. The system processes referring ex-
pressions such as "the large green block beneath the red and
the yellow blocks’. Figure 1 provides an overview of how the
system integrates speech with visual context. The visua scene
analysis module detects objects in a given scene and extracts a
set of visual features representing individual objects and inter-
object spatial relations. The language model generation com-
ponent acquires visually-grounded word semantics from a set
of visual features and generates adynamic class conditional lan-
guage model [4, 5] each time anew sceneis presented. For each
object in the scene, the model estimates the class-conditional
word likelihoods using the acquired visual semantics. During
speech recognition, partially decoded utterances feed back to a
visual attention module, which distributes visual attention over
the set of objects by updating a probability mass function over
objects. As decoding proceeds, visual and linguistic informa-
tion reinforce each other, to recognize the mostly likely word
sequence in the utterance.

dkroy@redi a. m t. edu

4 - Visual Foreground/
i = Analysis Background
System Color Models

Visual Features

Visually-Steered
Language Model

Linguistic-Driven

) Visual Attention
Visual

Generator )
Attention | SE€nerator
time: t +1 .
Dynamic Partial
Language Model Hyp_otheses
time: t L_attlce
time: t +1

WW 2Zigg:ition

Figure 1. The schematic system overview.

To study therole of visual context in spoken language com-
prehension, we developed a scene description task similar to
[6]. Participants in a data collection study were asked to ver-
bally describe objectsin scenes comprising of large Lego bricks
(Figure 2) without restrictions on the vocabulary, style or length
of descriptions. The system acquired a grammar and visually
relevant vocabulary from the training input consisting of a set
of cameraimages and spoken descriptions of objectsin the im-
ages. The system was evaluated on the training input in aleave-
one-speaker-out fashion with and without the accompanying vi-
sual information to study the effect of visual information on the
speech recognition performance.

This work will be applied to improve speech recognition
and understanding in a conversational robot under construction
in our lab. Thisresearch may also find application in areas that
involve speech recognition / understanding on portable devices
such as wearable computers and handhelds that are context-
aware through a range of modalities such as location (GPS),
time of day, etc. For example, the speech processing perfor-
mance of a context-aware travel assistant may be improved if
it applies user context and other modalities to " second guess’
what the user is likely to say.

The remainder of this paper proceeds by first describ-
ing the visual analysis system. Section 3 describes the visu-
ally grounded language model generation module. This mod-
ule learns to map from visual scenes to descriptive word se-
quences. This visual-to-language mapping serves as a basis
for our model of linguistically-steered visua attention, and our
model of visualy-steered language models. Section 4 and 5
present the dynamic integration of visual information into the
speech recognition, followed by evaluation and concluding re-
marks.
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Figure 2: The object detection procedure.

2. Visual Scene Analysis System

Thevisual analysissystem, similar to the system reportedin [7],
supports tracking of multiple partially occluded solid-colored
objects placed on atable top in real-time. The system detects
objectsin ascene and extracts object properties and inter-object
spatial relationships that are passed to the language model gen-
eration module as well asthe visual attention module.

Figure 2 describes object detection combining local edge
finding with color model based foreground/background separa-
tion. Once objects are detected, intra-object features including
object color, shape, height, width, area, center, height-to-width
ratio and ratio of maximum dimension to minimum dimension
are extracted. Inter-object spatial relations including center-of-
mass di stances between objectsand others similar to [8] arealso
extracted from the images.

3. Visually-Grounded L anguage M odel
Generation

The language model generation system performs automatic ac-
quisition of visual semantics of individual words and grammar
to generate dynamic class conditional language models repre-
senting agiven visual scene. Thetraining data consists of visual
feature vectors extracted from the scene analysis system paired
with transcriptions of expressions referring to target objects.

3.1. Learning
3.1.1. Word Class Formation

In order to generate dynamic class conditional language mod-
els depicting objects in a scene, word classes that integrate se-
mantic structure of visually relevant words must be learned. A
weighted combination of two methods of clustering words into
syntactically equivalent classeswasinvestigated. Thefirst relies
on distributional analysis of word bigram occurrence patterns
[9]. The second method clusters words that co-occur in similar
visual contexts [4]. This method uses shared visual grounding
as abasis for word classification.

3.1.2. Grounding Word Semantics

A subset of visual featuresis automatically selected and associ-
ated with each word class. Thisis done by a search agorithm
[6] based on Kullback-Leibler divergence that finds the subset
of visual features for which the distribution of feature values
conditioned on the presence of the word is maximally divergent
from the unconditioned feature distribution. For each word (to-
ken type), amultidimensional Gaussian model of feature distri-

butions is computed using all observations that co-occur with
that word using the feature subset associated with the corre-
sponding word class.

3.1.3. Learning Word Order

A class-based bigram statistical language model [4] is esti-
mated (based on frequency) to model the syntax of referring
expressions. Visually “ungrounded” words form singleton word
classes (classes with only one member). The bigram statistical
language model representing the word class syntax is learned
from the training data in a leave-one-speaker-out form. The
model is static and does not change with the visual scene.

3.1.4. Spatial Terms Acquisition based on Focused Training

To learn spetial relations between a target and a landmark ob-
ject, a user interface was created to enable the user to load an
image on the screen and typein spatial phrases such as” above”,
"below” and "left_of”. Participantswereinstructed to select two
objects from the scene that he or she found suitable to serve as
the target and the landmark objects for the spatial phrase. Spa-
tial relations between the target and the landmark objects are
extracted by the visual analysis system and a multidimensional
Gaussian model iscomputed for each of the spatial lexical items
using all observations that co-occur with the lexical item.

3.2. Generation of Dynamic L anguage M odelsUsing Visual
Features

3.2.1. Generation of Object based Descriptions

The generation problem is treated as a two-step constrained
search problem. The first considers syntactic constraints that
determine the sequence of classesinaT length description. The
second constraint is semantic. The semantic constraints select
individual words from the word classes that best fit the visual
features of the target object.

Syntactic Constraints. The acquisition algorithm described
in the previous section generates a static class-based bigram lan-
guage model that incorporates the entire vocabulary of the task.
A subset language model of word classes representing visually
relevant object propertiesis chosen. The subset language model
serves as a class based finite state search space. Every possible
word class sequence is generated for descriptions of increasing
length T for each of the objectsin the scene.

Semantic Constraints: Each word class C; in an utterance
may be mapped to a word by choosing the word C;(j) from
the class C; which maximizes the probability of the target ob-
ject z. Equal priors are assigned to words in aword class, i.e.,
P(C;(3)|C;) issamefor every C;(5) in C;.

3.2.2. Scoring based on Contextual Constraints

The utterances generated by the method described above can
be ambiguous. Non-target objects in the scene might acciden-
tally match a generated description. Thus, the descriptions are
rescored based on a measure of ambiguity [6] in the context
of the set of remaining objects. This score finds the closest
matching non-target and computes the likelihood ratio of the
non-target to target semantic match.

3.2.3. Generation of Class Conditionals of Intra-Object Lexi-
cal Items

The lexical items in the rescored descriptions are mapped back
to their word classes. For a given word class occurrence in a



given object description, a word occurrence is estimated by the
weighted average over the probability scores over al the words
in the word class based on the object features. The word class
counts as well as the word counts are &l so weighted by the score
of the description they belong to. The procedure estimates class
conditionals in the form P (word|word_class, object) for dll
objects in the scene.

3.2.4. Generation of Spatial Language Model

To deal with complex descriptions that comprise more than one
object and arelative spatia term, we generate aspatial language
model. For every possible combination of target and landmark
objectsin the scene, we use the Gaussian model s to score spatial
terms given the combination. We generate a language model
of the form of P(target, spatial_term,landmark) where
target and landmark are the target object id and the landmark
object id.

4. Speech Recognition Using Visual Context

Our continuous speech recognition system [10] aims to search
for the word string W’ such that

W' = argmax P(A|W)P(W)

The effect of visual contextual information does not play any
role to infer on P(A|W) since they are estimated from the
acoustic signal done. The visualy steered linguistic models
generated by the methods described in section 3 are used to
evauate P(W).

Suppose W isaword string suchthat W = w, wa, ..., Wy,
then a class-based bigram language model [4] approximates
P(W)as

P(W) = P(wilc1)P(Cs|ct)...P(cn|cn—1)P(wn|cn)

The factor P(c;|ci—1) is estimated from the static class
based |eave-one-speaker-out bigram language model . The
dynamic class conditional language models generated by the
methods described in section 3 to evaluate P(w;|c;). We con-
sider three cases

e w; isavisualy grounded word depicting an intra-object
property: We linearly interpolate the generated class
conditionals over the number of objects in the scene to
evaluate P(wj|c;)

P(wi|ci) = Ejzl)\]-P(wi|ci,object]-), E?Zl/\j =1

where \; denotes the prior of the class conditional of the
jen Object and n isthe number of objectsin the scene.

e w; isavisualy grounded word depicting a spatial rela-
tion: We perform alinear interpolation over the spatial
language model. The interpolation isin the form of

P(wi|ci) = L}y \j P(wilci, target_object;),
SN =1
The spatial language model generated by methods de-

scribed in Section 3 isused to derive the probability mass
functions in the form of

P(spatial term|wordclass,target_object)

e w; isavisualy ungrounded or visually irrelevant word:
P(w;]c;) is estimated from the static |leave-one-speaker-
out corpus.

The priors provide a measure of visual attention in con-
text of the current scene. Their values are determined dynami-
cally from active partial utterance hypotheses during the Viterbi
search.

5. Using Incremental Speech Processing to
Drive Visual Attention

The Visual Attention model enables the early integration of vi-
sual context to provide dynamic re-estimation of the priors as-
sociated with the interpolated class conditional probabilities. In
other words, the model uses the visua context to immediately
determine the attention distribution spread over the objects in
the current scene. Given a partial utterance hypothesis, the
model rank-orders and scores each object in the current scene
based on the visua semantic fit over the partially decoded ut-
terance. These scores are used as the interpolation weights to
calculate the class conditional in the form of P (w;|c;).

The priors lambdaj;, j = 1,...,n gets dynamically up-
dated when the decoder search agorithm leaves a state that
marks the end of aword w,,. The partial hypothesisisof length
m a this point. From the nature of the collected utterances,
there exist three cases that are described below:

e w,, is avisualy relevant word depicting intra-object
property, for example "large”, "vertical”, etc. Here, the
update ruleis as follows

P'(objectj|wy) = P(zj|wm)P(objectj|wm—_1),
j=1,2,..n

where z; isthe visua feature subset of object;. There-
fore

__ P'(object;|wm) o

)\j—m, ]—1,2,...,”

® w,, isavisualy relevant word depicting a spatial rela-
tion, for example "above’, "beneath” and so on. Here,

the update rule isin the form

P'(objectj|wm) =
i1,z P(object|wm, object;) P(objecti|wm—1)

i=1,2,...,n

where P(object;|wm, object;) is derived from the dy-
namic spatial language model. Again,

P'(object;|wym)

)‘j B, P'(objecti|wm)’

ji=1,2..n
e w,, isavisualy irrelevant or ungrounded word such as
"the”, "by”, etc. In this case, we have the following up-

daterule:

P’ (object;|wy) = yP(object;|wm—1),
i=1,2,..n

where «y is a constant score given to the likelihood of
ungrounded words. The priors are updated by the same
rules described above.

A detailed example of the visual attention procedure is pre-
sented through figure 3. Each plot shows the spread of attention
across the ten objects in the scene after integrating the words
shown in the left of the plot. This occurs for all active partialy
decoded hypotheses but only the hypothesis contai ning the most
likely word sequence is shown in the plot. Words that have no
visually-grounded models have no effect on visual attention and
are not shown in the diagram.
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Figure 3: Dynamic update of visual attention.

6. Evaluation

As apreliminary evaluation, a dataset of 990 utterances paired
with corresponding visual camera images was collected from
eight speakers. Each utterance describes one object in a scene
of ten objects. The system acquired a visually-grounded vo-
cabulary from the entire dataset. A |eave-one-speaker-out class
based bigram language model was trained from the dataset.

To study the effect of visua context on speech processing,
the speech recognition performance accuracy of the system was
evaluated with and without the accompanying visual informa-
tion. During the evaluation without visual context, the class
conditionals were distributed equally among words occurring in
the same word class for all visually relevant word classes. The
introduction of visual context led to a 31.3% reduction in word
error rate, a significant improvement over the baseline system.

Table 1 compares the speech recognition word error rates
averaged across al eight speakers with and without the visual
context.

Table 1: Speech recognition word error rates (%). Averaged
across al eight speakers, the introduction of visual context re-
duced the word error rate by 31.3%.

Speaker | No Visual Context | With Visual Context
1 28.2 21.7
2 24.6 14.3
3 26.9 17.2
4 23.7 16.6
5 19.2 145
6 21.3 133
7 24.3 17.1
8 26.0 18.8
Ave 24.3 16.7

7. Conclusion and Future Directions

We have presented a complete multimodal system which per-
forms early integration of visual context into speech process-

ing using visually-steered language models to recognize spo-
ken language utterances. The semantics of referring expressions
aregrounded in visual primitivesfrom the physical environment
provided by a real-time visua system. The system uses color,
geometry, and spatial relations to anticipate words and phrases
in spoken language utterances.

We are expanding this work in two ways. First, we are per-
forming experiments in which human listeners replace our sys-
tem and find objects in scenes based on spoken descriptions.
While they perform the listening task, we will record their eye-
movements using a head-worn eye tracker. We will compare
the evolution of visual attention in our system to that of human
participants. Potential outcomes of this work include cognitive
models of how people perform situated language comprehen-
sion, and new insights into how to design our systems. Second,
we are investigating integration of other non-visual sources of
context for other application domains including assistive com-
munication aids.
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