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Abstract

Fuse is a situated spoken language understanding system that uses visual context to steer the interpre-

tation of speech. Given a visual scene and a spoken description, the system finds the object in the scene that

best fits the meaning of the description. To solve this task, Fuse performs speech recognition and visually-

grounded language understanding. Rather than treat these two problems separately, knowledge of the vis-

ual semantics of language and the specific contents of the visual scene are fused during speech processing.
As a result, the system anticipates various ways a person might describe any object in the scene, and uses

these predictions to bias the speech recognizer towards likely sequences of words. A dynamic visual atten-

tion mechanism is used to focus processing on likely objects within the scene as spoken utterances are proc-

essed. Visual attention and language prediction reinforce one another and converge on interpretations of

incoming speech signals which are most consistent with visual context. In evaluations, the introduction

of visual context into the speech recognition process results in significantly improved speech recognition

and understanding accuracy. The underlying principles of this model may be applied to a wide range of

speech understanding problems including mobile and assistive technologies in which contextual informa-
tion can be sensed and semantically interpreted to bias processing.
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1. Introduction

Modularity is a central principal in the design of complex engineered systems, and is often pos-
tulated in theories of human cognition (Fodor, 1983; Hirschfeld and Gelman, 1994). Modules
operate as encapsulated ‘‘black boxes’’ that can only access other modules through well-defined
interfaces. Access to internal data structures and processing across modules is usually restricted.
Studies of human behavior, however, sometimes reveal surprising breaches of modularity. For
example, recent psycholinguistic experiments have shown that acoustic and syntactic aspects of
online spoken language comprehension are in fluenced by visual context. During interpretation
of speech, partially heard utterances have been shown to incrementally steer the hearer�s visual
attention (Spivey et al., 2001), and conversely, visual context has been shown to steer speech
processing (Tanenhaus et al., 1995; Spivey-Knowlton et al., 1998). Motivated by these findings,
we have developed a spoken language understanding system in which visual context primes early
stages of speech processing, resulting in significantly improved speech recognition and under-
standing accuracy.

The development of robots provides an exemplary problem that suggests modular design. In
practically all robots, the perceptual, planning, motor control, and speech systems (if any) operate
independently and are integrated through relatively high level interfaces. In this paper, we con-
sider the design of a speech understanding system that will eventually provide speech processing
capabilities for an interactive conversational robot (Hsiao et al., 2003; Roy et al., in press). A
straight forward approach would be to take an off-the-shelf speech recognition system and con-
nect its output to other modules of the robot. We argue, however, that by treating the speech rec-
ognizer as a black box that is unaware of the contents of other modules, valuable contextual
information is lost. Since high accuracy speech recognition in natural conditions remains unat-
tainable, leveraging information from other channels can be of immense value in improving
performance.

We have addressed the problem of understanding spoken utterances that make reference to ob-
jects in a scene. We make the simplification that the system can assume that all utterances contain
references to objects in the immediate environment. Clearly, this assumption is not always valid
since people often talk about things that are not in the here-and-now, and not all speech acts are
descriptive. Thus, our current work represents one component of a larger effort which will even-
tually incorporate speech act classification to determine when visual context should be used to
constrain the analysis of utterances.

Based on our assumption of immediate reference, knowledge of the visual environment is used
by the system to anticipate words and phrases that the speaker is likely to choose. A challenge in
this approach is that there are typically numerous potential referents in environments of even
moderate complexity. Since the system does not know, a priori, which referent the speaker intends
to describe, the system must anticipate descriptions of all potential referents. In most situations,
many choices of words might fit the same referent. Furthermore, since the contents of the scene
are determined by visual analysis, scene information is bound to be noisy and of variable
reliability.

Our approach is to jointly infer the most likely words in the utterance along with the identity of
the intended visual referent in a unified multimodal stochastic decoding framework. This ap-
proach has been implemented in an on-line, real-time multimodal processing system. Visual scene
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analysis reaches into the core of the speech recognition search algorithm and steers search paths
towards more likely word sequences. The semantic content of partially decoded spoken utter-
ances, in complement, feed back to the visual system and drive a dynamic model of visual atten-
tion. As processing proceeds, linguistic and visual information mutually reinforce each other,
sharpening both linguistic and visual hypotheses as sensory evidence accumulates. We show that
the integration of visual context leads to substantial improvements in speech recognition and
understanding accuracy. We believe that the strategic introduction of cross-module bridges
may be an important design principle in a wide range of applications beyond the specific system
presented.

After providing some background remarks, we introduce the task we used for our experiments.
Section 3 provides an overview of our approach. Subsequent sections provide details on aspects of
this approach, followed by experimental evaluations.
2. Background

Integration of spoken and visual input has been investigated in a wide range of domains.
It is useful to distinguish two broad classes of tasks. Let S and V denote the speech and
visual input signals, respectively. The speech signal�s primary role is to encode sequences
of words. Prosodic aspects of speech also encode affective, syntactic, and stress information.
All information in S convey the speaker�s intent. In contrast, V may carry two distinct
kinds of information, depending on the task. Consider first the problem of audiovisual lip-
reading. In this task, visual input typically consists of images of the speaker�s lips as they
speak. In this case, the kind of information carried in V is the same as S. The visual chan-
nel provides complimentary or redundant aspects of the surface form of words. This com-
plementarity of encodings of word surface forms can be leveraged to increase speech
recognition accuracy. For lipreading, we can say that V = Vi, where i reminds us that the
purpose of the visual channel is to indicate intentions. Lip motions are part of the speaker�s
way of conveying his/her intentions. A related problem that has received significant attention
is the integration of speech with visually observed gestures made by pen or mouse (Oviatt,
1999; Johnston and Bangalore, 2000). For example, Johnston and Bangalore (2000) devel-
oped a speech and gesture understanding system in which a finite state automaton jointly
processes speech (S) and gesture (Vi) signals to produce a semantic interpretation of multi-
modal input. Although gestures are very different in nature from the motion of lips, broadly
speaking, both belong to the same class of Vi since gestures also play the role of indicating
the speaker�s intentions.

In contrast, consider the problem of building a speech understanding system for a robot in
which the visual input comes from a camera mounted on the robot, looking out into the robot�s
environment. The speaker asks the robot to pick up a red block. The visual channel might capture
the speaker, complete with lip movements and other body gestures. However, the visual signal will
also contain information about the robot�s situational context, which in this case may include a red
block. We indicate this kind of visual information by saying V = Vi + Vc, where Vc denotes con-
textual information captured in the visual signal. If the speaker is not in view, then V = Vc. The
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contents of Vc are fundamentally different from Vi since S may be about aspects of Vc but not, in
general, Vi.

1

The focus of this paper is for a task in which V = Vc, i.e., the visual input contains purely con-
textual information. In contrast to lipreading and gesture understanding problems, we will instead
investigate the semantic referential content of the visual signal and how it can be integrated with S

in useful ways for a real-time multimodal understanding system.
Most previous work on integrating visual context (Vc) with speech/language understanding

have all used modular, late integration across modalities. SAM (Speech Activated Manipulator)
(Brown et al., 1992) is a robotic system with sensory capabilities that interacts with a human con-
versation partner through spoken language dialog. Speech recognition and visual analysis are
integrated at a relatively late stage through an augmented transition network that operates on
a frame-based knowledge representation. Crangle and Suppes (1994) have proposed an approach
to verbal interaction with an instructable robot based on a unification grammar formalism. They
have examined the use of explicit verbal instructions to teach robots new procedures and have
studied ways a robot could learn from corrective user commands containing qualitative spatial
expressions. Although speech may provide linguistic input to their framework, there is no mech-
anism for propagating semantic information to the speech recognizer due to the modular design
of their model. Wachsmuth and Sagerer (2002) presents a probabilistic decoding scheme that
takes the speech signal and an image or image sequence as input. The speech signal is decoded
independent of the decoding of the image data. A Bayesian network integrates speech and image
representations to generate a representation of the speaker�s intention. In summary, all of these
systems integrate spoken language with visual context, but the conversion of speech to text occurs
in a contextual vacuum.

In our own previous work, we developed a trainable spoken language understanding system
that selects individual objects on a table top in response to referring spoken language expressions
(Roy et al., 2002). The system combines speech recognition output and image representations gen-
erated by a visual analysis module to point to objects that best fit spoken descriptions. Similar to
the other work cited above, speech and visual processing occurred independently. In contrast,
through the development of Fuse we have explored tight integration of visual context into speech
processing.
3. Overview

To study the role of visual context in spoken language comprehension, we chose a constrained
scene description task. Participants in a data collection study were asked to verbally describe ob-
jects in scenes consisting of oversized Lego blocks (Fig. 1). No restrictions were placed on the
vocabulary, style, or length of description. Typical descriptions ranged from simple phrases such
as, ‘‘The green one in front’’ to more complex utterances such as,‘‘The large green block beneath
1 One can imagine rare exceptions to this. A person, while waving their arm in some manner, might say, ‘‘It hurts

when I do this’’, where, ‘‘this’’ refers to the gesture. As a first approximation, we can ignore such cases and treat Vi and

Vc as distinct.



Fig. 1. A typical visual scene in the current experimental task.
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the smaller red and yellow ones’’. The result of this data collection was a set of images paired with
spoken descriptions of objects in the images.
3.1. Language modeling

Speech recognition is most commonly formulated in a maximum likelihood framework (Bahl
et al., 1983). Given an observed spoken utterance, X, we wish to choose a word string bW such that
bW ¼ W
argmax

P ðX jW ÞP ðW Þ: ð1Þ

The terms P(XjW) and P(W) correspond to an acoustic model and language model, respectively.
In conventional speech recognition systems, the acoustic model captures the acoustic properties of
speech and provides the probability of a speech observation given hypothesized word sequences.
In audio–visual speech recognition systems, speech observations include both acoustic and visual
information.

The language model, P(W), provides probabilities of word strings W based on context. In prac-
tically all speech recognition systems, this context is a function of the history of words that the
speaker has uttered. In contrast, our approach is to dynamically modify P(W) on the basis of vis-
ual context (Vc).

Since our focus will be on dynamic language models, we provide a brief review of n-gram sta-
tistical language models which will serve as a basis for our cross-modal extension. The n-gram
model assigns probabilities to hypothesized word sequences. The probability of a word sequence
W = w1,w2, . . . ,wk which we denote as wk

1, can be expressed as a product of conditional
probabilities
Pðwk
1Þ ¼ Pðw1ÞP ðw2jw1Þ . . . P ðwkjwk�1

1 Þ: ð2Þ

Within the term Pðwkjwk�1

1 Þ, wk�1
1 is called the history and wk the prediction. In the n-gram ap-

proach, two histories are treated as identical when they end in the same n � 1 words. For example,
with n = 2, we obtain a bigram language model
PðwkÞ ¼ Pðw ÞP ðw jw Þ . . . P ðw jw Þ: ð3Þ
1 1 2 1 k k�1
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Many extensions to basic n-gram language models have been proposed such as variable length
histories (Niesler and Woodland, 1999) and long distance dependencies (Iyer and Ostendorf, 1999;
Rosenfeld, 1996) (for a review of these and other methods, see Rosenfeld, 2000). Our goal is to
introduce a form of visually-driven semantic priming into the statistical language model of a
real-time speech recognizer. In principal, other n-gram extensions such as those mentioned above
can be augmented with visual context in the way that we propose. For simplicity, we have chosen
to work with the bigram language model which has sufficient modeling power for the present
scene description task.

The parameters of a bigram model are usually estimated from a large text corpus. Given a
training corpus of size T words in which word w occurs jwj times, the maximum likelihood
estimate of P(w) is jwj/T. The maximum likelihood estimates for the conditional terms P(wi/
wi� 1) are given by jwi� 1,wij/jwij where jwi� 1,wij is the number of times the sequence wi� 1,wi

occurs in the training corpus. Some form of smoothing is necessary since the vast majority of
n-grams rarely occur (for an overview of smoothing small sample counts, see Jurafsky and
Martin, 2000).

Words may be clustered into equivalence classes leading to n-gram class models (Brown et al.,
1992). For example, if the distribution of words in the neighborhood of Monday and Tuesday are
believed to be similar, the words can be clustered, and treated as equivalent for language mode-
ling. The principal benefit of creating word classes is that we are able to make better use of limited
training data to make predictions for word histories that are not encountered in training. We can
partition a vocabulary into word classes using a function which maps each word wi to its corre-
sponding class c(wi). For bigram class models
P ðwijwi�1Þ ¼ P ðwijcðwiÞÞP ðcijci�1Þ: ð4Þ

Standard word bigrams are a special case of bigram class models in which each word is mapped to
a unique word class.
3.2. Visual-context sensitive language models

Fig. 2 illustrates our approach to integrating visual context with speech processing in a model
called Fuse. Input consists of a speech signal paired with an image. Fig. 1 is representative of
images in the current task, captured by a color video camera. The speech signal is recorded from
a head-worn microphone. The spoken utterances used for evaluations consisted of naturally spo-
ken, fluent speech.

The visual scene analysis module detects objects in the scene and extracts a set of visual features
that represent individual objects, and intra-object spatial relations. The results of the scene anal-
ysis are accessible by two modules: a language model, and a visual attention model. As the speech
signal is processed, both the language and attention models are dynamically updated.

To understand the main processing loop in Fig. 2 and the role of the language. model and visual
attention model, we will work through a simple example. Let us consider a situation in which a
speaker says, ‘‘The red block on the left’’ in the context of a scene containing four blocks: a red
one and a blue one on the left, and a red one and blue one on the right. As the first portion of the
input utterance is processed, let us assume that the speech recognizer correctly recovers the first
two words of the utterance, ‘‘the red’’. In actuality, in Fuse, the output of the speech recognizer



Fig. 2. Overview of the Fuse architecture.
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is a lattice that encodes multiple word hypotheses, but to keep the example simple, we first con-
sider a single word sequence.

The partially decoded word sequence is fed to the visual attention module which also receives
the output of the visual scene analyzer. Visual attention is modeled as a probability mass function
(pmf) over the set of objects in the scene. Initially, before speech recognition begins, the pmf is
non-informative and assigns equal probability to all objects in the scene. When the words ‘‘the
red’’ are fed into the visual attention module, the pmf is updated so that most of the probability
mass is shifted to the red objects in the scene. In effect, the visual attention of the system shifts to
the red objects. The attention module uses a set of visually-grounded semantic models to convert
the word sequence into the pmf (Section 6).

The visual attention pmf, which now favors the two red objects in the scene, is transmitted to
the language model. The language model may be thought of as a linguistic description generator.
For each object in the scene, the model generates a set of referring expressions that a person might
use to describe the object. For the red block on the left, the model might generate a set of descrip-
tions including ‘‘the red block’’, ‘‘the large red block’’, the ‘‘the red block on the left’’, and so
forth. Each description is assigned a likelihood that depends on how well the description matches
the visual attributes of the object, and also based on syntactic and contextual measures of fitness.
The likelihoods of the descriptions for each object are scaled by the probability assigned to that
object by the visual attention pmf. The resulting mixture of descriptions is summarized as a bi-
gram language model which is used by the speech recognizer. In effect, visual attention steers
the speech recognizer to interpret the input speech signal as a description of objects that have cap-
tured more of the system�s attention.

As acoustic evidence is incrementally processed, the visual attention pmf evolves. The
dynamic pmf in turn biases the language model of the speech recognizer. As more of the
utterance is processed, the visual attention becomes progressively sharpened towards potential
referents in the scene.
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Several details have been simplified in this overview. One complication is introduced with utter-
ances containing relative spatial clauses such as, ‘‘The red block to the left of the large blue one’’.
In this class of utterances, visual attention must be refocused mid-way through processing from
potential target objects (red blocks) to potential landmark objects (large blue blocks to the right
of the potential targets). Another complication arises from the fact that the output of the speech
recognizer at any moment is not a single word sequence, but rather a lattice that encodes multiple
(potentially thousands) of alternative word hypotheses. These and other aspects of Fuse are
explained in the following sections which provide detailed descriptions of each component of
the system.
4. Visual scene analysis

The visual scene analysis module segments objects in an input scene and computes visual prop-
erties of individual objects, and spatial relations between pairs of objects. The resulting represen-
tation of the scene is used by both the language model and visual attention model.

Objects are segmented based on color. A statistical color model is created for objects by train-
ing Gaussian mixture models on sample images of the objects. We assume that objects will be sin-
gle-colored, greatly simplifying the segmentation process. The Expectation Maximization (EM)
algorithm is used to estimate both the mixture weights and the underlying Gaussian parameters
for each color model. The color models are used as a Bayes classifier to label each 5 · 5 pixel re-
gion of an input image. Regions of the image that do not match any object color model are clas-
sified as background using a fixed threshold. Objects are found by extracting connected
foreground regions of consistent color.

A set of visual properties are computed for each object found in the segmentation step, and for
spatial relations between each pair of objects. These properties and relations constitute the com-
plete representation of a visual scene. The features attempt to capture aspects of the scene that are
likely to be referred to in natural spoken descriptions. The following visual features are extracted:

� Color is represented by the mean RGB value of the 10 · 10 pixel region in the center of the
object.

� Shape is represented by five geometric features computed on the bounding box of each
object: height, width, height-to-width ratio, ratio of the larger to the smaller dimension
(height/width), and bounding box area.

� Position is represented by the horizontal and vertical position of the of center of the region.

� Spatial relations are encoded by a set of three spatial features suggested in Regier (1996) that
are measured between pairs of objects. The first feature is the angle (relative to the horizon)
of the line connecting the centers of area of an object pair. The second feature is the shortest
distance between the edges of the objects. The third feature measures the angle (relative to
the horizon) of the line which connects the two most proximal points of the objects.

To summarize, each object is represented by a 10-dimensional feature vector (3 color features, 5
shape, and 2 position). The spatial relation between each pair of objects is represented by three
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additional spatial features. In real time operation, the visual analysis system captures and
processes video frames at a rate of 15 Hz. When Fuse detects the onset of a spoken utterances,
the visual frame co-occurring with the start of the utterance is captured, and the resulting visual
features are used to provide context for processing of the entire spoken utterance. Changes made
to the scene once the utterance has begun are ignored.
5. Speech decoding

The role of the speech decoder is to find word sequences that best explain acoustic input.
The decoding strategy and algorithms are based on standard methods. Speech is represented
using a 24-band Mel-scaled cepstral acoustic representation (Rabiner and Juang, 1993). Words
are modeled by concatenating context sensitive phoneme (triphone) models based on continu-
ous-density three-state, Hidden Markov Models (Rabiner, 1989). Speech decoding is accom-
plished using a time-synchronous Viterbi beam search (Rabiner, 1989). The decoder has
been tested on standard speech recognition test corpora and performs competitively with other
research platforms, and thus serves as a useful baseline for the experiments presented here
(Yoder, 2001).
6. Visual context driven language model

The language model is designed to ‘‘second guess’’ what the speaker is likely to say, assuming
he/she will speak a description of an object in the current visual scene. If the language model is
able to accurately anticipate the speaker�s words, the model can bias the speech decoder towards
more likely interpretations of the incoming speech signal. There are several sources of uncertainty
in predicting how a person will describe objects in the scene:

1. The identity of the target item is unknown, so the language model must consider descriptions
that fit all objects in the scene.

2. People may use different words to refer to the same attributes. For example, one person might
call an object blue, while another speaker will call it purple.

3. Speakers may use different combinations of words to refer to the same object. ‘‘The blue one’’,
the ‘‘the tall block’’, and ‘‘the cube to the left of the red one’’ may all refer to the same
referent.

To address these sources of uncertainty, multiple descriptions are generated, in turn, for each
object in the current scene to account for variations due to factors (2) and (3). The potentially
large set of resulting descriptions are then weighted and combined to create a bigram language
model that is used by the speech decoder. Although the descriptions stay fixed during the process-
ing of an utterance, the relative weighting of individual descriptions is dynamically updated using
the visual attention model that is described in Section 7. As a result, the bigram language model is
not only influenced by visual context as recorded at the onset of the utterance, but further evolves
online as the utterance is processed.
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The method for generating descriptions is adapted from the trainable object description system
called Describer that was reported in (Roy, 2002). In this work, we developed learning algorithms
that take as input synthetic visual scenes paired with natural language descriptions of objects. The
output of the system consists of a set of visually grounded word models that are grouped into
word classes, and a set of class bigrams that model transitions between word classes. Word classes
are formed on the basis of both visual (semantic) and syntactic properties of words. Each word is
associated with an acquired visual model that consists of a multidimensional Gaussian distribu-
tion defined over a subset of the 10 visual features described in Section 4. The learning algorithm
automatically associates visual features with word classes. Complete details of the learning algo-
rithm are provided in Roy (2002).

All parameters of the description model are learned from examples of objects embedded in
scenes that are labeled with descriptive phrases. For our experiments with Fuse, a set of 60 train-
ing examples were collected from eight participants, resulting in a total of 480 examples in the
training dataset. Since the training methods have been previously described (Roy, 2002), here
we describe the data structures created by that learning algorithm and then show how the struc-
tures are used to generate descriptions.

Fig. 3 shows the visual models associated with the members of an acquired word class. The
learning algorithm decided to cluster these four words, and to ground them in terms of the two
visual features (from a choice of 10). Two geometric features (area, and ratio of dimensions) have
been selected as the salient visual attributes for this cluster of words. The overlapping distribu-
tions show the relation between the words big and large, and their antonyms little and small.
As we shall see, word classes and their associated visual models are used as Bayes classifiers in
order to generate labels for novel objects.
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four words.
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Word order is modeled through bigrams that specify transition probabilities between words
and word classes. Fig. 4 shows a subset of phrase level bigrams in the form of a transition net-
work. Each arc is labeled with the transition probability between pairs of words/word classes (bi-
gram transitions with less than 0.10 have been pruned for readability). Word classes with single
members are labeled with that word. The six classes with multiple visually grounded words are
listed in Table 1. Many words that occur in the training corpus such as the and and appear in
the grammar but are not visually grounded. As we explain below, those words play a role in
predicting words during speech recognition, but do not effect semantic analysis. Any path through
the network in Fig. 4 constitutes a possible description of an object. For instance, the red
block and the leftmost large one are word sequences that may be generated by this network.
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Table 1

Visually-grounded words that are grouped into word classes in the bigram network in Fig. 4

Word class Members

C8 Large, big, small, little

C10 Rectangle, square.

C11 Front, back, left, right, top, bottom, rear, upper

C12 Frontmost, topmost, bottommost, leftmost, rightmost, centermost

C13 Red, blue, yellow, green

C25 Horizontal, vertical

Each word class is assigned a set of visual features, and the semantics of each word is grounded in a Gaussian

probability distribution over the set of features assigned to its class.
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A higher-order phrase network (Fig. 5) models relative spatial phrases. The automatic acquisition
of higher level grammars is described in (Roy, 2002). The phrase nodes in this network, marked
‘‘TARGET OBJECT’’ and ‘‘LANDMARK OBJECT’’, each embed a copy of the phrase network
and are connected by relative spatial terms. Spatial terms are grounded (defined) by Gaussian dis-
tributions over the three spatial relation features described in Section 4. This phrase network can
generate sequences such as the large green block beneath the red one.
6.1. Mixtures of descriptions for language modeling

The speech recognizer requires a language model consisting of a set of word bigram transition
probabilities. As Eq. (4) shows, the word bigram can be obtained from the product of word class
transition probabilities P(cijci� 1) and class conditional word probabilities P(wijci). The word class
transition probabilities are fully determined from training data (Fig. 4) and remain static during
speech processing. Thus, the expected order of word classes, and transition probabilities between
classes is not expected to change as a function of visual context since these capture syntactic reg-
ularities of the language. The probabilities of words within each word class, on the other hand, do
depend on context. As a simple example, if there are no blue objects in the scene, the probability
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for the word blue should be reduced relative to other words in its class given our assumption that
the utterance refers to some object in the scene. To capture this intuition, class conditional word
probabilities are dynamically estimated as a function of the scene and the pmf model of visual
attention using a five-step process.

6.1.1. Enumerate all left-to-right paths through the object description grammar
All distinct paths connecting the start and end nodes of the transition network (Fig. 4) are enu-

merated. Loops are avoided, resulting in only left-to-right paths. This process leads to a set of N
sequences, {C1,C2, . . . ,CN}. Each sequence Ci consist of a ordered set of Ti word classes
Ci ¼ c1i ; c
2
i ; . . . ; c

T i
i : ð5Þ
These sequences constitute the set of syntactic frames embedded in the transition network.
6.1.2. Map word classes to words

Each word in a class may be grounded in a visual model (Gaussian distribution). The models
associated with the words of each class are used as a Bayes classifier (Duda and Hart, 1973) to
classify objects based on their measured visual attributes. For example, consider the word class
shown in Fig. 3. To use this word class as a Bayes classifier to label an object, the two features
of the object associated with visual models must be measured. Each of the visual models of this
class are then evaluated at the measured values, and the model with the highest value (probability
density) is selected as the best match to the object. The word associated with that model is thus the
best choice within the word class for describing the object. The mapping from word class to word
is thus object dependent; different words may become most activated within a class depending on
the visual properties of the object. We denote the word sequence generated by using the word class
sequence Ci to describe object Oj as
W j
i ¼ w1

ij;w
2
ij; . . . ;w

Ti
ij : ð6Þ
For a scene withM objects, this mapping process results in N ·M word sequences (N descriptions
for each of M objects).
6.1.3. Compute the descriptive fitness of each description

Each description can be evaluated on how well it visually matches its target object by comput-
ing the product of the word conditional probabilities of the observed object properties, which is
equivalently expressed as a sum of log probabilities
fitðW j
i ;OjÞ ¼

PT i
t¼1 log pðOjjwt

ijÞ
GðCiÞ

; ð7Þ
where G(Ci) is the number of visually grounded word classes in the sequence Ci. The denominator
term normalizes effects due to the length of the description. pðOjjwt

ijÞ evaluates the visual model
associated with word wt

ij for the visual features of object Oj. For ungrounded words, pðOjjwt
ijÞ is

set to 1.0.
This fitness function measures how well a descriptive phrase matches the properties of the

target object, but it does not account for contextual effects due to other objects in the scene. A
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description that matches the target well may also describe a non-target equally well. To capture
contextual effects, we define a context-sensitive fitness:
wðCi;OjÞ ¼ fitðW j
i ;OjÞ �max

k 6¼j
fitðW j

i ;OkÞ: ð8Þ
This measure subtracts the fitness of the competing object in the scene that best fits the description
intended for the target and tends to favor contextually-unambiguous descriptions.

6.1.4. Compute object-conditional word predictions

For a given object and word class sequence, object-conditional probabilities are assigned to
each visually grounded word
P ðwjOi; cðwÞÞ ¼
pðOijwÞ

P
all Cj s:t: cðwÞ2Cj

wðCj;OiÞPM
k¼1pðOkjwÞ

P
all Cj s:t: cðwÞ2Cj

wðCj;OkÞ
; ð9Þ
where c(w) is the word class to which w belongs. The context-sensitive fitness scores w(Cj,Oi) scale
each visually based probability density p(Oijw) depending on how well the syntactic frame Cj is
able to generate an unambiguous description of Oi. Note that if two words both describe an object
well, Eq. (9) will assign relatively large probabilities to both words. On the other hand, for words
that tend to increase ambiguity due to other objects in the scene that also fit the semantics of the
term, Eq. (9) will obtain relatively low probability estimates due to the use of the context-sensitive
evaluation based on w().

6.1.5. Mix word predictions using visual attention

The final step is to mix the influences of all objects in the scene to obtain class conditional word
probability estimates
P ðwjcðwÞÞ ¼
XM
i¼1

PðwjOi; cðwÞÞP ðOiÞ: ð10Þ
The degree to which each object biases word predictions depends on Fuse�s visual attention state,
P(Oi) (Section 7).

Using these five steps, a set of class conditional word probabilities are generated that repre-
sent the system�s anticipation of words the speaker will use, given the contents of the visual
scene, and the system�s current visual attention state. Referring back to Eq. (4), we can see that
the dynamic formulation of class conditional probability estimates P(wjc(w)) in Eq. (10) can be
directly inserted into the computation of bigrams that feed into the speech recognizer. As cer-
tain objects in the scene capture more of Fuse�s attention, the words that better describe those
objects become more probable and thus steer the speech recognizer towards those parts of the
vocabulary.
6.2. Relative spatial clauses

The spatial grammar (Fig. 5) is used to model the use of relative spatial clauses. For example,
‘‘The red block beneath the small green block’’ contains references to two objects, the target (the
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red block) and a landmark (‘‘the small green one’’). The spatial relation ‘‘beneath’’ describes the
relation between target and landmark.

Spatial connective terms may consist of multiple words (e.g., ‘‘to the left of’’) that are automat-
ically tokenized (Roy, 2002) and treated as a single acoustic unit during speech decoding. A
description consists either of a single phrase describing the target, or descriptive phrases of target
and landmarks connected by an appropriate spatial relation. The probability of using spatial rel-
ative phrases is encoded in the probability transitions from the ‘‘TARGET OBJECT’’ node of the
spatial grammar. This pair of transition probabilities is estimated based on the ratio of training
utterances that contained spatial relations versus total training utterances (Roy, 2002).

After describing the visual attention pmf update process in the next section, we explain how
spatial relations are handled during speech processing.
7. Language driven visual attention

As Fuse processes incoming speech and generates partial word sequences, a model of visual
attention is incrementally updated to reflect the system�s current ‘‘belief’’ of the intended referent
object. Attention consists of a probability mass function (pmf) distributed over the objects in the
current scene. The pmf is used to mix object-dependent description bigrams into a single weighted
bigram (Eq. (10)). Thus, as speech is processed, the evolving distribution of attention shifts the
weight of bigrams to favor descriptions of objects that capture more attention. The visual atten-
tion model enables the early integration of visual context to provide dynamic incremental estima-
tion of the priors associated with the interpolated class conditional probabilities.

As we mentioned earlier, the speech decoder used in Fuse is based on a single pass Viterbi beam
search (Rabiner, 1989). In this strategy, multiple word sequences within a search beam are con-
sidered during a forward pass, and in a backward pass the best word sequence is selected. In
the following, we show how the visual attention model, P(Oi), is computed for a partial word se-
quence. Separate attentional pmf�s are maintained for each parallel word sequence hypothesis.
The average pmf over all search paths of the decoder may be interpreted as the system�s overall
attention at any given point of time.

At the start of each utterance, before any words have been processed, visual attention is shared
equally by all M objects in the scene
PðOiÞ½0� ¼
1

M
: ð11Þ
The index in square parentheses indicates that this is the attention pmf when 0 words have been
processed. As each new word wn is posited in one of the search paths of the speech decoder, the
path-dependent attention pmf is incrementally updated using one of three update rules depending
on the type of the new word:

1. wn is a visually-grounded word. In this case, the update rule is
PðOiÞ½n� ¼
pðOijwnÞPðOiÞ½n� 1�PM
j¼1pðOjjwnÞP ðOjÞ½n� 1�

: ð12Þ
That is, the product of the visual models corresponding to modifier terms of an object.
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2. wn is a visually-grounded spatial relation (e.g., ‘‘above’’, ‘‘beneath’’, etc.). The update
rule is
P ðOiÞ½n� ¼
PM

j¼1; j6¼i pðOijwn;OjÞPðOjÞ½n� 1�PM
k¼1

PM
j¼1; j6¼k pðOkjwn;OjÞP ðOjÞ½n� 1�

; ð13Þ
where P(Ojjw,Oi) is derived from visual models of spatial relations in which Oi is the target object,
Oj is the landmark object, and w is the relative spatial term. This update rule causes the attention
of the system to shift to objects that hold the spatial relation indicated by wn relative to whatever
object has been described by the partial word sequence w1, . . . ,wn�1.
3. wn is a visually ungrounded word (e.g., ‘‘the’’, ‘‘by’’, etc.). In this case, the update rule is
P ðOiÞ½n� ¼ P ðOiÞ½n� 1�: ð14Þ

Thus, visually ungrounded words have no effect on visual attention.

Using these three update rules, Fuse maintains separate attentional state pmf�s for each path of
the decoder�s search lattice.
8. Visually-grounded speech recognition and understanding

Processing in Fuse is initiated by the detection of a spoken utterance. A forward search pass of
the Viterbi algorithm maintains multiple word sequence hypotheses in a search lattice. Following
standard speech recognition methods, a beam is used to limit the number of active paths at any
point in the forward pass. Early integration of context effects the paths which are retained within
the beam search. Although we believe our approach is advantageous to late integration (e.g.,
n-best recognition output rescoring using visual context), we have not experimentally compared
these two approaches. The attention model biases the search to word sequences that semantically
match the properties and spatial configurations of objects in the co-occurring visual scene. Once
the entire utterance has been processed (i.e., the forward pass is complete), backchaining is used to
recover the most likely word sequence.

Fuse is able to understand two classes of referring expressions which we refer to as simple and
complex (Roy, 2002). Simple expressions refer to single objects without use of spatial relations,
and are fully modeled by the transition network in Fig. 4. Complex expressions include relative
spatial clauses and are modeled by the network in Fig. 5.

Once the forward pass of the beam search is complete, the best word sequence is extracted. We
denote this word string asW = w1, . . . ,wN. In the case of a simple referring expression, Fuse selects
the object with greatest visual attention
i
argmax

P ðOiÞ½N �: ð15Þ
For complex referring expressions, W is segmented into three sub-sequences, W =
w1, . . . ,wm� 1,wm,wm + 1, . . . ,wN, where wm is a relative spatial term, w1, . . . ,wm�1 describes the tar-
get object, and wm + 1, . . . ,wN describes a landmark object. Fuse selects Oi based on
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i
argmax

PðOiÞ½m� 1�
XM

j¼1;j6¼i

pðOjjwm;OiÞPðOjÞ½N �; ð16Þ
where p(Ojjwm,Oi) is derived from the visual model associated with the relative spatial term wm. By
using Eq. (16), a distribution of possible landmarks are combined to determine the single most
likely target object.
8.1. A detailed example of visually-steered speech processing

To illustrate the interaction between visual attention and speech processing, we now work
through a detailed example. Table 2 shows the transcription of a sample utterance from our test
corpus, the output of the speech decoder using standard bigrams without use of the visual context,
and the decoder�s output using context.

Errors from the decoder are underlined, and omitted words are indicated by square parenthe-
ses. Corrections due to visual context are shown in italics. The introduction of visual context in
this case makes two important differences. First, the word lower is corrected to large, and the
incorrectly decoded words to me are changed to beneath. Both of these word substitutions have
semantic significance on the interpretation of the utterance. Two occurrences of the are also cor-
rectly recovered as a result of improved language modeling.

The evolution of visual attention is illustrated for this example in Fig. 6. Each graph along
the right shows the distribution of attention across the ten objects after integrating the words
shown to the left of each graph. The most likely word sequence found by the Viterbi search is
shown in the figure. Ungrounded words are shown in parentheses and do not effect the atten-
tion pmf. Attention vectors are normalized within each graph. As evidence for the target object
accumulate from the first part of the utterance, ‘‘The large green block in the far right’’, the
pmf becomes progressively sharper with most probability mass focused on Object 8 (fourth
graph from the top). When the relative spatial term ‘‘beneath’’ is incorporated (third graph
from the bottom), visual attention is captured almost equally by Objects 9 and 10 which
are the two smaller blocks above Object 8. Thus, the grounded model associated with ‘‘be-
neath’’ has caused attention to shift appropriately. The remainder of this utterance refers to
two objects. Fuse is designed on the assumption that the remaining phrase will refer to only
a single object. Due to the soft assignment of visual attention, however, Fuse is able to ro-
bustly deal with the phrase ‘‘the yellow block and the red block’’ by assigning roughly equal
attention to both landmark objects. To understand the utterance, Eq. (16) is applied and cor-
rectly selects Object 8.
2

mple of speech transcription without the use of visual context, and improved output from Fuse with visual context

cript The large green block on the far right beneath the yellow block and the red block

sual context [The] lower green block in the far right to me [the] yellow block in the red block

l context The large green block in the far right beneath the yellow block in the red block

on errors are marked in square parentheses and substitution errors are underlined.



Fig. 6. Evolution of attention during processing of the utterance, ‘‘The large green block in the far right beneath the

yellow block and the red block’’.
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8.2. Experimental evaluation

Eight male and female speakers participated in an evaluation study. The speakers were all stu-
dents at MIT and had no specific technical background related to this project. Participants were
seated at a table, wore a headset microphone, and were asked to produce unambiguous spoken
descriptions for selected objects amongst configurations of objects placed on the table. We did
not instruct speakers on style of speech, resulting in natural spontaneous speech recordings. Of
course, due to the highly constrained nature of the task, the degree of spontaneity was less than
would occur in other more natural conversational situations.

A corpus of 990 spoken utterances paired with corresponding visual camera images was col-
lected from the eight speakers. To evaluate Fuse, a leave-one-speaker-out train and test procedure
was employed. Each speaker�s data was held out and the remaining data was used to train models
that were then tested on the held out speaker.

Speech recognition and understanding errors on this corpus are shown in Tables 3 and 4,
respectively. Averaged across all eight speakers, the word recognition error rate is reduced by



Table 3

Speech recognition errors (%)

Speaker No visual context With visual context

1 28.2 21.7

2 24.6 14.3

3 26.9 17.2

4 23.7 16.6

5 19.2 14.5

6 21.3 13.3

7 24.3 17.1

8 26.0 18.8

Average 24.3 16.7

Averaged across all eight speakers, the introduction of visual context reduced the word error rate by 31%.

Table 4

Speech understanding errors (%)

Speaker No visual context With visual context

1 27.4 17.6

2 25.5 12.1

3 27.8 14.8

4 23.3 17.0

5 23.0 13.2

6 23.5 13.9

7 23.8 13.1

8 21.2 12.6

Average 24.4 14.3

Averaged across all eight speakers, the integration of visual context reduced the language understanding error rate by

41%.
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31% when visual context is used. This result demonstrates that integration of visual context has
significant impact on the recognition of speech that refers to the contents of the scene in our exper-
imental task. Although we did not directly compare early versus late integration, we believe that
for larger tasks early integration strategies may be preferred since search lattices can be kept smal-
ler while obtaining equivalent overall recognition results.

The effects of visual context on speech understanding are even greater. A speech understand-
ing error occurs when the system selects the incorrect object in response to a description. Since
each visual scene had 10 objects, random selection would lead to an average error rate of 90%.
The first column of Table 4 shows that without visual context, i.e., using a speech recognizer
with static bigrams, the system works quite well, with an average error rate of 24% (i.e., the
system chooses the correct object 76% of the time). This system is similar to that described
previously in (Roy et al., 2002). The second column of Table 3 shows the change in under-
standing errors once visual attention is integrated into the speech decoding process. On aver-
age, the number of understanding errors drops by 41%, i.e., Fuse chooses the correct object
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86% of the time. The influences of vision on speech processing flow through the system and
have substantial effects on overall understanding performance since recognition errors often in-
volve semantically salient words.
8.3. Future directions

We have presented an implemented model that integrates visual context into the speech recog-
nition and understanding process. In contrast to previous work, Fuse makes use of context at the
earliest stages of speech processing, resulting in improved performance in an object selection task.
The main idea that this work demonstrates is the payoff of strategically breaking modular bound-
aries in language processing. A key to achieving this cross-module integration is a model of how
natural language semantics relates to visual features of a scene.

We have observed several significant causes if speech understanding errors in Fuse, each of
which suggests extensions to the current architecture:

� Speech end point detection errors: The speech segmentation module in our real time speech
recognition system occasionally merges utterances that should have been processed sepa-
rately. Later stages of Fuse are designed on the assumption that only one referring expres-
sion is contained in the utterance. A possible extension is to integrate speech segmentation
with semantic analysis for more accurate boundary detection.

� Descriptions with more than one landmark object: We assume that a complex referring
expression consists of a target object description, and optionally a landmark object descrip-
tion with connective relative spatial term or phrase. Thus, Fuse cannot consistently handle
cases where the referring expressions contain descriptions of more than one landmark object
in conjunction or groups of landmark objects (although the example in Section 8.1 demon-
strates that sometimes this problem can be overcome in the current approach). This short-
coming suggests the use of more complex grammars, and treatment of semantic
composition that goes beyond the multiplication of probability densities. For some steps
in this direction (see Gorniak and Roy, 2004).

� Error propagation: Due to the feed-forward design of the visual attention update algorithm,
errors that enter during initial stages of decoding are propagated throughout the remainder
of the utterance. To remedy this, and other related problems, the notion of confidence can be
introduced to the visual attention model. For example, the number of active search paths
within the Viterbi beam search, which is often used as a source for estimating acoustic con-
fidence in speech recognizers (Rose, 1996), might similarly be used as the basis for estimating
confidence of the visual attention pmf. When confidence is low, the effects of attention could
be discounted.

� Visual segmentation errors: Some errors in understanding occur due to imperfect image seg-
mentation performed by the visual analysis system. Such segmentations may merge more
than one objects or divide an object into two or more parts. These cause mismatches among
descriptions and the corresponding objects. This problem suggests early integration of
speech into visual processing, the complement of the integration we have explored in Fuse.
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Referring back to Fig. 2, this suggests that the visual scene analysis module might be brought
into the processing loop. If the speech decoder confidently reports the phrase ‘‘the two blue
blocks on the right’’, this might help the visual analyzer decide between interpreting a stack
of blocks as a single block versus two.

To implement Fuse, we made strong simplifying assumptions about the task. In addition to
assuming that each spoken utterance would in fact be a referring expression to an in-view object,
we also assumed that no other modalities are available in parallel to speech for selecting objects.
Of course in many natural settings it would be preferable simply to point, or to combine speech
and gesture. As we mentioned earlier (Section 2), our goal in this work was to explore multi-
modal integration in which the non-speech channel encoded information about context rather
than the speaker�s intentions. A useful future direction would be to bring these different kinds
of multimodal information together.

Looking ahead, we plan to expand this work along two directions. First, Fuse will be integrated
into an interactive manipulator robot (Hsiao et al., 2003; Roy et al., in press). Fuse will have ac-
cess to representations in the robot�s visual system and also its planning and memory systems,
leading to an enriched encoding of context to help guide speech processing. Second, we plan to
extend Fuse to work with non-visual context cues such as geographical position and time of
day in order to build context-aware assistive communication devices (Dominowska et al., 2002).
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